ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019
|
|
- Noah Evensen
- 5 år siden
- Visninger:
Transkript
1 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST/ST Sannsynlighetsregning og statistikk Vår 9 Oppgaver fra boka 3..9 Ved et terningkast anses utfallet antall øyne lik for å være suksess mens alt annet er fiasko. Sannsynligheten for å slå en sekser er uniform, lik p =, samt konstant ved hvert terningkast. Hvert kast anses som uavhengig av hverandre. Det vil si at den stokastiske variabelen X = antall seksere er binomisk fordelt. P (minst sekser på kast) = P (X ) P (X = ) ( ) ( ) ( ( ) 5 =.5 P (minst sekser på kast) = P (X ) [P (X = ) + P (X + )] [ ( ) ] ( ) k ( ) k k [ k= ( 5 ) + ( ) ] 5 =.87 [ ] P (minst 3 sekser på 8 kast) = P (X 3) P (X = k) [ k= ( k ) ( k= ] ) k ( ) k [ ] =.5973 Altså mest sannsynlig å få minst en sekser på terningkast. ) 3.. La X = antall missiler som treffer flyet og Y = antall raketter som treffer båten. For hver avfyrt missil/rakett er det snakk om uavhengige forsøk med konstant sannsynlighet for suksess (treffe målet) henholdsvis p X =. og p Y =.5. Så både X og Y kan anses som binomisk fordelt. Det er opplyst at flyet styrter hvis det treffes av eller flere missiler, mens båten. januar 9 Side av 9
2 synker hvis den treffes av én rakett. Dvs. P (flyet styrter) = P (X ) k= ( k ) ( 5 P (X = k) k= ) k ( ) k [ ] =.3 P (båten synker) = P (Y ) P (Y = ) ( ) ( ) (.5987 =. Så det er størst sannsynlighet for å overleve i flyet. ) 3.. Hvert barn er et uavhengig forsøk med konstant sannsynlighet p =.5 for at barnet er ei jente (suksess). Så med barn er det snakk om forsøk og ( ) ( ) ( P ( av hvert kjønn) = =.375 ) P (3 av hvert kjønn) =P (3 jenter og gutt) + P ( jente og 3 gutter) ( ) ( ) 3 ( = 3 ( ) ( ) ( + 3 ) ( ) ( ) = =.5 3 Så det er størst sannsynlighet for å få 3 barn av samme kjønn. ) 3.. En populasjon på 9 bjørner består av mørke og 3 lyse. Av disse er observert forskjellige. La X være antall observerte mørke bjørner. Siden det er observert forskjellige bjørner er det snakk om et udvalg uten tilbakeleging og X vil være hypergeometrisk fordelt. Hvis det skal være observert minst dobbelt så mange mørke som lyse bjørner, ut av i alt observert, må det være observert minimum mørke bjørner. Så spørsmålet kan besvares ved P (X ) = x= P (X = x) hvor den øvre grense skyldes antallet observerte bjørner. P (X ) = P (X = x) x= ( = )( 3 ) ( 9 ) + ( )( 3 ( )( 3 5( ) 9 + ( ) 9 ) ) = = Det velges 5 av mulige spørsmål til eksamen. Hvis Anne kan svare på 8 av de mulige spørsmål, har hun da minst 85% sannsynlighet for å kunne svare på minst av 5 spørsmål?. januar 9 Side av 9
3 La X betegne antall korrekte svar på eksamen. Oppgaven er da å finne sannsynligheten for å trekke 5 spørsmål ut fra en pulje på spørsmål (uten tilbakeleging), hvor hun kan svare på minst. Dvs. ( 8 )( ( 8 )( P (X ) = P (X = ) + P (X = 5) = ( ) 5 ) + ( ) ) = Så Anne har ikke 85% sannsynlighet for å kunne svare riktig på av 5 spørsmål ved kun å kunne 8 av mulige spørsmål a) Urnen inneholder 5 baller nummerert til 5 og det trekkes baller samtidig. La X være det største nummeret assosiert med de to trukne baller. Den største verdien vil alltid være > da baller trekkes uten tilbakelegning og 5, så utfallsrommet er begrenset til S X = {, 3,, 5}. Med et så overkommelig utfallsrom kan sannsynlighetsfordelingen konstrueres som P (X = k) = antall muligheter for X = k antall mulige kombinasjoner Antall mulige kombinasjoner de to ballene kan trekkes, som er gitt ved antall permutasjoner n P k = 5 P =. Sannsynligheten for hvert utfall kan da lett finnes ved telling av mulige kombinasjoner. F.eks. for k = er det kun utfallene {(, ), (, )}, for k = 3 er det {(, 3), (, 3), (3, ), (3, )} osv. Samlet gir det sannsynlighetsfordelingen k 3 5 p X (k) / / 3/ / som oppfyller kravene til en diskret sannsynlighetsfordeling. b) La nå V være summen av de to ballenes verdi. Utfallsrommet består av helltal i intervallet 3 til 9, og på samme vis som i forrige spørsmål kan en sannsynlighetsfordeling for V konstrueres ved simpel kombinatorik og telling. k p V (k) / / / / / / / 3.3. a) Nå blir ballene i forrige oppgave trukket med tilbakeleging, verdien av. ball er nå uavhengig av. balls verdi. Utfallsrommet utvides til S X = {,, 3,, 5} og en fordeling p X (k) kan konstrueres på samme måte som før, hvor antall mulige kombinasjoner nå er 5 = 5. Så f.eks. for k = er det kun et mulig utfall (, ), for k = er det utfallene {(, ), (, ), (, )} som teller, mens det for k = 3 er {(, 3), (, 3), (3, 3), (3, ), (3, )} osv. Dette gir sannsynlighetsfordeling p X (k):. januar 9 Side 3 av 9
4 k 3 5 p X (k) /5 3/5 5/5 7/5 9/5 b) Utfallsrommet for V er nå utvidet til heltall i intervallet [, ], men framgangsmåten er den samme som i spørsmål 3.3. b) Den diskrete sannsynlighetsfordeling p V (k) blir da: k p V (k) /5 /5 3/5 /5 5/5 /5 3/5 /5 / Vi kaster en rettferdig terning (altså en "vanligterning der alle utfall er like sannsynlige) tre ganger. X er det største antallet øyne på de tre kastene. Utfallsrommet er S X = {,, 3,, 5, }. La (a, b, c) være verdiene vi kaster, og vi har 3 = muligheter for kastene ( utfall per kast). Det betyr at sannsynligheten for at X = er /, fordi da må (a, b, c) = (,, ). X = når minst én av a, b, c er og resten er. Da har vi tre muligheter for ett -tall, tre muligheter for to -tall, og én mulighet for tre -tall, som gir oss P (X = ) = 7/. En mer generell tankegang er at vi har to muligheter for hvert terningkast ( eller ), og derfor har 3 = 8 muligheter, minus de der vi ikke har noen -tall, som her er (a, b, c) = (,, ). Det blir altså 3 / / = 7/. For X = 3 må minst én av terningene ha 3 øyne, mens de andre har, eller 3. Da har alle 3 muligheter, 3 3 = 7, minus de situasjonene der ingen er 3-tall (og bare og ) som har 3 = 8 muligheter. Altså, P (X = 3) = 3 3 / 3 / = 9/. Nå ser vi et system her, for X = k har vi k 3 minus (k ) muligheter. Da kan vi skrive ned den generelle formelen: p X (k) = k3 (k )3 som vi kan se at vil summere til, så dette er en gyldig sannsynlighetstetthet Terningen blir kastet 3 ganger og X er det største antall øyne på de tre kastene. Ved Definisjon 3.3. er da F X (k) = P (X k) = P (max(a, b, c) k) hvor (a, b, c) er antall øyne i hvert av de tre kastene (se også Eksempel 3.). For at det største antall øyne X k må det nødvendigvis gjelde at a k og b k og c k. Da hendelsene a, b og c er uavhengige fås F X (k) = P (max(a, b, c) k) = P ((a k) (b k) (c k)) = P (a k)p (b k)p (c k) = k k k ( ) k 3 = k =,...,. januar 9 Side av 9
5 da P (a k) = k x= Den kumulative fordelingsfunksjon for den diskrete variabelen X har formen F X (x) = x(x + )/ i punktene x =,,...,. For å finne sannsynlighetsfordelingen p X (x) bruker vi at F X (x) = x k= p X(k) og dermed p X (x) = F X (x) F X (x ) = hvor p X () = F X () = også er dekket. x(x + ) x(x ) = x x =,,..., 3..3 f Y (y) = 3 y, y. Da er P ( Y < ) =P ( < Y < ) =P ( < Y < 3 ) = P (Y < 3 ) P (Y < ) Vi må finne den kumulative sannsynlighetsfordelingen: Da har vi at F Y (y) = y f Y (y)dy = y = (y3 ( ) 3 ) = (y3 + ) 3 y dy = 3 y y dy = 3 [ ] y 3 y3 P ( Y = P (Y < 3 ) P (Y < ) ( (3 = ) ( 3 ( + ) ) 3 + ) = (7/ / + ) = (/) = 3/ = ((7/ + ) (/ + )) 3.. Når man har en spesiell type malaria kan man beskrive tiden man er i remisjon (remissionpå engelsk) ved den kontinuerlige pdf-en f Y (y) = 9 y, y 3, der Y måles i år. Sannsynligheten for at en malariapasients remisjonstid varer mer enn år er da P (Y > ) P (Y ) f Y (y)dy 9 y dy 9 [(/3)y ] 7 = 7. januar 9 Side 5 av 9
6 3.. Vi vet at f Y (y) = (n + )(n + )y n ( y), y, n N. For at f Y (y) skal være en sannsynlighetstetthet, må den oppfylle. f Y (y), y.. f Y (y) dy =. For å vise. holder det å vise at alle faktorene som inngår i f Y (y) er større eller lik null når y. Siden n N, vet vi at (n + ) > (n + ) >. Videre, ser vi at y n og at ( y) innenfor det angitte intervallet. Følgelig er f Y (y). Vi viser. ved å utføre integrasjonen: f Y (y) dy = (n + )(n + )y n ( y) dy () = [ (n + )y n+ (n + )y n+] = (n + ) (n + ) =. Altså er f Y (y) en sannsynlighetstetthet Y er en eksponensialfordelt stokastisk variabel. Sannsynlighetstettheten er f Y (y) = λe λy, y. Vi finner den kumulative sannsynlighetsfordelingen F Y (y): F Y (y) = f Y (y) dy = λe λy dy = C e λy () Vi finner konstanten C ved å kreve at sannsynlighetstettheten integrerer til : lim y F Y (y) = C =. Altså er F Y (y) e λy.. januar 9 Side av 9
7 3.. Y er en kontinuerlig stokastisk variabel med kumulativ sannsynlighetsfordeling, y < F Y (y) = y, y, y Den tilhørende sannsynlighetstettheten er f Y (y) = y, y. Vi skal finne P ( < Y 3 ) ved å. Bruke den kumulative sannsynlighetsfordelingen, F Y (y).. Bruke sannsynlighetstettheten, f Y (y). Metode : Metode : P ( < Y 3 ) = P (Y 3 ) P (Y ) = F Y ( 3 ) F Y ( ) () P ( < Y 3 ) = 3 f Y (y) dy = 3 = 9 = 5. y dy = [ y ] 3 (3) = 5. (5) Alternativt, for metode, ser vi at sannsynlighetstettheten er lineær i dette problemet - altså kan vi beregne integralet ved å finne arealet av trapesen sannsynlighetstettheten danner med x-aksen. P ( < Y 3 ) = f Y ( )(3 ) + (f Y ( 3 ) f Y ( ))(3 ) () = + = Farerate ("hazard rate") er gitt ved: h(y) = f Y (y) F Y (y) Fra 3..8 har vi for eksponensiell familie at f Y (y) = λe λy, y og F Y (y) = e λy. Da er fareraten h(y) = λe λy ( e λy ) = λe λy e λy = λ. januar 9 Side 7 av 9
8 R-oppgave library(ggplot) library(scales) a Stokastisk variabel fra Øving : X N (, ), altså en normalfordelt varabel med gjennomsnitt og varians. Utfallsrommet er hele den reelle tallinja. b Hendelsesfamilien til X: den minste familien av mengder som inneholder alle intervall på den reelle tallinja. Sannsynlighetsfordelingen til X er en normalfordeling med gjennomsnitt og varians. c # temperatur i Celcius fra 9-8 temp_3 <- c(.3, 5.,, 5., 5.8, 8., 8.3, 8.8, 7.5,.) temp_ <- c(.9, 9.5, 7.8, 5.5,.8,.,.3, 8.7,., 5.) temp <- c(temp_3, temp_) mean(temp) ## [] 3.85 var(temp) ## [] 8.3 T er en stokastisk variabel som måler temperatur, og utfallsrommet er hele den reelle tallinja. Merk at de mulige verdiene T kan ta kun er større enn (men utfallsrommet inneholder tall lavere enn det, sannsynligheten for at T kan ta disse verdiene er ). Hendelsesfamilien til T : den minste familien av mengder som inneholder alle intervall på den reelle tallinja (den samme som X i forrige oppgave). Sannsynlighetsfordelingen til T er ikke kjent. Det er riktignok vanlig å anta at temperatur er normalfordelt. Gjennomsnittet er 3.85 og variansen er 8.3 i dataene fra Røros. d ggplot(data.frame(temperatur = temp), aes(x = Temperatur, y =..density..)) + geom_histogram(bins = 3)
9 .3. density.. 5 Temperatur
Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger
Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4245 Statistikk (B, K1, I) 3.1, 3.2, 3.3 foreleses torsdag 15.januar 0.00 0.02 0.04 0.06 0.08 160 170 180 190 hoyde i cm Mette.Langaas@math.ntnu.no
DetaljerTMA4240 Statistikk Høst 2008
TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har
DetaljerSum to terninger forts. Eksempel: kast med to terninger. Sum to terninger forts. Kapittel 3. TMA4240 H2006: Eirik Mo
3 Sum to terninger forts. Kapittel 3 TMA4240 H200: Eirik Mo 2 3 4 5,,2,3,4,5, 2 2, 2,2 2,3 2,4 2,5 2, Andre 3 3, 3,2 3,3 3,4 3,5 3, terning 4 4, 4,2 4,3 4,4 4,5 4, 5 5, 5,2 5,3 5,4 5,5 5,,,2,3,4,5, Med
DetaljerST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 201 Oppgaver fra boka 2.6.1 En kjemiker vil observere effekten av 2 ulike
DetaljerTMA4245 Statistikk Høst 2016
TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet
DetaljerDiskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Binomial-fordelingen
Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(, populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen
DetaljerEksempel: kast med to terninger
Kapittel 3 TMA4245 V2007: Eirik Mo 2 Eksempel: kast med to terninger I et eksperiment kaster vi to terninger og registerer antall øyne på hver terning. Utfallsrom S={(,),(,2),(,3),...,(,), (2,),...,(2,),...,(,)}
DetaljerDiskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast)
Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(X), populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen
DetaljerTMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger
TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er
DetaljerTerningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6
Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...
DetaljerTransformasjoner av stokastiske variabler
Transformasjoner av stokastiske variabler Notasjon merkelapper på fordelingene Sannsynlighetstettheten og den kumulative fordelingen til en stokastisk variabel X betegnes hhv. f X og F X. Indeksen er altså
Detaljer1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger
1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk
DetaljerKapittel 3: Stokastiske variable og sannsynlighetsfordelinger
f(x,y) NTNU Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4240 Statistikk (F2 og E7) 3.4: Foreleses mandag 30.august y=hoyde x=vekt Ole.Petter.Lodoen@math.ntnu.no p.1/18 Oppsummering
DetaljerOppfriskning av blokk 1 i TMA4240
Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for
DetaljerBernoulli forsøksrekke og binomisk fordeling
Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke i) gjentar et forsøk n ganger ii) hvert forsøk gir enten suksess eller fiasko iii) sannsynligheten for suksess er p i alle forsøkene
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)
Detaljer3.1 Stokastisk variabel (repetisjon)
TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)
DetaljerSTK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner
STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i
DetaljerST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019 Løsningsforslag Øving 11 23. april 2019 Side 1 av 11 Løsningsforslag
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerForelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger
DetaljerTMA4240 Statistikk H2015
TMA4240 Statistikk H2015 Funksjoner av stokastiske variabler (kapittel 7+notat) Fokus på start med kumulativ fordeling 7.2 Funksjon av en SV (inkludert en-entydighet). Fordeling til max/min (fra notat).
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling
DetaljerTo-dimensjonale kontinuerlige fordelinger
To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}
DetaljerST0103 Brukerkurs i statistikk Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle
DetaljerTest, 3 Sannsynlighet og statistikk
Test, 3 Sannsynlighet og statistikk Innhold 3. Stokastiske variabler og sannsynlighetsfordelinger... 3. Forventningsverdi, varians og standardavvik... 5 3.3 Normalfordelingen... 4 3.4 Sentralgrensesetningen...
DetaljerRegneregler for forventning og varians
Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene
DetaljerSannsynlighetsregning og kombinatorikk
Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerForelening 1, kapittel 4 Stokastiske variable
Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010
DetaljerST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019 Oppgaver fra oka 2.2.2 La (R, B, G) være utfallet av øyne ved et
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
DetaljerSannsynlighetsbegrepet
Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis
DetaljerForeleses onsdag 8. september 2010
TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians
DetaljerTilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo
DetaljerInnledning kapittel 4
Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne
DetaljerHøgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
DetaljerEksamensoppgave i Løsningsskisse TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn
DetaljerMAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem
MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi
DetaljerBinomisk sannsynlighetsfunksjon
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2008
ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.
DetaljerTilfeldige variable (5.2)
Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i
DetaljerNotasjon. Løsninger. Problem. Kapittel 7
3 Notasjon Kapittel 7 Funksjoner av stokastiske variabler Har n stokastiske variabler, X 1, X 2,..., X n, med kjent fordeling f( 1, 2,..., n ) og kumulativ fordeling F( 1, 2,..., n ). Ser på Y = u(x 1,
DetaljerInnledning kapittel 4
Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne
DetaljerUNIVERSITETET I OSLO Matematisk Institutt
UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent
DetaljerFORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
DetaljerSannsynlighet og statistikk S2 Oppgaver
annsynlighet og statistikk 2 Oppgaver Innhold 3 tokastiske variabler og sannsynlighetsfordelinger 2 32 Forventningsverdi Varians tandardavvik 5 33 Normalfordelingen 9 34 entralgrensesetningen 35 Hypotesetesting
DetaljerTMA4240 Statistikk Høst 2009
TMA44 Statistikk Høst 9 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b Løsningsskisse Oppgave X er en stokastisk variabel med sannsynlighetstetthet { f(x),
DetaljerIllustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).
Econ 130 HG mars 017 Supplement til forelesningen 7. februar Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.0). Regel 5.19 sier at summer, Y X1 X X
DetaljerFormelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal
Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene
DetaljerKapittel 4.3: Tilfeldige/stokastiske variable
Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerTMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling
TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.
DetaljerECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind
ECON2130 - Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Betinget sannsynlighet 2. Stokastiske variable 3. Forventning og varians 4. Regneregler
DetaljerSTK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk
STK1100 våren 2016 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Geir Storvik Basert på presentasjon av Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 5: Sannsynlighetsfordelinger for diskrete variabler Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variabler (5.1) Dersom vi til hvert utfall av eksperimentet
DetaljerTMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.
DetaljerMidtveiseksamen i STK1100 våren 2017
Midtveiseksamen i STK1100 våren 2017 Denne midtveiseksamenen består av 20 oppgaver. Det er ett riktig svaralternativ for hvert spørsmål. Hvis svaret er oppgitt som et desimaltall, er det rundet av til
DetaljerTMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5 Løsningsskisse Oppgave 1 En lottorekke kan oppfattes som et ikke-ordnet utvalg på
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet
DetaljerLøsning på Dårlige egg med bruk av Tabell 2 i Appendix B
Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling
DetaljerTilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger (repetisjon) Hypergeometrisk fordeling (repetisjon) Binomisk fordeling Forventningsverdi Tilfeldige variabler
DetaljerKapittel 4.4: Forventning og varians til stokastiske variable
Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske
DetaljerØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir
ØVINGER 017 Løsninger til oppgaver Øving 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir S = {M, K}. Med to etterfølgende myntkast blir utfallsrommet S = {MM, MK,
DetaljerKapittel 2: Hendelser
Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en
DetaljerIntroduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013
Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166
DetaljerTilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan Matematisk institutt Universitetet i Oslo Tilfeldige
DetaljerSTK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger
STK00 våren 206 Normalfordelingen Svarer til avsnitt 4.3 i læreboka Geir Storvik Matematisk institutt Universitetet i Oslo Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger Normalfordelingen
DetaljerSannsynlighet og statistikk S2 Løsninger
Sannsynlighet og statistikk S2 Løsninger Innhold 3. Stokastiske variabler og sannsynlighetsfordelinger... 2 3.2 Forventningsverdi Varians Standardavvik... 9 3.3 Normalfordelingen... 7 3.4 Sentralgrensesetningen...
DetaljerDEL 1 GRUNNLEGGENDE STATISTIKK
INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................
DetaljerSTK1100 våren Introduksjon til sannsynlighetsbegrepet. Svarer til avsnittene 2.1 og 2.2 i læreboka
STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge
DetaljerSTK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk
STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne når det er soloppgang og solnedgang
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren
DetaljerBetinget sannsynlighet
Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av
DetaljerEksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 22 18 96, b 99 40 33 30 Eksamensdato: 30. november 2017 Eksamenstid
DetaljerTMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum
DetaljerST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019 Løsningsforslag Øving 8 Oppgaver fra boka.12.1 X har pdf p X (k)
DetaljerSannsynlighetsregning og Statistikk
Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2
DetaljerSannsynlighet og statistikk
Sannsynlighet og statistikk Innhold Kompetansemål Sannsynlighet og statistikk, S... 3. Stokastiske variabler og sannsynlighetsfordelinger... 3 Stokastisk forsøk... 3 Definisjon av sannsynlighet og sannsynlighetsmodell...
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010
ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen
ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!
Detaljerfor x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere
DetaljerNotater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I
Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet
DetaljerECON Statistikk 1 Forelesning 3: Sannsynlighet. Jo Thori Lind
ECON2130 - Statistikk 1 Forelesning 3: Sannsynlighet Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Hva er sannsynlighet? 2. Grunnleggende regler for sannsynlighetsregning 3. Tilfeldighet i datamaskinen
DetaljerA) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.
Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable
ÅMA Sannsynlighetsregning med statistikk, våren 006. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller (k. 3.6 Hyergeometrisk modell (k. 3.7 Geometrisk
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator
DetaljerEksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
DetaljerFasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre
Detaljerx λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt
Detaljer