Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I

Størrelse: px
Begynne med side:

Download "Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I"

Transkript

1 Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere. Altså i større utregninger. Den første tellemetoden vi skal se på er multiplikasjonsprinsippet. 4.1 Multiplikasjonsprinsippet Hvor mange ulike valgmuligheter har vi når vi gjør flere valg etter hverandre? Berit skal ha på seg bluse og skjørt. Hun kan velge mellom fire bluser og tre skjørt. Antall mulige kombinasjoner i klesveien er da 4 3 = 12. Når det er n 1 muligheter i første valg og n 2 muligheter i andre valg, er det totale antallet kombinasjoner n n. 1 2 Regelen gjelder også ved mer enn to valg. Fakultet Produktet av de hele tallene fra 1 til 4 kan skrives slik: = 4! Vi leser dette: fire fakultet. For de positive hele tallene har vi ( n 2) ( n ) n n! = Det er bestemt at 0! = 1 Tre venninner skal sitte ved siden av hverandre på kino. På de tre setene kan da de tre venninnene sette seg på 3! Ulike måter. Vi kan tenke slik: Den første kan velge mellom tre seter. Det er da to seter igjen til den neste som setter seg og ett sete igjen til den som setter seg sist. Altså: = 3! = 6 ulike måter. Erik Holst skolelab.uib.no Side: 1

2 De tre venninne i eksemplet heter Randi, Susanne og Camilla. Oppsettet nedenfor viser de 6 mulige plasseringene: RSC RCS SRC CRS SCR CSR Dersom det var fire eller flere venninner som skulle sitte ved siden av hverandre, så ville det bli tungvint å lage ett oppsett med bokstaver som vist i eksemplet ovenfor. Altså: Vi trenger regler i dette tilfellet multiplikasjonsprinsippet. For n elementer er det n! ulike rekkefølger. 4.2 Ordnet utvalg med tilbakelegging I en boks er det fem kuler med forskjellige farger: Svart (S), blå (B), rød (R), fiolett (F) og grønn (G). Vi skal trekke ut tre kuler og legge kulen vi trakk tilbake mellom hver trekning. At utvalget er ordnet betyr at rekkefølgen vi trekker kulene i gjelder. Oppsettet nedenfor viser at det da er 125 mulige utvalg. 1. kule 2. kule 3. kule 5 x 5 x 5 = 5 3 = 125 muligheter muligheter muligheter Legg merke til at vi i denne utregningen bruker multiplikasjonsprinsippet. Vi kan velge r elementer fra en mengde på n elementer på utvalget er ordnet med tilbakelegging. r n ulike måter dersom På en tippekupong skal vi trekke blant n = 3 elementer (H, U og B). Dette skal vi gjøre r = 12 ganger. Da er antallet mulige rekker på en tippekupong lik: r n = 3 12 = Ordnet utvalg uten tilbakelegging I en boks er det fem kuler med forskjellige farger: Svart (S), blå (B), rød (R), fiolett (F) og grønn (G). Vi skal trekke ut tre kuler uten å legge kulene tilbake mellom hver trekning. At utvalget er ordnet betyr at rekkefølgen vi trekker kulene i gjelder. Oppsettet nedenfor viser at det da er 60 mulige utvalg. Naturlig nok mindre enn da vi kunne legge kulene tilbake mellom trekningene. Erik Holst skolelab.uib.no Side: 2

3 1. kule 2. kule 3. kule 5 x 4 x 3 = 60 muligheter muligheter muligheter I kombinatorikk er det vanlig å skrive regnestykket ovenfor som 5P3. Bokstaven P står for permutasjon, som betyr at rekkefølgen teller. Vi har altså at: 5P 3 = = 60 3 kuler Skal vi trekke fire kuler får vi 5P4 mulige rekkefølger, som vi regner slik: 5P 4 = = kuler Vi kan velge r elementer fra en mengde på n elementer på n Pr = n ( n 1) ( n 2)... ( n r + 1) n! = ( n r)! ulike måter dersom utvalget er ordnet uten tilbakelegging. Legg merke til at dersom vi trekker alle fem kulene får vi: 5 P 5 = = 5! = 120 Til en stafett skal det være sju løpere. Etappene har ulik lengde og profil, slik at rekkefølgen på løperne er viktig. Hvor mange ulike laguttak er det mulig å få til av en gruppe på 13 løpere? 13P 7 = = 7 løpere 13! = ! ( 13 ) Det er altså mulig å lage mer enn 8,6 millioner laguttak! 4.4 Uordnet utvalg uten tilbakelegging I en boks er det fem kuler med forskjellige farger: Svart (S), blå (B), rød (R), fiolett (F) og grønn (G). Vi skal trekke ut tre kuler uten å legge kulene tilbake mellom hver trekning. At utvalget er uordnet betyr at rekkefølgen ikke teller. Vi kan da få 10 mulige utvalg som vist nedenfor: Erik Holst skolelab.uib.no Side: 3

4 BRS BRF BRG BSF BSG BFG RSF RSG RFG SFG I avsnitt 4.3 så vi at antall mulige utvalg var 60 fordi rekkefølgen vi trekker kulene i teller. Sammenhengen mellom et ordnet og et uordnet utvalg er at hver fargekombinasjon ovenfor kan ordnes på 3! = 6 mulige måter. Vi ser på fargekombinasjonen BSG (understreket i oppsettet ovenfor). BSG BGS SBG GBS SGB GSB Vi har altså denne sammenhengen: 10 { 6 = 60 { uordnet ordnet I kombinatorikk bruker vi skrivemåtene ncr eller binomialkoeffisienten over r, for uordnede utvalg uten tilbakelegging. Vi har: n, som vi leser n r 5 5P3 = 5C 3 = = 3 3! 60 6 = 10 Bokstaven C står for kombinasjon. Vi kan velge r elementer fra en mengde på n elementer på n = ncr = r n Pr r! = n! ( n r)! r! ulike måter dersom utvalget er uordnet uten tilbakelegging. En trener kan velge mellom 9 spillere. Av disse skal 7 starte kampen. Hvor mange ulike laguttak kan treneren gjøre? 9 9P7 = 9C 7 = 7 7! = 9! = 36 7!7! ( 9 ) Det er altså mulig å lage 36 mulige laguttak når rekkefølgen, eller plassering på banen, ikke teller! Erik Holst skolelab.uib.no Side: 4

5 5 Stokastisk variabel Når vi ikke kan forutsi resultatet, men bare oppgi en sannsynlighet, har vi et stokastisk forsøk. Spillet som er beskrevet nedenfor er et stokastisk forsøk Stokastisk variabel og sannsynlighetsfordeling Et tivoli lokker publikum med et terningspill som gir følgende gevinster: 1. premie: 100 kr dersom kastet gir 6 øyne. 2. premie: 25 kr dersom kastet gir 4 eller 5 øyne. 3. premie: 10 kr dersom kastet gir 1, 2 eller 3 øyne. I dette tilfellet definerer vi den stokastiske variabelen X til å være gevinsten i kroner. X: Gevinsten i kroner Innverdiene er antall øyne på terningen og utverdien er gevinsten i kroner. Vi har: X(1) = X(2) = X(3) = 10 X(4) = X(5) = 25 X(6) = 100 En stokastisk variabel X er en funksjon som til hvert utfall i et forsøk gir et tall som funksjonsverdi. Sannsynligheten for de ulike gevinstene fordeler seg som vist i tabellen nedenfor. Tabellen viser sannsynlighetsfordelingen til den stokastiske variabelen X: x P ( X = x) Vi ser at summen av sannsynlighetene er lik Forventningsverdi Hva skal spillet koste? Innsatsen må jo være slik at de som arrangerer spillet må gå med overskudd i det lange løp. For å svare på dette spørsmålet må vi finne den gjennomsnittlige utbetalingen i gevinster for hvert spill. Gjennomsnittsverdien av gevinstene er avhengig av gevinstenes størrelse og sannsynligheten for hver gevinst. Vi finner denne gjennomsnittsverdien slik: Gjennomsnittsverdi = = Tallene i beregningen ovenfor har vi tatt fra sannsynlighetsfordelingen til X. Vi kaller gjennomsnittsverdien for forventet verdi eller forventningsverdien til X, som vi skriver: µ = E X ( ) = 30 Det er naturlig at innsatsen i spillet er større enn forventet utbetaling. I dette spillet kan vi da sette innsatsen til 35 kr. Erik Holst skolelab.uib.no Side: 5

6 6 Binomiske sannsynligheter 6.1 Binomisk forsøk Hva er et binomisk forsøk? For at et forsøk skal være binomisk, må det oppfylle visse krav: Utfallsrommet må være definert slik at det bare kan ha to mulige utfall, gjerne kalt suksess (S) og fiasko (F). Sannsynlighetene for de to utfallene må være konstante: P ( S ) = p og P( F ) = 1 p Delforsøkene må være uavhengige av hverandre. Tips: Les eksempel 6.1 side , som gir en grei innføring i regning med binomiske sannsynligheter. Dersom vi lar den stokastiske variabelen X være antall ganger av n delforsøk den bestemte hendingen inntreffer, har vi denne regelen: Sannsynligheten for at antallet suksesser er lik x ved n uavhengige delforsøk, er gitt ved: P n x ( ) p x ( ) n X = x = 1 p x Det er kort vei fra suksess til fiasko i skiskyting. For en skiskytter på landslagsnivå regner vi med en treffprosent på 85 % for hvert av de fem skuddene. Vi ser da bort fra at et skudd har noen innvirkning på de etterfølgende skuddene. Vi skal beregne sannsynligheten for å treffe på akkurat 3 skudd og akkurat 4 skudd. Vi har at da X = 3 og X = 4 når n = 5 og p = 0, 85. Det gir oss samtidig at 1 p = 1 0,85 = 0, 15. Vi får: P P = 0, ( X = 3) = 0,85 0,15 = 0, ( X = 4) 0,15 = 0, 392 Å bruke tabellen i boken til å finne binomiske sannsynligheter For å lage en sannsynlighetsfordeling for alle mulige utfall i forsøket, altså fra 0 til 5 treff, bruker vi tabell 3 bak i boken binomiske sannsynligheter. I tabellen er det ikke oppgitt sannsynligheten p = 0, 85. Vi må da snu på hva som er suksess og fiasko, det vil si at vi må se på sannsynligheten 1 p = 1 0,85 = 0, 15 og deretter snu sannsynlighetsfordelingen på hodet. Vi finner n = 5 I tabellen, snur sannsynlighetene på hodet, og får: Erik Holst skolelab.uib.no Side: 6

7 x P X = x 0,0001 0,0022 0,0244 0,1382 0,3915 0,4437 ( ) Vi ser at tabellen i boken bruker fire desimaler, mens vi bare viste sannsynlighetene med tre desimaler i utregningen ovenfor. Stort sett er det nok med tre desimaler. 6.3 Forventning I et binomisk forsøk Hvor mange skudd kan vi forvente at skiskytteren vil treffe under et løp med 10 skudd? Når løperen treffer på 85 % av skuddene, kan vi forvente at han treffer 8,5 blink i ved 10 skudd. I et løp er det ikke mulig å treffe på 8,5 skudd. Forventningsverdien i et forsøk trenger altså ikke å være et mulig resultat i selve forsøket. En enkel regel gir oss forventningsverdien i et binomisk forsøk. Vi har: ( X ) = n = 10 0,85 = 8, 5 µ = E p 7 Hypergeometrisk sannsynlighet I et hypergeometrisk forsøk har vi en mengde med to eller flere delmengder. I en klasse kan mengden være elever, mens delmengdene er gutter og jenter. Tips: Les eksempel 7.2 side , som gir en grei innføring i regning med hypergeometriske sannsynligheter. 7.1 Hypergeometrisk sannsynlighetsfordeling Dersom vi lar den stokastiske variabelen X være antall spesielle i utvalget, har vi denne regelen: Sannsynligheten for å trekke x spesielle elementer fra delmengden m, og r x elementer fra delmengden n m, er lik antall gunstige dividert med antall mulige. Vi har P ( X = x) n n m x r x = n r Selve tankegangen kan kanskje best illustreres dersom vi har flere delmengder. La oss trekke 13 kort fra en kortstokk med 52 kort. Antall mulige kombinasjoner er da 52 = et ganske stort tall 13 Når vi skal beregne sannsynligheter, er det viktig at delmengdene vi velger til sammen gir alle kortene. Vi ønsker å finne sannsynligheten for akkurat 4 spar og 3 hjerter er blant de 13 kortene vi trekker. Da har vi to delmengder, spar og hjerter, men vi skal også ha 6 kort til, som ikke skal være spar eller hjerter. Det er da lurt å samle kløver og ruter i en delmengde. Erik Holst skolelab.uib.no Side: 7

8 Dersom vi ikke gjør det, må vi regne ut sannsynligheten for alle de ulike kombinasjonene med nettopp kløver og spar. Vi kan trekke 4 spar på 13 over 4 måter, 3 hjerter på 13 over 3 måter, og de 6 andre kortene, som da består enten av kløver eller ruter eller en blanding av disse, på 26 over 6 måter. Vi bruker multiplikasjonsprinsippet for å finne antall gunstige kombinasjoner = et stort tall det også, men mindre enn det ovenfor 3 6 Sannsynligheten i et hypergeometrisk er antall gunstige dividert med antall mulige. Vi får ( ) P 4 spar, 3 hjerter = = et tall mellom 0 og Legg merke til at summen av de øverste tallene i telleren er lik det øverste tallet i nevneren. Det samme gjelder for det nederste tallet. Eks: = 52 og = 13. Det finnes en tabell over noen mindre binomialkoeffisienter bak i boken. Til slutt Jeg håper at dette kompendiumet kan være til hjelp. Hilsen Erik Erik Holst skolelab.uib.no Side: 8

STK1100 våren 2017 Kombinatorikk

STK1100 våren 2017 Kombinatorikk STK1100 våren 2017 Kombinatorikk Svarer til avsnitt 2.3 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige

Detaljer

MAT0100V Sannsynlighetsregning og kombinatorikk

MAT0100V Sannsynlighetsregning og kombinatorikk MAT000V Sannsynlighetsregning og kombinatorikk Uordnet utvalg uten tilbakelegging (repetisjon) Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan

Detaljer

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket.

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. ST1100 våren 2017 ombinatorikk Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. Vi antar at de N utfallene er like sannsynlige. Svarer til avsnitt

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

Sannsynlighet løsninger

Sannsynlighet løsninger Sannsynlighet løsninger Innhold 3.1 Pascals talltrekant... 2 3.2 Kombinatorikk... 5 3.3 Sannsynlighetsberegninger... 10 3.4 Hypergeometrisk sannsynlighetsmodell... 12 3.5 Binomisk sannsynlighetsmodell...

Detaljer

Sannsynlighet oppgaver

Sannsynlighet oppgaver Sannsynlighet oppgaver Innhold 3.1 Pascals talltrekant... 2 3.2 Kombinatorikk... 4 3.3 Sannsynlighetsberegninger... 8 3.4 Hypergeometrisk sannsynlighetsmodell... 9 3.5 Binomisk sannsynlighetsmodell...

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger (repetisjon) Hypergeometrisk fordeling (repetisjon) Binomisk fordeling Forventningsverdi Tilfeldige variabler

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning 1 Sannsynlighet Mål for opplæringa er at eleven skal kunne formulere, eksperimentere med og drøfte enkle uniforme og ikkje-uniforme sannsynsmodellar berekne sannsyn ved hjelp av systematiske

Detaljer

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk.

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Kombinatorikk betyr her: Formler for opptelling av antall kombinasjoner. Generelt er denne grenen av matematikk videre, og omfatter blant annet grafteori.

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

Notat kombinatorikk og sannsynlighetregning

Notat kombinatorikk og sannsynlighetregning Notat kombinatorikk og sannsynlighetregning av Peer Andersen Peer Andersen 2010 1 SANNSYNLIGHETSREGNING MED FLERE TRINN Sannsynlighetsregning med et trinn kan være situasjoner der vi spør hva sjansen er

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økonomi, våren 207 Obligatorisk oppgave 3 Løsningsforslag Oppgave Produsenten av en type bærbar datamaskin har registrert at sannsynligheten er 0.2 for at tastaturet svikter, 0.09 for at

Detaljer

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler Prøve 6 T 24.02.2 80 minutter. Alle hjelpemidler Oppgave I boks A er det 6 svarte og 2 hvite kuler. I boks B er det 8 svarte og 4 hvite kuler. Vi trekker en kule fra en av krukkene. a) va er sannsynligheten

Detaljer

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

Regneregler for forventning og varians

Regneregler for forventning og varians Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene

Detaljer

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt MAT000V Sannsynlighetsregning og kombinatorikk Total sannsynlighet Vi kan skrive en hendelse B som en disjunkt union av A B og A B Total sannsynlighet og Bayes' setning Kombinatorikk Ordnede utvalg med

Detaljer

Kompetansemål Sannsynlighet, S Innledning Pascals talltrekant Binomialkoeffisienter Kombinatorikk...

Kompetansemål Sannsynlighet, S Innledning Pascals talltrekant Binomialkoeffisienter Kombinatorikk... Sannsynlighet Innhold Kompetansemål Sannsynlighet, S1... 2 Innledning... 2 3.1 Pascals talltrekant... 3 Binomialkoeffisienter... 6 3.2 Kombinatorikk... 9 Ordnet og uordnet utvalg... 10 Med og uten tilbakelegging...

Detaljer

10.5 Mer kombinatorikk

10.5 Mer kombinatorikk bestemt person skal utvikle en hjertesykdom er 70 %. Har du noen forslag på hvilket grunnlag en slik sannsynlighet kan settes opp? 10.5 Mer kombinatorikk Den måten å nærme seg løsningen på kombinatoriske

Detaljer

Quiz, 4 Kombinatorikk og sannsynlighet

Quiz, 4 Kombinatorikk og sannsynlighet Quiz, 4 Kombinatorikk og sannsynlighet Innhold 4.1 Begreper i sannsynlighetsregning... 2 4.2 Addisjon av sannsynligheter... 6 4.3 Produktsetningen for sannsynlighet... 12 4.4 Kombinatorikk og sannsynlighetsberegning...

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1.

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1. Sannsynlighet Barn spiller spill, vedder og omgir seg med sannsynligheter på andre måter helt fra de er ganske små. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner. Men hvor stor er sannsynligheten

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan Matematisk institutt Universitetet i Oslo Tilfeldige

Detaljer

Lottotrekningen i Excel

Lottotrekningen i Excel Peer Andersen Lottotrekningen i Excel Mange leverer ukentlig inn sin lottokupong i håp om å vinne den store gevinsten. Men for de aller fleste blir den store gevinsten bare en uoppnåelig drøm. En kan regne

Detaljer

SANNSYNLIGHETSREGNING

SANNSYNLIGHETSREGNING SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like

Detaljer

9.5 Uavhengige hendinger

9.5 Uavhengige hendinger 9. Uavhengige hendinger Vi kaster en terning to ganger og innfører hendingene A: Det første kastet gir sekser B: Det andre kastet gir sekser Om vi får sekser på det første kastet, endrer ikke det sannsynligheten

Detaljer

Sannsynlighet og statistikk

Sannsynlighet og statistikk Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.

Detaljer

Oppgaver. Innhold. Sannsynlighet Vg1P

Oppgaver. Innhold. Sannsynlighet Vg1P Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Oppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y

Oppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y Oppgaver Innhold 3.1 Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 5 3.3 Beregne sannsynligheter ved å bruke tabeller... 9 3.4 Beregne sannsynligheter ved å bruke

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19 Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel 2.1-2.7 ST1101 (Gunnar Taraldsen) 2019-01-12 17:19 Sentrale definisjoner og regneregler Definisjoner: Stokastisk forsøk, utfallsrom, hendelser (snitt,

Detaljer

INNHOLD. Matematikk for ungdomstrinnet

INNHOLD. Matematikk for ungdomstrinnet INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...

Detaljer

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet . kurskveld Ila, 7. juni - 0 Statistikk og sannsynlighet Sannsynlighet og kombinatorikk Sannsynlighet er noe vi omgir oss med nesten daglig. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 21: Mer kombinatorikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 15. april 2009 (Sist oppdatert: 2009-04-15 00:05) Kapittel 9: Mer kombinatorikk

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1 La være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning 6 Sannsynlighetsregning Det anbefales å lese orienteringsstoffet om kombinatorikk som følger etter oppgave 34. 1 a) Sett opp alle mulige kombinasjoner for et kast med to terninger. b) Regn ut sannsynlighetene

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT3 Diskret Matematikk Forelesning 2: Mer kombinatorikk Dag Normann Matematisk Institutt, Universitetet i Oslo 3. april 2 (Sist oppdatert: 2-4-3 4:3) Kapittel 9: Mer kombinatorikk MAT3 Diskret Matematikk

Detaljer

4.4 Sum av sannsynligheter

4.4 Sum av sannsynligheter 4.4 Sum av sannsynligheter Nina trekker kort fra en vanlig kortstokk med 52 kort. Vi innfører hendingene H: Kortet er en hjerter S: Kortet er en spar Det er 13 hjerter og 13 spar i stokken. Sannsynligheten

Detaljer

Test, 3 Sannsynlighet og statistikk

Test, 3 Sannsynlighet og statistikk Test, 3 Sannsynlighet og statistikk Innhold 3. Stokastiske variabler og sannsynlighetsfordelinger... 3. Forventningsverdi, varians og standardavvik... 5 3.3 Normalfordelingen... 4 3.4 Sentralgrensesetningen...

Detaljer

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST/ST Sannsynlighetsregning og statistikk Vår 9 Oppgaver fra boka 3..9 Ved et terningkast anses utfallet antall øyne lik for

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

Forskjellige typer utvalg

Forskjellige typer utvalg Forskjellige typer utvalg Det skal deles ut tre pakker til en gruppe på seks. Pakkene inneholder en TV, en PC og en mobiltelefon. På hvor mange måter kan pakkene deles ut? Utdelingen skal være tilfeldig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

Prøveeksamen i MAT0100V våren 2017

Prøveeksamen i MAT0100V våren 2017 Prøveeksamen i MAT0100V våren 2017 Vedlegg: Formeler for sannsynlighetsregning og kombinatorikk og tabeller over binomialkoeffisienter og standardnormalfordelingen. (Disse vedleggene vil også følge med

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

Oppgaver i sannsynlighetsregning 3

Oppgaver i sannsynlighetsregning 3 Oppgaver i sannsynlighetsregning 3 Oppgave 1 Vi har et lykkehjul med 8 like sektorer som er nummerert fra 1 til 8. Du har valgt sektor nummer 3. a) Tenk deg at du snurrer lykkehjulet en gang. Hva er sjansen

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y Løsninger Innhold 3. Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 3.3 Beregne sannsynligheter ved å bruke tabeller... 2 3.4 Beregne sannsynligheter ved å bruke

Detaljer

sannsynlighet for hendelse = antall ganger hendelsen inntreffer antall forsøk

sannsynlighet for hendelse = antall ganger hendelsen inntreffer antall forsøk Forrige forelesning oppsummert på 90 sekunder "stokastisk forsøk": myntkast, terningkast, trekking av kort,... utfallsrom: alle de mulige utfallene av et stokastisk forsøk eksempel på utfallsrom: kaster

Detaljer

Eksamen i matematikk løsningsforslag

Eksamen i matematikk løsningsforslag Eksamen i matematikk 102 - løsningsforslag BOKMÅL Emnekode: MAT102 Ordinær prøve Tid: 5 timer Dato: 2.6.2015 Hjelpemidler: Kalkulator, linjal, tegne- og skrivesaker Studiested: Nett, Notodden Antall sider:

Detaljer

Løsningskisse seminaroppgaver uke 15

Løsningskisse seminaroppgaver uke 15 HG April 0 Løsningskisse seminaroppgaver uke 5 Oppg. 5.6 La X = antall barn i utvalget som har lærevansker. Andel barn med lærevansker i populasjonen av barn antas å være p = 0,5. Utvalgsstørrelsen er

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2014 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

Kapittel 2: Sannsynlighet [ ]

Kapittel 2: Sannsynlighet [ ] Kapittel 2: Sannsynlighet [2.3-2.5] TMA4240 Statistikk (F2 og E7) 2.3, 2.4, 2.5: Kombinatorikk og sannsynlighet [18.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/21 Produktregel for valgprosess TEO 2.1

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1. La x være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

ØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir

ØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir ØVINGER 017 Løsninger til oppgaver Øving 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir S = {M, K}. Med to etterfølgende myntkast blir utfallsrommet S = {MM, MK,

Detaljer

Bernoulli forsøksrekke og binomisk fordeling

Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke i) gjentar et forsøk n ganger ii) hvert forsøk gir enten suksess eller fiasko iii) sannsynligheten for suksess er p i alle forsøkene

Detaljer

Sannsynlighet S1, Prøve 1 løsning

Sannsynlighet S1, Prøve 1 løsning Sannsynlighet S, Prøve løsning Del Tid: 60 min Hjelpemidler: Skrivesaker Oppgave a) Bruk figuren til høyre og fyll inn tall i rutene slik at figuren viser de fem første linjene i Pascals trekant. I et

Detaljer

Fasit. Grunnbok. Kapittel 5. Bokmål

Fasit. Grunnbok. Kapittel 5. Bokmål Fasit Grunnbok Kapittel 5 Bokmål Kapittel 5 Fra erfaring til sannsynlighet 5. a P = 3 5.2 a P = 2 5.3 B har rett 5.4 a P = 4 b P = 4 b P = 2 b c P = 7 c P = 5 2 c d P = 25 d P = 5 2 5.5 a b Den eksperimentelle

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 201 Oppgaver fra boka 2.6.1 En kjemiker vil observere effekten av 2 ulike

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen.

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen. DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) a) Deriver funksjonene 1) f( x) x x 4 1 ) g x 3e x 3) h x x e x 4) i x ln x 4 b) Vi har gitt rekken 4 7 10 13 Bestem a n og S n c) Løs likningen x x x x 3 4

Detaljer

Sannsynlighet for alle.

Sannsynlighet for alle. Sannsynlighet for alle. Signe Holm Knudtzon Høgskolen i Buskerud og Vestfold Novemberkonferansen 2015 Novemberkonferansen 2015 Signe Holm Knudtzon. HBV. Sannsynlighet for alle 1 Sannsynlighet for alle.

Detaljer

Sannsynlighet og statistikk S2 Oppgaver

Sannsynlighet og statistikk S2 Oppgaver annsynlighet og statistikk 2 Oppgaver Innhold 3 tokastiske variabler og sannsynlighetsfordelinger 2 32 Forventningsverdi Varians tandardavvik 5 33 Normalfordelingen 9 34 entralgrensesetningen 35 Hypotesetesting

Detaljer

Løsningsforslag Matematikk 2, 5-10, Våren 2013

Løsningsforslag Matematikk 2, 5-10, Våren 2013 Løsningsforslag Matematikk 2, 5-10, Våren 2013 OPPGAVE 1 a) Ved avlesning på Vedlegg 1 finner at fart etter 3 sekunder er 14.3 meter/sekund. (Viktig med god forklaring, også Ok om man skriver for eksempel

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger).

Detaljer

Forsøk med sannsynlighetsregning/fra forsøk til sannsynlighet

Forsøk med sannsynlighetsregning/fra forsøk til sannsynlighet Sannsynlighet Sannsynligheter angis som 1. (desimal)tall fra 0 til 1, der 0 angir at noe aldri vil skje og at 1 angir at noe vil skje hver gang 2. prosent mellom 0 og 100 %, der 0 % angir at noe aldri

Detaljer

GJENNOMGANG LES BARE OM DERE VIL HA LØSNINGEN!

GJENNOMGANG LES BARE OM DERE VIL HA LØSNINGEN! GJENNOMGANG LES BARE OM DERE VIL HA LØSNINGEN! Du trodde du hadde et idiotsikkert system for juks, men det var dessverre ikke tilfelle. Var dine planer hemmet av den korte forberedelsestiden, uforsiktighet

Detaljer

Eksamen REA3028 S2, Høsten 2011

Eksamen REA3028 S2, Høsten 2011 Eksamen REA08 S, Høsten 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonene ) f f 4 ) g e g e 6e ) h

Detaljer

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard EKSAMEN Emnekode: SFB107111 Emnenavn: Metode 1, statistikk deleksamen Dato: 16. mai 2017 Hjelpemidler: Godkjent kalkulator og vedlagt formelsamling m/tabeller Eksamenstid: 4 timer Faglærer: Hans Kristian

Detaljer

Sannsynlighet 1P, Prøve 1 løsning

Sannsynlighet 1P, Prøve 1 løsning Sannsynlighet P, Prøve løsning Del Tid: 0 min Hjelpemidler: Skrivesaker Oppgave Klassen holder på med brøkregning. Elevene sitter i grupper. Hver gruppe har en bunke med fem røde kort merket med tallene,,,

Detaljer

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Algebra Videregående 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det anbefales at

Detaljer

Sannsynlighet og statistikk S2 Løsninger

Sannsynlighet og statistikk S2 Løsninger Sannsynlighet og statistikk S2 Løsninger Innhold 3. Stokastiske variabler og sannsynlighetsfordelinger... 2 3.2 Forventningsverdi Varians Standardavvik... 9 3.3 Normalfordelingen... 7 3.4 Sentralgrensesetningen...

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger.

Detaljer

Eksamen i matematikk løsningsforslag

Eksamen i matematikk løsningsforslag Fakultet for estetiske fag, folkekultur og lærerutdanning Eksamen i matematikk 102 - løsningsforslag BOKMÅL Emnekode: MAT102 Ordinær prøve Tid: 5 timer Dato: 1.6.2015 Hjelpemidler: Kalkulator, linjal,

Detaljer

Kap. 7 - Sannsynlighetsfordelinger

Kap. 7 - Sannsynlighetsfordelinger Oppgaver: Kap. 7 - Sannsynlighetsfordelinger Oppgaver fra kapitlet Lærebok: 7.0-0-0-,7.--7, 7.-, 7., 7., 7.7 Oppgavesamling: 7.00, 7.0, 7.09, 7., 7.9, 7., 7.0, 7.0, 7.0 7.0-0-0-0- Stokastisk variabel:

Detaljer

Sannsynlighetsregning og Statistikk

Sannsynlighetsregning og Statistikk Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Statistikkberegninger i regnearket... 5 Nye muligheter for funksjonsanalyse... 8 Nullpunkt og ekstremalpunkt...

Detaljer

Regler for: Ungdomstrinnet. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Ungdomstrinnet. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Ungdomstrinnet 8 _ (x²) 1 2 4 (x²) 1 2 _ (x²) 1 2 _ 4 _ 8 Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk

Detaljer

Kombinatorikk og sannsynlighet oppgaver

Kombinatorikk og sannsynlighet oppgaver Kombinatorikk og sannsynlighet oppgaver Innhold 4.1 Multiplikasjon av sannsynligheter... 2 Produktsetningen... 7 4.2 Kombinatorikk... 15 4.3 Sannsynlighetsberegninger... 17 4.4 Hypergeometrisk sannsynlighetsmodell...

Detaljer

KOMBINATORIKK OG SANNSYNLIGHET 4 MER ØVING

KOMBINATORIKK OG SANNSYNLIGHET 4 MER ØVING Oppgave 1 En dag lurer du på hva du skal ha på deg. Du ser i skapet og ser at det ligger 3 bukser, en lys og en mørk olabukse og en grå bukse. Du leter etter en genser og finner fire forskjellige gensere.

Detaljer

Oppgaver i sannsynlighetsregning 1

Oppgaver i sannsynlighetsregning 1 Oppgaver i sannsynlighetsregning 1 Oppgave 1 Forklar hva som menes med en uniform sannsynlighetsmodell. Gi minst et eksempel på en uniform sannsynlighetsmodell. Begrunn hvorfor den er uniform. Gi også

Detaljer

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Kilde: www.clipart.com 1 Statistikk, sannsynlighet og kombinatorikk. Lærerens ark Hva sier læreplanen? Statistikk, sannsynlighet og

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

4: Sannsynlighetsregning

4: Sannsynlighetsregning Plan for hele året: - Kapittel 5: Januar - Kapittel 6: Februar - Kapittel 7: Februar/mars 4: Sannsynlighetsregning - Kapittel 8: Mars/april - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians.

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. H. Goldstein Revidert januar 2008 Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. Dette notatet er ment å illustrere noen begreper fra Løvås, kapittel

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

JULETENTAMEN, 9. KLASSE, 2015. FASIT

JULETENTAMEN, 9. KLASSE, 2015. FASIT JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

SANNSYNLIGHETSREGNING I GRUNNSKOLEN

SANNSYNLIGHETSREGNING I GRUNNSKOLEN 1 I GRUNNSKOLEN Etterutdanningskurs for lærere på grunnskolens ungdomstrinn Opplegget som her presenteres til fordypning i STATISTIKK / SANNSYNLIGHETSDELEN av MATEMANIA er i utgangspunktet skrevet for

Detaljer

Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene

Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene 2.4 a Du kan få 1, 2, 3, 4, 5 eller 6 øyne på terningen. Utfallsrommet er U = {1,2,3,4,5,6}. b Hvert av de seks

Detaljer

Binomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Binomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilfeldige variabler Når vi kaster to terninger er det 36 utfall Vi ser på X = «sum antall øyne» De mulige verdiene

Detaljer

1 Sannsynlighetsrgning

1 Sannsynlighetsrgning 1 Sannsynlighetsrgning 1.1 Det er 13 grønne og 18 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2

Detaljer