Normal- og eksponentialfordeling.
|
|
- Ine Eggen
- 8 år siden
- Visninger:
Transkript
1 Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 8 I løpet av uken blir løsningsforslag lagt ut på emnesiden Normal- og eksponentialfordeling. Oppgave 1 5 er oppgaver om grunnleggende teknikk ved behandling av normalfordeling. Det er viktig å beherske dette stoffet. Oppgave 6 og 7 er noe vanskeligere oppgaver om eksponentialfordeling. Prøv så mye du rekker med rimelig arbeidsinnsats, men ikke fortvil om du ikke klarer alt. Oppgave 1 Anta Z N(0, 1), dvs. Z er standard normalfordelt. Regn ut sannsynlighetene: a) P(Z 1.50) b) P (Z > 1.50) c) P (Z 0.25) d) P(Z > 0.25) e) P ( 0.75 < Z 0.75) f) P (Z = 0.75). Sørg for at du behersker denne regneteknikken så fort som mulig. Flere oppgaver av samme type i oppgave 21, kap i Løvås. Oppgave 2 a ) Finn tallet z 0.25 som er slik at P (Z <z 0.25 )=0.75 når Z N(0, 1). b ) Finn tallet z slik at P (Z >z )=0.025 når Z N(0, 1). Oppgave 3 Måleverdien av spenningen på et bilbatteri er X, som er N (12.70, ). Regn ut P(12.50 <X 12.90) Sørg for at du behersker denne regneteknikken så fort som mulig. Flere oppgaver av samme type i oppgave 23, kap i Løvås. Oppgave 4 Anta X N(μ, ), og regn ut a) P(μ <X<μ+ ). b) P(μ 2 <X<μ+2). c) P(μ 3 <X<μ+3). Oppgave 5 La X N(12.70, ). Finn en k slik at P(12.70 k X k) =0.95
2 2 Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. Oppgave 6 Levetiden T til en bestemt type lyspærer antas eksponentialfordelt, med parameter λ = (med enhet timer 1 ). a ) Skriv opp sannsynlighetstettheten f(t) og sannsynlighetsfunksjonen F (t) i dette tilfellet. b ) Finn forventningsverdien og standardavviket til T. c ) Hvis vi har et stort antall slike lyspærer som settes i gang på likt, og får ståålyse.hvorlang tid forventer vi det tar før halvparten av disse lyspærene er røket? Dette kalles halveringstiden, eller medianen. d ) Regn ut P (2000 T 3000) ved hjelp av f(t) ogintegrasjon. e ) Regn ut P (2000 T 3000) ved hjelp av F (t). f ) Finn en formel for P (T >t)ogregnutp(t>1000), P (T >2000) og P (T >3000). g ) La hendelse A være T > 2000 og hendelse B være T > Hvordan kan du kort beskrive hendelsen A B? h ) Finn den betingede sannsynligheten P (B A) (som også kanskrivesp(t>3000 T >2000)). Oppgave 7 La den stokastiske variabelen T væreen levetid, tid framtil sammenbrudd, dødsfall, ulykke e.l. for et eller annet. Da er P (t T t +Δt T>t) sannsynligheten dødsfall i det neste tidsrommet av lengde Δt gitt overlevelse fram til tidspunktet t. Da kalles P(t T t +Δt T>t) h(t) = lim Δt 0 Δt risikoraten (eller feilraten, eng: hazard rate) til T, og uttrykker dødsrisikoen per tidsenhet ved tidspunktet t. Hvis f(t) er sannsynlighetstettheten og F (t) er sannsynlighetsfunksjonen til t kan vi finne følgende formel for h(t): h(t) = f(t) a) Anta T exp(λ). Regn ut h(t). b ) En stokastisk variabel kalles Weibullfordelt med parametre α og β om F (t) =1 e tβ /α, og dermed f(t) = βtβ 1 /α α e tβ for t 0. Finn feilraten h(t) for en slik fordeling. c) Vis at P(t T t +Δt T>t) lim = f(t) Δt 0 Δt d) La T er levetiden til en vilkårlig nyfødt person. Angi uformelt og omtrentlig hvordan grafen til h(t) blir seende ut. e ) Motsatt problemstilling av a) og b) oppgaven: Risikoraten h(t) er gitt, finn f(t) ogf (t). Forsøk å gjennomføre dette (gjerne ved hjelp av Maple) hvis vi antar h(t) =λ (for t 0) der λ>0 er en konstant. Hint: F (t) =f(t), og vi får en differensiallikning med y = F (t) som ukjent funksjon. Forslag til flere oppgaver fra læreboka, kapittel 5: Normalfordeling: 21, 23, 26. Eksponentialfordeling: Hans Petter Hornæs
3 Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. 3 Løsning, Normal- og eksponentialfordeling. Oppgave 1 a) P(Z 1.50) = Φ(1.50) Tabell5.1.1 = b) P(Z>1.50) = P ( Z 1.50 ) =1 P(Z 1.50) = = c) P(Z 0.25) = Φ( 0.25) = 1 Φ(0.25) Tabell5.1 = = d) P(Z> 0.25) = P ( Z 0.25 ) =1 P(Z 0.25) = = e) P( 0.75 <Z 0.75) = Φ(0.75) Φ( 0.75) = ( ) = = f) 0 (fordi enkeltverdier har sanns. 0 i kontinuerlig fordeling, eller alternativt at dette kan regnes ut som P (X =0.75) = P (0.75 X 0.75) = Φ(0.75) Φ(0.75) = 0) Oppgave 2 a) Vi må bruke tabell baklengs, og finne det tallet som er nærmest midt inne i tabellen. Vi finnerat Φ(0.67) = , og Φ(0.68) = Hvilket som helst av disse tallene, eller tall mellom disse godtas. Siden 0.75 er omtrent midt imellom foreslår jeg z = (Nøyaktigere regning med Maple gir ). b) P(Z > z)= P(Z z) = Φ(z) = Baklengs tabellbruk gir da at z =1.96. Det er imidlertid greiere å bruke fraktiltabellen, tabell 5.2 i formelsamlinga. Denne gir denne verdien direkte for enkelte verdier, og vi kan lese av under 2.5% = Oppgave 3 ( ) ( ) Φ Φ =Φ(0.67) Φ( 0.67) = 2 Φ(0.67) 1= Oppgave 4 a) ( ) ( ) μ + μ μ + μ Φ Φ =Φ(1) Φ( 1) = 2Φ(1) 1= = b) Φ(2) Φ( 2) = c) Φ(3) Φ( 3) = Oppgave 5 Uttrykker først sannsynligheten ved hjelp av Φ: ( ) ( ) k k P(12.70 k X k) =Φ Φ =Φ(k/) Φ( k/) = Φ(k/) (1 Φ(k/)) = 2Φ(k/) 1 Vi får dermed en likning vi først løser med hensyn på Φ(k/) 2Φ(k/) 1 = 0.95 Φ(k/) = ( )/2 Φ(k/) = Siden Φ går på sannsynligheten for Z<z, mens fraktiltabellen (tab. 5.2) tar utgangspunkt i Z>z vrir vi sannsynligheten: P(Z<k/) = P(Z>k/) = = 0.025
4 4 Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. Dermed er k/ = z 0.025, dvs fraktilen i standard normalfordeling. z finner vi fra tabell 5.2 som z = Dette gir da k =1.960 = (slik at intervallet blir <X< <X<13.29). Mange vil nok synes argumentet er mer oversiktlig ved åhenvisetilenfigur: µ k 12,5 µ 13 µ + k 13,5 x Siden sannsynligheten er 0.95 for at utfallet ligger mellom grensene, er sannsynligheten = 0.05 for at utfallet blir utenfor. Denne sannsynligheten fordeles likt, med 0.05/2 = på begge sider. Spesielt blir det en sannsynlighet på for at utfallet blir større enn μ + k: ( X μ P(X μ + k) =0.025 P μ + k μ ) = De to sannsynligheten er like da det er samme hendelse, vi har trukket fra samme tall og dividert med samme positive tall på begge sider av likhetstegnet. Siden Z = X μ N(0, 1) (og μ ene nulles ut) er altså ( P Z k ) =0.025 Siden z per definisjon er det entydige tallet som oppfyller P (Z z )=0.025 er k = z k = z =1.960 = Oppgave 6 a) f(t) =0.0004e t F (t) =1 e t (for t 0, 0 for t<0). (for t 0, 0 for t<0). b) E(T )=1/λ =1/ = 2500 (timer). =1/λ = 2500 (timer). c) t =ln(2)/λ = 2500 ln(2) = 1733 (timer). d) e t dt = [ e t] = e ( e ) =
5 Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. 5 e) P (2000 T 3000) = F (3000) F (2000) = ( 1 e ) ( 1 e ) = f) P(T>t)=P ( T t ) ( =1 P(T t) =1 F (t) =1 1 e λ t) = e λt = e t. Dermed er P (T >1000) = e = e 0.4 =0.6703, P (T >2000) = e 0.8 = P(T>3000) = e 1.2 =12 g ) Siden B A (en lyspære som varer minst 3000 timer har allerede vart minst 2000 timer) er B A = B. P(A B) h) P(B A) = = P(B) P(A) P(A) = = Kommentar: Merk at dette er det samme som P (T >1000), sannsynligheten for at en lyspære som har lyst i 2000 timer skal lyse 1000 timer till er det samme som sannsynlighweten for at en ny lyspære skal lyse 1000 timer til. Det kan nok diskuteres om dette stemmer helt med virkeligheten, men det skal visstnok stemme tilstrekkelig godt til at vi antar eksponentialfordelingen for levetiden til lyspærer og andre tekniske innretninger som ikke er utsatt for tydelig slitasje. Dette er ikke tilfeldig, i eksponentialfordelingen (og bare denne) gjelder P (T >a+ b T >a) = P(T>b)) generelt. Oppgave 7 a) b) c ) h(t) = λe λt 1 (1 e λt ) = λe λt e λt = λ. Eksponentialfordelingen har med andre ord konstant feilrate. Det omvendte argumentet kan også brukes, og leder via en enkel differensiallikning til at eksponentialfordelingen er den eneste fordelingen med konstant feilrate. βt β 1 α e tβ /α βt h(t) = 1 (1 e tβ /α ) = β 1 /α α e tβ e tβ /α = βtβ 1 α Denne fordelingen brukes ofte til å modellere levetid for mekaniske komponenter som er utsatt for slitasje. Svensken Weibull undersøkte denne spesielt for levetid av kulelagre. Vi har at hendelsen t T t +Δt en delmengde av T>t, slik at Dermed er den betingede sannsynligheten (t T t +Δt) (T >t)=t T t +Δt. P(t T t +Δt T>t)= P((t T t +Δt) (T >t)) P(T>t) = P(t T t +Δt) P(T>t) Siden F (t) =P(T t), er P (T >t)=1 F (t), så vifår P(t T t +Δt T>t)= F (t +Δt) F (t) Når vi dividerer med Δt kan vi sette dette opp i telleren, og ta grensen for telleren (siden nevneren ikke inneholder Δt: h(t) = lim Δt 0 F (t +Δt) F (t) / lim Δt 0 (F (t +Δt) F (t))/δt Δt = Grensen i telleren er (fra definisjonenen av den deriverte) F (t). Siden F (t) =f(t) følger formelen. d) Denervellittstoristarten(spedbarnsdødelighetenerhøyereennforeldrebarn),forsåå bli ganske liten en lang periode, langsomt voksende fra ca 30 år og raskere voksende etterhvert. Ved t = 100(år) er den blitt veldig høy, det er livsfarlig å være 100 år!.
6 6 Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. e ) Vi har sammenhengen f(t) =F (t),og ved å sette F (t) =y får vi fra definisjonen av h(t) y 1 y = λ Dette er en differensiallikning. Den er separabel, eller kan omformes til den lineære likningen y + λy = λ Vi trenger også en initialbetingelse, og hvis vi velger starttidspunktet t = 0erF (0) = P (T 0) = 0, så y(0) = 0 (og difflikningen er gyldig for t 0). Denne kan løses med standardmetoder for lineære (eller separable) difflikninger, eller ved Maple: > dsolve({diff(y(t),t)+lambda*y(t)-lambda=0, y(0)=0}, y(t)); y(t) =1 e λt Vi ser at denne alltid vil konvergere mot 1 når t som den skal (hvis ikke hadde det ikke vært mulig med en slik risikorate). Som man ser har vi fått sannsynlighetsfunksjonen for eksponentilafordeling, og ved derivering finnes sannsynlighetstettheten. Det vil si at eksponentialfordelingen er eneste fordeling med konstant risiko.
Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7
Ueoppgaver i BtG207 Statisti, ue 7 : Normalfordeling. 1 Høgsolen i Gjøvi Avdeling for tenologi, øonomi og ledelse. Statisti Ueoppgaver ue 7 Normalfordeling. Oppgave 1 Anta Z N(0, 1), dvs. Z er standard
EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG27 EKSAMENSDATO: 27. mai 211. KLASSE: HIS 8 11. TID: kl. 8. 13.. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside) TILLATTE
EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081 og REA1081F EKSAMENSDATO: 1. juni 2011. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg m.fl. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs
Fasit, Separable differensiallikninger.
Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. 3 Fasit, Separable differensiallikninger. a ) Denne er ferdig på formenf(y)y = g(x) medf(y) =3y 2 og g(x) =2x: 3y 2 dy dx =2x 3y2 dy
Separable differensiallikninger.
Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden
Transformasjoner av stokastiske variabler
Transformasjoner av stokastiske variabler Notasjon merkelapper på fordelingene Sannsynlighetstettheten og den kumulative fordelingen til en stokastisk variabel X betegnes hhv. f X og F X. Indeksen er altså
Poissonprosesser og levetidsfordelinger
Poissonprosesser og levetidsfordelinger Poissonfordeling som grensetilfelle for binomisk fordeling La X være binomisk fordelt med fordeling P (X = x) = ( ) n p x (1 p) n x, for x = 0, 1,... n. (1) x Forventningsverdien
STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger
STK00 våren 206 Normalfordelingen Svarer til avsnitt 4.3 i læreboka Geir Storvik Matematisk institutt Universitetet i Oslo Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger Normalfordelingen
Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017
Løsningsforslag Eksamen S, våren 17 Laget av Tommy O. Sist oppdatert: 5. mai 17 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x /x = x x 1. Den eneste regelen vi trenger her er (kx n )
Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007
Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren
EKSAMEN. EMNEANSVARLIG: Inger Gamme og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.
KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Kvalitetsledelse med Statistikk. SMF2121 EKSAMENSDATO: 1. juni 2011 KLASSE: Ingeniørutdanning TID: kl. 9.00 13.00. EMNEANSVARLIG: Inger Gamme og Hans Petter
6.1 Kontinuerlig uniform fordeling
Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4240 H2006: Eirik Mo 2 6.1 Kontinuerlig uniform fordeling Kontinuerlig uniform fordeling: Sannsynlighetstettheten til den kontinuerlige uniforme
x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt
Oppfriskning av blokk 1 i TMA4240
Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2
Anvendelser av derivasjon.
Ukeoppgaver, uke 39, i Matematikk, Anvendelser av derivasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 39 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4
Løsning eksamen desember 2016
Løsning eksamen desember 016 Oppgave 1 a) En drone har to uavhengige motorer. Vi innfører hendelsene A: motor 1 svikter B: motor svikter Dronen er avhengig av at begge virker, slik at sannsynligheten for
L12-Dataanalyse. Introduksjon. Nelson Aalen plott. Page 76 of Introduksjon til dataanalyse. Levetider og sensurerte tider
Page 76 of 80 L12-Dataanalyse Introduksjon Introduksjon til dataanalyse Presentasjonen her fokuserer på dataanalyseteknikker med formål å estimere parametere (MTTF,, osv) i modeller vi benytter for vedlikeholdsoptimering
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger
EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs
KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. Rea181 EKSAMENSDATO: 1. juni 28 KLASSE: Ingeniørutdanning. TID: kl. 9. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl.
TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum
Løsning eksamen desember 2017
Løsning eksamen desember 017 Oppgave 1 Innfører hendelsene D: enheten er defekt K: enheten blir kassert a i Disse sannsynlighetene kan leses ut av oppgaveteksten: P D = 0, 10 P K D = 0, 07 P K D = 0, 95
FORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter
Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter
Difflikninger med løsningsforslag.
Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette
To-dimensjonale kontinuerlige fordelinger
To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}
TMA4240 Statistikk Høst 2008
TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har
EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 1. juni 2010. KLASSE: HIS 08 11. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside)
Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 16. juni 2009. KLASSE: HIS 07 10. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside)
Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling
Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger
TMA4240 Statistikk H2015
TMA4240 Statistikk H2015 Funksjoner av stokastiske variabler (kapittel 7+notat) Fokus på start med kumulativ fordeling 7.2 Funksjon av en SV (inkludert en-entydighet). Fordeling til max/min (fra notat).
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs
KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. BtG27 EKSAMENSDATO: 11. juni 28 KLASSE: HiS 6-9 Jørstadmoen. TID: kl. 8. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.
STK juni 2018
Løsningsforslag til eksamen i STK. juni 8 Oppgave Tvillingpar kan være enten eneggede eller toeggede. Sannsynligheten for at det ved en tvillingfødsel blir født eneggede tvillinger er i Nord-Europa omtrent
ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST/ST Sannsynlighetsregning og statistikk Vår 9 Oppgaver fra boka 3..9 Ved et terningkast anses utfallet antall øyne lik for
Konfidensintervall for µ med ukjent σ (t intervall)
Forelesning 3, kapittel 6 Konfidensintervall for µ med ukjent σ (t intervall) Konfidensintervall for µ basert på n observasjoner fra uavhengige N( µ, σ) fordelinger når σ er kjent : Hvis σ er ukjent har
TMA4240 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte
FORMELSAMLING STATISTIKK, HiG Versjon per 10. januar 2002, ved Hornæs
FORMELSAMLING STATISTIKK, HiG Versjon per 10 januar 2002, ved Hornæs 1 EMPIRISKE STATISTISKE MÅL 11 Forventningsverdi, varians og standardavvik La x {x 1,x 2, x n } være et datasett av (reelle) tall: 111
Kontinuerlige sannsynlighetsfordelinger.
Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x) er sannsynlighetstettheten til en kontinuerlig X dersom: 1. f(x) 0 for alle x R 2. f(x)dx =1 3. P (a
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett
STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner
STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i
Differensiallikninger definisjoner, eksempler og litt om løsning
Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning
ST0103 Brukerkurs i statistikk Høsten Momentestimatoren og sannsynlighetsmaksimeringsestimatoren
ST0103 Brukerkurs i statistikk Høsten 2016 Momentestimatoren og sannsynlighetsmaksimeringsestimatoren (SME) Boka har bare ett eksempel med sannsynlighetsmaksimeringsestimatoren. Vi gjengir dette nedenfor,
LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x
LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)
DEL 1 GRUNNLEGGENDE STATISTIKK
INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................
Forelesning 27. mars, 2017
Forelesning 27. mars, 2017 AVSNITT 5.5 Ordningsobservatorene AVSNITT 6.1 Observatorer og deres fordelinger Ordningsobservatorene La X 1,..., X n være n uavhengige stokastiske variable som alle har samme
Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010
Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn
Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.
TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2
EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.
Gammafordelingen og χ 2 -fordelingen
Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Beskrivende statistikk.
Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut
ELE Matematikk valgfag
SENSORVEILEDNING - Skriftlig eksamen ELE 3711 Matematikk valgfag Institutt for Samfunnsøkonomi Utlevering: 11.06.018 Kl. 0:00 Innlevering: 11.06.018 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven.
FORMELSAMLING STATISTIKK, HiG
FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no Versjon per 18. februar 2004 Innhold 1 EMPIRISKE STATISTISKE MÅL 1 1.1 Forventningsverdi, varians og standardavvik.....................
ELE Matematikk valgfag
EKSAMENSOPPGAVE - Skriftlig eksamen ELE 79 Matematikk valgfag Institutt for Samfunnsøkonomi Utlevering:.06.08 Kl. 09.00 Innlevering:.06.08 Kl. 4.00 Vekt: 00% av ELE 79 Antall sider i oppgaven: Innføringsark:
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
Hypotesetesting av λ og p. p verdi.
Forelesning 7, kapittel 6 Hypotesetesting av λ og p. p verdi. Det som gjøres i denne forelesningen er nær opptil det vi gjorde da vi konstruerte z test for µ, og styrkefunksjon for denne. I tillegg til
Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017
Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx
I løpet av uken blir løsningsforslag lagt ut på emnesiden Delvis integrasjon må brukes to ganger.
Ukeoppgaver, uke 45, i Matematikk, Delvis integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 45 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4
Ubestemt integrasjon.
Ukeoppgaver, uke 4, i Matematikk 0, Ubestemt integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 4 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea04
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
Differensjalligninger av førsteorden
Differensjalligninger av førsteorden Department of Mathematical Sciences, NTNU, Norway November 2, 2014 Forelesning (29.10.2014): kap 7.9 og 18.3 Førsteordens ordinæredifferensjalligninger Initialverdiproblem
6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6
3 6.2 Normalfordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Normalfordeling: Sannsynlighetstettheten til en normalfordelt stokastisk variabel, X, med forventning
Notasjon. Løsninger. Problem. Kapittel 7
3 Notasjon Kapittel 7 Funksjoner av stokastiske variabler Har n stokastiske variabler, X 1, X 2,..., X n, med kjent fordeling f( 1, 2,..., n ) og kumulativ fordeling F( 1, 2,..., n ). Ser på Y = u(x 1,
Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Observatorar og utvalsfordeling Torstein Fjeldstad Institutt for matematiske fag, NTNU 08.10.2018 I dag Til no i emnet Observatorar Utvalsfordelingar Sentralgrenseteoremet 2 Til no i emnet definisjon av
Kapittel 6: Kontinuerlige sannsynlighetsfordelinger
Kapittel 6: Kontinuerlige sannsynlighetsfordelinger TMA4240 Statistikk (F2 og E7) Foreleses 15. september, 2004. µ µ µ + Basert på slides av Mette Langås p.1/16 6.1 Kontinuerlig uniform fordeling Kontinuerlig
Kap : Derivasjon 1.
Ukeoppgaver, uke 36, i Matematikk 0, Kap. 3.-3.4: Derivasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 36 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/ing/allmennfag/emnesider/rea042
EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER
TMA4240 Statistikk Høst 2012
TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 5 blokk I Løsningsskisse Oppgave 1 X N(18,2.5 2 ) P(X < 15) = P ( X 18 < 15 18 ) = P(Z < 1.2)
Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B
Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling
TMA4265 Stokastiske prosesser
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosesser
Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.
Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen
Utvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap
FORMELSAMLING STATISTIKK, HiG
Høgskolen i Gjøvik Avdeling for ingeniørfag Versjon fra mai 2007 FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no ISSN:??????? Innledning. Denne formelsamlingen er skrevet for bruk
1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m
Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a
Fasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
Lineære differensiallikninger.
Ukeoppgaver, uke 47, i Matematikk 0, Lineære differensiallikninger. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse Matematikk 0 Ukeoppgaver uke 47 Lineære differensiallikninger. Oppgave
Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.
ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker
6.5 Normalapproksimasjon til. binomisk fordeling
....3.4.5..5..5..5...4.6.8....4.6.8....3.4..5..5 Kaittel 6: Kontinuerlige sannsynsfordelingar TMA445 Statistikk Ka 6.5-6.8. 6.5: Normal aroksimasjon til binomisk fordeling, 6.6-6.8: Eksonensialfordeling,
Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017
Løsningsforslag Eksamen S, høsten 017 Laget av Tommy O. Sist oppdatert: 6. november 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 4x 3. Vi bruker regelen samt regelen (x n ) = nx
TMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe
TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger
TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn
Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100
Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 7. oktober 2011 Kapittel 6.4. Areal til omdreiningslegemer 3 Overflate-areal av en rotasjonsflate
Funksjoner av stokastiske variable.
Funksjoner av stokastiske variable. Dekkes av pensumsidene i kap. 7 I ulike sammenhenger, blant annet for å finne fordelingen til estimatorer, er vi interesserte i fordelingen til funksjoner av stokastiske
TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
TMA4240 Statistikk Vår 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Blandet drops a) Tippekupong På en tippekupong er det gitt 2 fotballkamper.
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid
La U og V være uavhengige standard normalfordelte variable og definer
Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet
Løsningsforslag Eksamen S2, høsten 2015 Laget av Tommy O. Sist oppdatert: 25. mai 2017
Løsningsforslag Eksamen S2, høsten 215 Laget av Tommy O. Sist oppdatert: 25. mai 217 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere funksjonen f(x) = x 3 + 2x. Formelen vi må bruke er (x n ) =
Regneøvelse 22/5, 2017
Regneøvelse 22/5, 217 Arne Bang Huseby Eksamen STK11 212: oppgave 1 og 2 Eksamen STK11 28: oppgave 1) og 2 Eksamen 212, oppgave 1 Ved en bestemt butikk i en større dagligvarekjede viser langvarige data
Løsningsforslag til obligatorisk oppgave i ECON 2130
Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så
FORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 11. november 2017) 1. Sannsynlighet La A, B, A 1, A 2,..., B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
Funksjoner av stokastiske variable.
Funksjoner av stokastiske variable. Dekkes av pensumsidene i kap. 7 I ulike sammenhenger, blant annet for å finne fordelingen til estimatorer, er vi interesserte i fordelingen til funksjoner av stokastiske
Midtveiseksamen i STK1100 våren 2017
Midtveiseksamen i STK1100 våren 2017 Denne midtveiseksamenen består av 20 oppgaver. Det er ett riktig svaralternativ for hvert spørsmål. Hvis svaret er oppgitt som et desimaltall, er det rundet av til
Løsningsforslag, eksamen statistikk, juni 2015
Løsningsforslag, eksamen statistikk, juni 0 Oppgave 1 Siden det spørres om tall fra et intervall, som oppgaven viser kan være et reelle, er det tydelig at tallene er tatt fra en kontinuerlig fordeling.
for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere
Binomisk sannsynlighetsfunksjon
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige
Kap. 6, Kontinuerlege Sannsynsfordelingar
Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform Onsdag Normal Onsdag Eksponensial I dag Gamma I dag Kji-kvadrat I dag Student-T (Kap