Introduksjon til statistikk og dataanalyse
|
|
- Lise Thorbjørnsen
- 8 år siden
- Visninger:
Transkript
1 Introduksjon til statistikk og dataanalyse
2 Hollywood-filmer fra filmer Samla budsjett: $ Samla billettsalg: $
3 Datasettet vårt Filmene er delt i 8 sjangere: Action Animation Comedy Drama Fantasy Horror Romance Thriller Har data for 13 variabler, blant annet: Kritikerscore Publikumsscore Budsjett Billettsalg Inntjeningsfaktor 3
4 Statistics = Observatorer En observator er et tall som er regnet ut fra et datasett Statistikk handler mye om å beregne og tolke observatorer På engelsk heter en observator: a statistic faget statistikk: statistics 4
5 Observator nr. 1: Gjennomsnitt Den mest brukte, og best kjente, observatoren er gjennomsnittet. Angir senteret som observasjonene (tallene) er spredt rundt Med 10 observasjoner: 1 x x x... x
6 Gjennomsnitt, Hollywood-filmer Gjennomsnitt Sjanger Antall Budsjett (millioner $) Billettsalg (millioner $) Action 32 89,63 249,05 Animation ,92 286,58 Comedy 27 38,50 107,53 Drama 21 25,33 44,63 Fantasy 2 62,60 664,72 Horror 17 25,79 73,23 Romance 11 38,40 135,95 Thriller 13 30,79 86,91 Alle ,48 150,74 6
7 Observator nr. 2: Median Median = den midterste observasjonen En annen måte å angi senteret til observasjonene kan være mer beskrivende enn gjennomsnittet F.eks. en arbeidsplass med 10 ansatte Alder: Gjennomsnitt: 31 Median: 22 7
8 Uteliggere Datapunkter som skiller seg tydelig fra resten av datasettet kaller vi uteliggere (outliers). Gjennomsnittet kan bli sterkt påvirket av uteliggere, mens medianen ikke blir det. F.eks. en arbeidsplass med 10 ansatte Alder: Gjennomsnitt: 31 Median: 22 8
9 Gjennomsnitt vs. median Gjennomsnitt Sjanger Antall Budsjett (millioner $) Billettsalg (millioner $) Action 32 89,63 249,05 Animation ,92 286,58 Comedy 27 38,50 107,53 Drama 21 25,33 44,63 Fantasy 2 62,60 664,72 Horror 17 25,79 73,23 Romance 11 38,40 135,95 Thriller 13 30,79 86,91 Alle ,48 150,74 9
10 antall antall Gjennomsnitt vs. median Billettsalg (millioner $) Sjanger Antall Median Gjennomsnitt Action ,15 249,05 Animation ,56 286,58 10 Billettsalg, Action 3 Billettsalg, Animation millioner $ millioner $ 10
11 Observator nr. 3: Empirisk varians Den empiriske variansen er et mål på hvor mye spredning det er rundt gjennomsnittet i et datasett 11
12 Varians, Hollywood-filmer Empirisk varians Sjanger Antall Budsjett Billettsalg Action Animation Comedy Drama Fantasy Horror Romance Thriller Alle
13 antall Én uteligger kan gi høy varians 6 Billettsalg, Romance Antall 11 Gjennomsnitt 136 Median 60 Empirisk varians millioner $ 13
14 Kvartiler 1. kvartil = medianen til nederste halvpart av datapunktene 2. kvartil = medianen til alle datapunktene 3. kvartil = medianen til øverste halvpart av datapunktene
15 Kvartiler På samme måte som median er et alternativ til snitt for å se på senteret til et datasett, gir kvartilene en alternativ måte å se på spredninga Kvartilbredden (interquartile range, IQR): Avstanden mellom øverste og nederste kvartil
16 Boksplott 16
17 Levetiden til pattedyr 17
18 Levetiden til pattedyr 18
19 Vanlig situasjon: Vi har noen data og lurer på om de passer med en sannsynlighetsfordeling. >> mean(weights) ans = >> var(weights) ans =
20 antall Hvor godt passer fordelinga? 3500 Vekt av amerikanske barn (0 18 år) >> mean(weights) ans = >> var(weights) ans = vekt (pund) 20
21 Normalfordelinga Sannsynlighetsfordelinger er en sentral del av statistisk modellering. Og den desidert mest brukte sannsynlighetsfordelinga er normalfordelinga også kalt gausskurven 21
22 Normalfordelinga Normalfordelinga har to parametere: forventningsverdi (μ) og varians (σ 2 ) kvadratroten av variansen gir standardavviket (σ) 22
23 Normalfordelinga og standardavvik 68% av dataene vil ligge innenfor μ ± σ 95% av dataene vil ligge innenfor μ ± 2σ 99,7% av dataene vil ligge innenfor μ ± 3σ 23
24 Andre sannsynlighetsfordelinger Noen vanlige former: 24
25 Gjennomsnitt vs. median Symmetrisk fordeling => gjennomsnitt median Venstreskjev fordeling => gjennomsnitt < median Høyreskjev fordeling => gjennomsnitt > median 25
26 Eksponensialfordelinga En vanlig venstreskjev fordeling Kan brukes til å modellere f.eks. tid mellom mål i en håndballkamp tid mellom 911-oppringninger avstand mellom mutasjoner i en DNA-tråd 26
27 Q-Q-plott Vi kan undersøke om et datasett er normalfordelt ved hjelp av et kvantil-kvantilplott også kalt quantile-quantile plot eller Q-Q-plott Hvis datapunktene følger sannsynlighetsfordelinga, vil de ligge på ei rett linje 27
28 Kvantiler i datasettet 180 Q Q plott for vekt av amerikanske barn Kvantiler i standard normalfordeling 28
29 Kvantiler i datasettet 250 Q Q plott for budsjett av Hollywood filmer Kvantiler i standard normalfordeling 29
Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013
Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166
DetaljerStatistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005
SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger
DetaljerForslag til endringar
Forslag til endringar Bakgrunn: Vi har ingen forelesningar veka etter påske. Eg skal bort 18. og 19. april. Eksamen er 30.mai Forslag til endringar: Ekstra forelesningar onsdag 16.mars og onsdag 30 mars
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 9. oktober 2008. Tid for eksamen: 15:00 17:00. Oppgavesettet er på
DetaljerKap. 8: Utvalsfordelingar og databeskrivelse
Kap. 8: Utvalsfordelingar og databeskrivelse Utvalsfordelingar Utvalsfordeling for gjennomsnitt (med kjent varians) ( X ) Sentralgrenseteoremet (SGT) Utvalsfordeling for varians (normalfordeling) Utvalfordeling
DetaljerRepeterbarhetskrav vs antall Trails
Repeterbarhetskrav vs antall Trails v/ Rune Øverland, Trainor Automation AS Artikkelserie Dette er første artikkel i en serie av fire som tar for seg repeterbarhetskrav og antall trials. Formålet med artikkelserien
Detaljer1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene
1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk
DetaljerDeskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
DetaljerDeskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
DetaljerECON Statistikk 1 Forelesning 2: Innledning
ECON2130 - Statistikk 1 Forelesning 2: Innledning Data, beskrivende statistikk, visualisering Jo Thori Lind j.t.lind@econ.uio.no 1. Beskrivende statistikk Typer variable Nominelle: Gjensidig utelukkende
DetaljerSted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96
Vår 213 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Matlabøving Løsningsskisse Oppgave 1 a) Ingen løsningsskisse. b) Finn, for hvert datasett,
DetaljerUNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet
DetaljerTabell 1: Beskrivende statistikker for dataene
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);
DetaljerKapittel 1: Data og fordelinger
STK Innføring i anvendt statistikk Mandag 8. august 8 Ingrid K. lad I løpet av dette kurset skal dere bli fortrolig med statistisk tenkemåte forstå teori og metoder som ligger bak knappene/menyene i vanlige
DetaljerLærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Oversikt. ST0202 Statistikk for samfunnsvitere
2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 3 4 Pensumoversikt Oversikt Kap. 2 Beskrivende
DetaljerDataens tidsalder. Hvorfor data? Data, data, data. STK1000 Innføring i anvendt statistikk. Tirsdag 24. august 2010
STK1000 Innføring i anvendt statistikk Tirsdag 24. august 2010 Geir Storvik (modifisert etter I. Glad s tidligere presentasjon) 1 Data, data, data Genetiske data World Wide Web Overvåkning Medisinske bilder
DetaljerTMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger
TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn
DetaljerØving 1 TMA4240 - Grunnleggende dataanalyse i Matlab
Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to
DetaljerSTK1000 Innføring i anvendt statistikk
STK1000 Innføring i anvendt statistikk Tirsdag 23. august 2011 Ingrid K. Glad 1 Data, data, data Genetiske data World Wide Web Overvåkning Medisinske bilder Finansielle data Valgmålinger 2 Hvorfor samler
DetaljerStatistikk for språk- og musikkvitere 1
Statistikk for språk- og musikkvitere 1 Mitt navn: Åsne Haaland, Vitenskapelig databehandling USIT Ikke nøl, avbryt med spørsmål! Hva oppnår en med statistikk? Få oversikt over data: typisk verdi, spredning,
DetaljerStatistikk 1. Nico Keilman. ECON 2130 Vår 2014
Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen
ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!
DetaljerIntroduksjon. Viktige begreper for å beskrive data: Enheter som er objektene i datasettet. «label» som av og til brukes for å skille enhetene
Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en karakteristikk av hver enhet Variablene angis
DetaljerForkurs i kvantitative metoder ILP 2019
Forkurs i kvantitative metoder ILP 2019 Dag 2. Forkurs som arbeidskrav for kvantitativ deler av PED-3055 Gregor Maxwell og Bent-Cato Hustad Førsteamanuensis i spesialpedagogikk Hva lærte vi i går? Hva
DetaljerUtvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling
Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).
Detaljer(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1
ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2011, s. 1 (Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 a) Data: x 1, x 2, x 3, x 4, x 5 Gjennomsnitt: x = 1 5 (x 1
DetaljerØving 1 TMA4245 - Grunnleggende dataanalyse i Matlab
Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere
DetaljerSannsynlighetsregning og Statistikk.
Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ
DetaljerEt lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13/10, 2004. Tid for eksamen: Kl. 09.00 11.00. Vedlegg:
DetaljerST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,
DetaljerLærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger
2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 3 4 Pensumoversikt Forelesninger og øvinger
DetaljerMASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.
MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert
DetaljerEt lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver?
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Boka (Ch 1.4) motiverer dette ved å gå fra histogrammer til tetthetskurver.
DetaljerMedisinsk statistikk Del I høsten 2008:
Medisinsk statistikk Del I høsten 2008: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Noen tips Boka Summary etter hvert kapittel forteller hvor dere har vært og hva som er sentralt Øvingene Overdriv
DetaljerSeksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
DetaljerEt lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 28/3, 2007. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:
DetaljerTMA4240 Statistikk H2017 [15]
TMA4240 Statistikk H207 [5] Del 2: Statistisk inferens Populasjon og utvalg [8.] Observatorer og utvalgsfordelinger [8.2-8.3] Fordeling til gjennomsnittet og sentralgrenseteoremet [8.4] Normalplott [8.8]
DetaljerStatistikk. Forkurs 2017
Statistikk Forkurs 2017 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
DetaljerSentralmål og spredningsmål
Sentralmål og spredningsmål av Peer Andersen Peer Andersen 2014 Sentralmål og spredningsmål i statistikk I dette notatet skal vi se på de viktigste momentene om sentralmål og spredningsmål slik de blir
DetaljerKapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett
DetaljerStatistikk. Forkurs 2018
Statistikk Forkurs 2018 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
DetaljerTMA4240 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte
DetaljerTMA4240 Statistikk Høst 2012
TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave
DetaljerSTK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler
STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige
DetaljerST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,
DetaljerMASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00
MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden
DetaljerTMA4240 Statistikk Høst 2012
TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Løsningsskisse Matlabøving Beskrivende analyse Oppgave 1 a) Finn, for hvert datasett,
DetaljerEksempel på data: Karakterer i «Stat class» Introduksjon
Eksempel på data: Karakterer i «Stat class» Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere
Detaljerting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte.
Kapittel : Beskrivende statistikk Etter at vi har samlet inn data er en naturlig første ting å gjøre å prøve å oppsummere informasjonen i dataene på en hensiktsmessig måte. Hva som er hensiktsmessig måter
DetaljerTogforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at
Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være
DetaljerTema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie,
Tema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie, www.statistrikk.no Kontinuerlige data er målinger som gjøres langs en skala, for eksempel tid, lengde og vekt. Noen ganger
DetaljerUNIVERSITETET I OSLO Matematisk Institutt
UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent
DetaljerLøsningsforslag til obligatorisk innlevering 3.
svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså
DetaljerTMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b7 Oppgave 1 Automatisert laboratorium Eksamen november 2002, oppgave 3 av 3 I eit
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Introduksjon til ST0202 Kapittel 1: Statistikk Kapittel 2: Beskrivende analyse og presentasjon av data for én variabel Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 22/3, 2006. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:
DetaljerBEGYNNERKURS I SPSS. Anne Schad Bergsaker 24. november 2017
BEGYNNERKURS I SPSS Anne Schad Bergsaker 24. november 2017 FORRIGE UKE Blitt kjent med de ulike vinduene i SPSS Skrive inn data Import av datafiler Sette samme og dele opp filer og datasett Velge/velge
DetaljerUNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet
DetaljerStatistikk og dataanalyse
Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel
DetaljerDespriptiv statistikk
Plan for dagen Kap 1: Deskriptiv statistikk, populasjon, utval Kap 2: Sannsynsteori Velje referansegruppe Kahoot Heimeside: https://wiki.math.ntnu.no/tma4240/2016h/start Despriptiv statistikk Deskriptiv
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5
DetaljerKontinuerlige sannsynlighetsfordelinger.
Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a
DetaljerFormelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal
Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene
DetaljerRepeterbarhetskrav vs antall Trails
Repeterbarhetskrav vs antall Trails v/ Rune Øverland, Trainor Automation AS Artikkelserie Dette er andre artikkel i en serie av fire om tar for seg repeterbarhetskrav og antall trials. Formålet med artikkelserien
DetaljerForelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind
Forelesning 6: Punktestimering, usikkerhet i estimering Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Trekke utvalg 2. Estimatorer og observatorer som stokastiske variable 3. Egenskapene til en estimator
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerMAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem
MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi
DetaljerUtvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap
DetaljerBEGYNNERKURS I SPSS. Anne Schad Bergsaker 3. mai 2018
BEGYNNERKURS I SPSS Anne Schad Bergsaker 3. mai 2018 FORRIGE UKE Blitt kjent med de ulike vinduene i SPSS Skrive inn data Import av datafiler Sette samme og dele opp filer og datasett Velge/velge bort
DetaljerDataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse?
Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Skrevet av: Kjetil Sander Utgitt av: estudie.no Revisjon: 1.0 (Sept.
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000. Eksamensdag: Onsdag 17/3, 2004. Tid for eksamen: Kl. 09.00 12.00. Tillatte hjelpemidler: Lærebok: Moore & McCabe
DetaljerEstimatorar. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Estimatorar Torstein Fjeldstad Institutt for matematiske fag, NTNU 11.10.2018 I dag Repetisjon Er dataa mine normalfordelt? Estimatorar Eigenskapar til S 2 Kahoot 2 Repetisjon Obervator Ein observator
Detaljer2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene
P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 3. Frekvensen av hybelboere er 15 % av 10 elever, altså 10 0,15 = 18 elever. 3.3 Sier vi at det er N elever i Arams klasse, har vi fra opplysningene
DetaljerSeksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
DetaljerMedisinsk statistikk Del I høsten 2009:
Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X
DetaljerKapittel 4.4: Forventning og varians til stokastiske variable
Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske
DetaljerST0202 Statistikk for samfunnsvitere [1]
ST0202 Statistikk for samfunnsvitere [1] Introduksjon til ST0202 Kapittel 1: Statistikk Kapittel 2: Deskriptiv analyse og presentasjon av en variabel Mette Langaas Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2011h/start
DetaljerDekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte
Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
DetaljerLoven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere
2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist
DetaljerKapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
DetaljerAnalyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger
Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA0 Sannsynlighetsregning med statistikk, våren 0 ÅMA0 Sannsynlighetsregning med statistikk våren 0 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:
DetaljerEkstreme bølger. Geir Storvik Matematisk institutt, Universitetet i Oslo. 5. mars 2014
Ekstreme bølger Geir Storvik Matematisk institutt, Universitetet i Oslo 5. mars 2014 Bølger Timesvise max-bølger ved bøye utenfor østkyst av USA (17/12/1991-23/2-1992) Størrelse på bølger varierer sterkt
DetaljerAnalyseoversikt, Uke 35
Analyseoversikt, Uke 35 STK1000 Uke 35, 2016. Studentene forventes å lese Ch 1.1-1.3 i læreboka (MMC). Avsnittet om Stem-and-leaf-plot er ikke pensum. Ulike typer data Kategoriske data MMC: «Kvalitative
DetaljerForelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens
Forelesning 7 Statistiske beskrivelser av enkeltvariabler Statistiske mål for univariate fordelinger: Sentraltendens Verdien for fordelingens tyngdepunkt Spredning Hvor nært opp til tyngdepunktet ligger
DetaljerFra første forelesning:
2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen
DetaljerForelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling
Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Wilcoxon Signed-Rank Test I uke, bruker vi Z test eller t-test for hypotesen H:, og begge tester er basert på forutsetningen om normalfordeling
DetaljerStatistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG
Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:
DetaljerLøsning eksamen desember 2017
Løsning eksamen desember 017 Oppgave 1 Innfører hendelsene D: enheten er defekt K: enheten blir kassert a i Disse sannsynlighetene kan leses ut av oppgaveteksten: P D = 0, 10 P K D = 0, 07 P K D = 0, 95
DetaljerForelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b
DetaljerOppfriskning av blokk 1 i TMA4240
Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for
DetaljerVelkommen til TMA4240. Velkommen til TMA / 18
Velkommen til TMA4240 Velkommen til TMA4240 1 / 18 Kort om kurset TMA4240 Statistikk Jeg er Sara Martino Dere er MTDT, MTKJ, MTNANO, MTPETR Vi had forelesning: Tirsdager kl 14.15-16.00 i F1 Torsdager kl
DetaljerSnøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk
Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor
DetaljerLØSNING: Oppgavesett nr. 1
LØSNING: Oppgavesett nr. MAT0 Statistikk, 208 (Versjon 0) Oppgave : ( fordeling, gjennomsnitt, varians og standardavvik ) a) Plotter fordelingen til x i : antall personer 5 4 5 3 2 2 2 2 40 50 60 70 80
Detaljer