41307 Kraftelektroniske motordrifter Løsningsforslag Kapittel 9 Likespenningsomformere- DC/DC omformere

Størrelse: px
Begynne med side:

Download "41307 Kraftelektroniske motordrifter Løsningsforslag Kapittel 9 Likespenningsomformere- DC/DC omformere"

Transkript

1 437 Krafelekroniske moordrifer øsningsforslag Kapiel 9 ikespenningsomformere- DC/DC omformere OPPGAE Nedransformerende omformer. Glaespolen lagrer energi når de går srøm gjennom den. Denne energien blir bruk il å oppreholde srømmen i kresen når krafhalvlederen slukkes. Friløpsdioden sørger for a denne srømmen får en vei å gå når halvlederen slukker. Alernaiv ville de bli sa opp en svær sor spenning over bryeren, og denne ville med sor sannsynlighe bli ødelag.. i u () I u u - U inn uu () C U u as Figur - Ekvivalenskjema, ransisoren leder i u () I u u - u u () C U u as Figur - Ekvivalenskjema, ransisoren sperrer.3 Ser av Figur -og Figur - a spenningen over glaespolen blir: u U inn - U u u -U u når ransisoren leder når ransisoren sperrer.4 i ve a middelverdien il spenningen over glaespolen,, skal være lik null ved sasjonær drif: U ---- u ()d Krafelekroniske moordrifer Side av

2 Kapiel 9 ikespenningsomformere- DC/DC-omformere ( U inn U ) u d U u T pa d T pa (U inn - U u ) på - U u ( - på ) U u på / U inn D U inn ; D på /.5 I oppgave.3 fan vi spenningen over spolen. I den perioden ransisoren leder, er spenningen over spolen U inn - U u. Når de ligger en konsan spenning over spolen, vil srømmen sige lineær. Med våre definisjoner,vil den sasjonær sige fra I m il I p i inervalle der ransisoren leder. Mosa vil den synke lineær fra I p il I m når ransisoreen sperrer. Srømmen får alså e forløp som vis i Figur -3. i u () I p I u I m på T Middelverdien av denne blir: Figur -3 Srøm i spolen I u ---- i u () d I u / (areale under kurven) I ---- I T I u p I m I p I m m s pa ( T s pa ) I ---- I T I u p I m ( m s pa pa ) I I --- I p m m ---- I p I m.6 Usyringen (duy-cycle) blir: U u pa U inn D U inn D U u U inn.7 I idsinervalle < < på gjelder følgende sammenheng: U I U inn U u ; I I p I m pa Krafelekroniske moordrifer Side av

3 Kapiel 9 ikespenningsomformere- DC/DC-omformere U I p I inn U p u pa (. ) 9A.3 Middelverdien il ugangssrømmen, I u, blir: I u -- ( I p I m ) 7A.8 i inn I p I m i u på T T på T I p I m i D på T T på T I p I m på T T på T u u inn -u u A AA på T T på T A -u u u u U inn U u på T T på T Figur -4 Srømmer og spenninger i en nedransformerende DC/DC-omformer med koninuerlig srøm Krafelekroniske moordrifer Side 3 av

4 Kapiel 9 ikespenningsomformere- DC/DC-omformere.9 i ser bor fra alle ap. Da må effek inn fra høyspensiden være lik effek u på lavspensiden. i har ana a U inn og U u er hel glae spenninger. Effekene kan da beregnes u fra: P inn U inn. I inn,mid P u U u. I u,mid i får da: P inn P u > I u /I inn U inn /U u /D ær klar over a dee omseningsforholde gjelder middelverdien av srøm inn og srøm u. De momenane omseningsforholde vil variere i løpe av en periode. OPPGAE Fullbro DC / DC omformer.. I I U U a) b) Figur - a)enkvadranomformer, b) firekvadranomformer Omformer a) kan bare operere i førse kvadran. Spenningen u er allid posiiv, og srømmen kan bare gå en veg. Omformer b) er en full firekvadranomformer. Spenningen u kan være både posiiv og negaiv, og srømmen kan gå i begge reninger uavhengig av spenningen. (Forusa a de i den ilkoblede kresen finnes kilder som kan drive srømmen gjennom omformeren mo spenningen.). I de flese ilfeller vil en presisjons servomoordrif si a mooren må kunne gå i begge reninger, og både som moor og brems/generaor. Dee krever en firekvadran-omformer. Omformer b) velges..3 Når mooren bremses, vil effek leveres fra mooren (som går som generaor) il omformeren. Denne effeken lagres i form av øk spenning over glaekondensaoren. Hvis ikke noe gjøres, vil denne spenningen vokse over alle grenser og føre il a kondensaoren eller halvlederkomponener ødelegges. For å hindre dee, kan flere ing gjøres: - En mosand kobles parallel med kondensaoren. Dee hindrer overspenning, men gir sore ap fordi de går srøm i mosanden hele iden. Dårlig løsning. - Isede for diodelikereer brukes en syr likereer (yrisorlikereer) som også kan gå som vekselreer hvis ennvinkelen er over 9. Denne syres slik a like-spenningen Krafelekroniske moordrifer Side 4 av

5 Kapiel 9 ikespenningsomformere- DC/DC-omformere holdes på 75. Denne løsningen er relaiv dyr, og egner seg når mooren går så mye som brems/generaor a energien som kan leveres ilbake il nee er mer verd enn omformerens eksrakosnad. - En mosand i serie med en ransisor kobles parallel med kondensaoren. Transisoren slås på når spenningen siger over f.eks. 85 og av når den går under ca. 8. Bremseenergien kokes da bor i mosanden, mens de ikke går srøm i mosanden ellers. Dee er billig, og gir lave ap hvis mooren hovedsakelig går som moor og sjelden som brems/generaor. Se Figur -. ac o U ref Figur - Syrbar bremsemosand.4 Middelverdien av spenningen over ugangen fra vekselreeren er 5. Forholde mellom og er gi av conrol (se side 9- i kompendie) conrol ri ri -- 3 D on der er Påida il T a og T on b. D -- conrol ri ri v conrol 75 v o () v ri () -75 5µs a) b) Figur -3 a)generering av syresignal, b)ugangsspenning 5µs conrol T s ri 8.3µs Krafelekroniske moordrifer Side 5 av

6 Kapiel 9 ikespenningsomformere- DC/DC-omformere Når Når Når <, > leder T a og T b - slik a v < 8.3-6, > leder T b og T a - slik a v - < 6.6-6, > leder T a og T b - slik a v.5 Rippelfrekvensen er lik svisjefrekvensen, khz..6 Reguleringssyseme er konsruer slik a maksimal ankersrøm er A. Mooren sår i ro slik a induser spenning E a. Spenningen på ugangen av omformeren blir da: R a I a.5 Usyringsforholde D blir da: conrol D ˆri o En seer allid en srømgrense (meningsgrense) på srømregulaoren på omkring merkesrøm (Den srømmen som mooren skal kunne rekke sasjonær). Ofe seer en I refmax ca.-.3 I ON slik a en får li mer momen under akselerasjon. (Man har i illegg ermisk vern på moor som hindrer den i å brenne opp.) OPPGAE 3 3. En ønsker å syre ampliude og frekvens på ugangsspenningen. 3. ed indukiv/kapasiiv las vil i og v være faseforskjøve. Se Figur 3-. o i o 4 3 Figur 3- Srøm og spenning ved indukiv las. kvadran : og i er posiive, effeken ilføres lasen. kvadran : negaiv og i posiiv, effek leveres fra las 3. kvadran : negaiv og i negaiv, effek ilføres lasen 4. kvadran : posiiv og i negaiv, effek leveres fra las ekselreere som ikke kun skal brukes il ren ohmske laser må derfor kunne operere i alle fire kvadraner. 3.3 Høy svisjefrekvens gir overharmoniske med høy frekvens som er le å filrere bor. En vil il gjengjeld få sore svisjeap slik a virkningsgraden går ned, og en får probemer med å kjøle komponenene. Svisjefrekvenser i område 6 - khz vil også kunne medføre hørbar søy. ave svisjefrekvenser gir små svisjeap slik a en får overfør mer effek uen a komponenene går varm. (Temperaur er som ofes den mes kriiske fakoren for Krafelekroniske moordrifer Side 6 av

7 Kapiel 9 ikespenningsomformere- DC/DC-omformere krafelekronikk-komponener ) De er ikke uvanlig å pårykke sore moorer firkanspenning. (Dee gir en svisjefrekves på 5 Hz) 3.4 Ampliudemodulasjonsforholde Frekvensmodulasjonsforholde f s : frekvens il rekansignal f : frekvens il ugangsspenningen grunnharmonisk komponen. m a m f conrol ri f s --- f 3.5 Når en bruker synkron PBM, dvs. a m f er e helall, velger en av prakiske årsaker mosa helning på sinusreferansen og rekansignale når de krysser hverandre i null-linjen. På denne måen er de mye leere å få krysningen il å reffe akkura i null-linjen slik a en får færre harmoniske frekvenser, og en vil forere komme opp i firkanmodulasjon når en hever ampliuden il sinusreferansen. 3π/ π/ π På grensen il firkanmodulasjon er: Figur 3- På grensen il firkanmodulasjon ri 3π conrol sin----- conrol m a π 36, ri sin----- o som funksjon av m a blir omren som vis i figur Krafelekroniske moordrifer Side 7 av

8 Kapiel 9 ikespenningsomformere- DC/DC-omformere 4/π o /...4 m a Figur 3-3 Spenningsregulering ved variasjon av m a 3.6 De re forelese prinsippene for srømsyring er: a)toleranse bånd Hvis en benyer oleransebånd srømregulering, slår en av svisjen(e) når srømmen er sege il en besem verdi over srømreferansen. Srømmen vil da begynne å synke. Når srømmen har sunke il en besem verdi under srømreferansen, skrur en på svisjen(e) igjen. ed denne syringen får en konsan srømrippel, men rippelfrekvensen vil variere. En må også være oppmerksom på a hvis referansen er nær null kan en risikere å ikke få påslag. Syrespenning,v c I / i I,middel Påslag på b)konsan av-id av Avslag Påslag Når srømmen er bli like sor som referansen, slår en av svisjen. Eer en besem id, som er fassa på forhånd, slår en på svisjen igjen. I dee ilfelle vil får en både variabel rippelsrøm og rippelfrekvens. Syrespenning,v c I i konsan av på av på av c)konsan frekvens Krafelekroniske moordrifer Side 8 av

9 Kapiel 9 ikespenningsomformere- DC/DC-omformere Svisjen(e) blir slå på av en klokkepuls. De blir slå av når srømmen blir like sor som referansen. Dee er den mes bruke måen og regulere srømmen på. En vil få variabel rippelsrøm men konsan rippelfrekvens. Dee gjør de leere å lage ugangsfiler. Syrespenning,v c I i på av på av konsan periodeid OPPGAE 4 Frekvensmodulasjonsforholde er lik svisjefrekvensen del på frekvensen il referansesignale. m f f s f 4. ed å velge m f lik e oddeall, vil vi få ulike symmeri og halvbølge symmeri. i får derfor bare odde harmoniske komponener igjen.( like harmoniske komponener forsvinner fra ugangssignale) 4. Ampliudeverdien il lasspenningen o er 5. ikespenningen er 5. m a o Krafelekroniske moordrifer Side 9 av

10 Kapiel 9 ikespenningsomformere- DC/DC-omformere, ˆ ( o ) h, f m f m f m f f v o v ο π π ω ˆ ( o ) h π -- π d sinω dω -- 4 π d o: harmoniske komponener i firkanspenning : harmoniske komponener fra oppgave,,6. f m f m f m f f Krafelekroniske moordrifer Side av

11 Kapiel 9 ikespenningsomformere- DC/DC-omformere 4.6. Spenningen er firkanforme med som ampliude. i - v o R,, Tidskonsanen τ ---.5s R Frekvens 5 Hz i.s og o - i.s Da τ >>.s, kan en see R som en god ilnærming. I Dee gir: - di ---- d o ( I) d s 5mH 5A 4.3 For å svare på dee spørsmåle, ar vi ugangspuk i a usrømmen er posiiv og T a og T b - leder. Omformeren senger så venilene T a og T b -, og åpner T a - og T a. Indukansen i lasen vil oppreholde srømmen. Srømmen vil derfor fremdeles være posiiv. Siden T a og T b - er seng og T a - og T b ikke kan lede negaiv srøm, er diodene D3 og D den enese veien srømmen kan gå. Hvis en ar vekk disse diodene vil srømmen gjennom spolen bli bru når ransisorene svisjer, og vi får en høy overspenning som vil kunne ødelegge både omformeren og lasen Krafelekroniske moordrifer Side av

Forelesning nr.9 INF 1410

Forelesning nr.9 INF 1410 Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-RØNDELAG Aving for eknologi Målform: Bokmål Eksamensdao: 3..4 Varighe/eksamensid: 9-5 Emnekode: Emnenavn: Klasse(r): ELE33 Indusriell auomaisering ELAH Sudiepoeng: Faglærer(e): (navn og

Detaljer

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter.

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter. TFE4110 Digialeknikk med kreseknikk Løsningsforslag il regneøving 5 vårsemeser 2008 Løsningsforslag il regneøving 5 Ulever: irsdag 29. april 2008 Oppgave 1: a) Tegn egningen for en eksklusiv eller por

Detaljer

FYS3220 Oppgaver om Fourieranalyse

FYS3220 Oppgaver om Fourieranalyse FYS3220 Oppgaver om Fourieranalyse Innhold Enkle fourieranalyse oppgaver... 1 1) egn frekvensspeker for e sammensa sinus signal... 1 2) Fra a n og b n il c n og θ... 2 Fourier serieanalyse... 2 3) Analyse

Detaljer

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser.

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser. 4.4 INNE- OG TKOPLING AV EN KONDENSATO 1 4.4 INN- OG TKOPLING AV EN KONDENSATO Ved opp -og uladning av kondensaorer varierer srøm og spenning. De er vanlig å bruke små boksaver for å angi øyeblikksverdier

Detaljer

Løsning: V = Ed og C = Q/V. Spenningen ved maksimalt elektrisk felt er

Løsning: V = Ed og C = Q/V. Spenningen ved maksimalt elektrisk felt er Gruppeøving 6 Elekrisie og magneisme Flervalgsoppgaver 1. Dersom en kondensaor har en kapasians på på 7.28 µf, hvor mye må plaene lades opp for a poensialdifferansen mellom plaene skal bli 25.0 V?. 15

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao:. juni 26 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao: 6. mai 27 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler:

Detaljer

Styring av romfartøy STE6122

Styring av romfartøy STE6122 Syring av romfarøy STE6122 3HU -. 1LFNODVVRQ Høgskolen i Narvik Høs 2000 Forelesningsnoa 8 1 6W\ULQJ RJ UHJXOHULQJ DY RULHQWHULQJ,, Nødvendig med nøyakig syring og/eller regulering av orienering i en rekke

Detaljer

Styring av romfartøy STE6122

Styring av romfartøy STE6122 Syring av romfarøy STE6122 3HU -. 1LFNODVVRQ Høgskolen i Narvik Høs 2000 Forelesningsnoa 12 1 %UXN DY UHDNVMRQVWUXVWHUH Reaksjonsrusere benyes ved banekorreksjoner, for dumping av spinn og il akiv regulering

Detaljer

YF kapittel 3 Formler Løsninger til oppgavene i læreboka

YF kapittel 3 Formler Løsninger til oppgavene i læreboka YF kapiel 3 Formler Løsninger il oppgavene i læreoka Oppgave 301 a E 0,15 l 0,15 50 375 Den årlige energiproduksjonen er 375 kwh. E 0,15 l 0,15 70 735 Den årlige energiproduksjonen er 735 kwh. Oppgave

Detaljer

tiden - t er i teller og nevner og kan derfor strykes mot herandre og gi formelen:

tiden - t er i teller og nevner og kan derfor strykes mot herandre og gi formelen: .5 ELEKTISK ABEID OG ELEKTISK EFFEKT 1.5 ELEKTISK ABEID OG ELEKTISK EFFEKT ABEID Ved å kombinere idligere kjene formler som..1,.1.1,.3.1 får vi en formel for arbeid som er prakisk å bruke i elekro: Formlene

Detaljer

av Erik Bédos, Matematisk Institutt, UiO, 25. mai 2007.

av Erik Bédos, Matematisk Institutt, UiO, 25. mai 2007. Om den diskree Fourier ransformen av Erik Bédos, Maemaisk Insiu, UiO,. mai 7. Vi lar H beegne indreproduk romme som besår av alle koninuerlige komplekse funksjoner definer på inervalle [, π] med indreproduke

Detaljer

Løsningsforslag for regneøving 3

Løsningsforslag for regneøving 3 Ulever: 3.mars 7 Løsningsforslag for regneøving 3 Oppgave : a Se opp ligning for spenningen over som funksjon av id, for. R v + - Kres Løsning: Beraker kresen førs: I iden før null vil spenningen over

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 3..4 Innleering: på papir på ekspedisjonskonore: bruk forsiden elekronisk på froner én pdf fil nan på førse side egenerklæring med signaur innleeringsboks på ekspedisjon

Detaljer

Virkninger av ubalansert produktivitetsvekst («Baumols sykdom»)

Virkninger av ubalansert produktivitetsvekst («Baumols sykdom») 1 Jon Vislie; februar 2018 ECON 3735 vår 2018 Forelesningsnoa #2 Virkninger av ubalanser produkiviesveks («Baumols sykdom») I Forelesningsnoa #1 så vi på generelle likevekseffeker i en o-sekor-økonomi,

Detaljer

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s. eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m

Detaljer

Newtons lover i to og tre dimensjoner 09.02.2015

Newtons lover i to og tre dimensjoner 09.02.2015 Newons loer i o og re dimensjoner 9..5 FYS-MEK 3..4 Innleering Oblig : på grunn a forsinkelse med deilry er frisen usa il onsdag,.., kl. Innleering Oblig : fris: mandag, 6.., kl. Mideiseksamen: 6. mars

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi 7..7 YS-MEK 7..7 Areid-energi eorem areid:, v ne d kineisk energi K, K K, ne v d ne dr d d C ne dr kurveinegral langs en kurve C sar i r, slu i r uˆ N uˆ N v vuˆ v uˆ N uˆ N vuˆ

Detaljer

H Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning

H Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning H Ø G S K O L E N I B E R G E N Avdeling for lærerudanning Eksamensoppgave Ny/usa eksamen høs 004 Eksamensdao: 07--004 Fag: NAT0-FY Naur og miljøfag 60sp. ALN modul fysikk 5 sp. Klasse/gruppe: UTS/NY/ALN

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi 3.3.4 olig 5: midveis hjemmeeksamen forusening for å a slueksamen kreves individuell innlevering lir lag u mandag 3. mars innleveringsfris mandag. mars YS-ME 3.3.4 Areid-energi

Detaljer

Styringsteknikk. Kraner med karakter. ABUS kransystemer målrettet krankjøring. setter ting i bevegelse. Kransystemer. t t v. max.

Styringsteknikk. Kraner med karakter. ABUS kransystemer målrettet krankjøring. setter ting i bevegelse. Kransystemer. t t v. max. Kraner med karaker max. 0 ABUS kransysemer målree krankjøring Syringseknikk Kransysemer seer ing i beegelse Konakorsyre moorer den raskese eien fra A il B Erfarne kranførere er forrolig med oppførselen

Detaljer

Tekniske data Nominell strøm In, hovedkontakter

Tekniske data Nominell strøm In, hovedkontakter konakorer Beskrivelse modulære konakorer er førs og frems uvikle for lys og varmesyring, men kan også benyes for småmoordrif relaer il varmesyring. Konakorene syres ved hjelp av e fas signal. Rød fane

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 8..16 Innleeringsfris oblig 1: Tirsdag, 9.Feb. kl.18 Innleering kun ia: hps://deilry.ifi.uio.no/ Fellesinnleeringer (N 3): Alle må bidra il besarelsen i sin helhe. Definer

Detaljer

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,

Detaljer

Øving 1: Bevegelse. Vektorer. Enheter.

Øving 1: Bevegelse. Vektorer. Enheter. Lørdagsverksed i fysikk. Insiu for fysikk, NTNU. Høsen 007. Veiledning: 8. sepember kl :5 5:00. Øving : evegelse. Vekorer. Enheer. Oppgave a) Per løper 800 m på minuer og 40 sekunder. Hvor sor gjennomsnisfar

Detaljer

Bevegelse i én dimensjon (2)

Bevegelse i én dimensjon (2) Beegelse i én dimensjon () 5..6 Daa-lab i dag: Hjelp med Pyhon / Malab insallasjon Førse skri Oblig er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek/6/maeriale/maeriale6.hml Innleeringsfris: Tirsdag,

Detaljer

Aliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem

Aliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem Forelesning 9.februar 24 Delkapilene 4.4-4.6 fra læreboken, 4.3 er il selvsudium. Repeisjon om sampling og aliasing Diskre-il-koninuerlig omforming Inerpolasjon med pulser Oversamling bedrer inerpolasjon

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kiisk energi..8 FYS-MEK..8 hp://pingo.upb.de/ access number: 63473 To isbåer, en med masse m og en med masse m, kjører på en friksjonsfri, horisonal, frossen innsjø. Begge båene sarer fra ro,

Detaljer

System 2000 HLK-Relais-Einsatz Bruksanvisning

System 2000 HLK-Relais-Einsatz Bruksanvisning Sysem 2000 HLK-Relais-Einsaz Sysem 2000 HLK-Relais-Einsaz Ar. Nr.: 0303 00 Innholdsforegnelse 1. rmasjon om farer 2 2. Funksjonsprinsipp 2 3. onasje 3 4. Elekrisk ilkopling 3 4.1 Korsluningsvern 3 4.2

Detaljer

Mot3.: Støy i forsterkere med tilbakekobling

Mot3.: Støy i forsterkere med tilbakekobling Mo3.: Søy i forserkere med ilbakekoblig Hiil har vi diskuer forserkere ue ilbakekoblig ("ope-loop"). Nå vil vi diskuere virkige av ilbakekoblig. Geerel beyes ilbakekoblig for å... edre forserkig, edre

Detaljer

Kort om ny reguleringskurvelogikk. Trond Reitan 19/8-2013

Kort om ny reguleringskurvelogikk. Trond Reitan 19/8-2013 Kor om ny reguleringskurvelogikk Trond Reian 19/8-2013 Hensik Hensiken med en reguleringskurver er å angi sammenhengen mellom en angi minimumsvannføring (apping) og nødvendig magasinvolum på årlig basis.

Detaljer

Enkle kretser med kapasitans og spole- bruk av datalogging.

Enkle kretser med kapasitans og spole- bruk av datalogging. Laboraorieøvelse i FY3-Elekrisie og magneisme år 7 Fysisk Insiu, NTNU Enkle kreser med kapasians og spole- bruk av daalogging. Laboraorieoppgaver Oppgave -Spenning i kres a: Mål inngangsspenningen og spenningsfalle

Detaljer

Eksempel på symmetrisk feil: trefase kortslutning på kraftlinje.

Eksempel på symmetrisk feil: trefase kortslutning på kraftlinje. HØGSKOLE AGDER Faule for enoloi Elrafeni 1, løsninsforsla øvin 9 høs 004 Oppave 1 En feil i rafsyseme er enhver ilsand som forsyrrer den normale drifen av syseme. Esempler på dee an være refase orslunin

Detaljer

INF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS

INF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS INF34 Del Teori og oppgaver Grunnleggende Digial CMOS INF34 Grunnleggende digial CMOS Transisor som bryer CMOS sår for Complemenary Meal On Semiconducor. I CMOS eknologi er de o komplemenære ransisorer,

Detaljer

3. Beregning av Fourier-rekker.

3. Beregning av Fourier-rekker. Forelesigsoaer i maemaikk. 3. Beregig av 3.. Formlee for Fourier-koeffisieee. Vi går re på sak: a f være e sykkevis koiuerlig fuksjo med periode p. De uedelige rigoomeriske rekka cos( ) si ( ) a + a +

Detaljer

Go to and use the code Hva var viktig i siste forelesning? FYS-MEK

Go to   and use the code Hva var viktig i siste forelesning? FYS-MEK Go o www.meni.com and use he code 65 37 7 Ha ar ikig i sise forelesning? FYS-MEK 111.1.18 1 FYS-MEK 111.1.18 Beegelse i én dimensjon ().1.18 Ukesoppgaer og oblig 1 er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/18/maeriale/maeriale18.hml

Detaljer

MAT1030 Forelesning 26

MAT1030 Forelesning 26 MAT030 Forelesning 26 Trær Roger Anonsen - 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) Forelesning 26 Li repeisjon Prims algorime finne de minse uspennende ree i en veke graf en grådig algorime i den forsand

Detaljer

Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen

Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen MAT1030 Diskre Maemaikk Forelesning 26: Trær Roger Anonsen Insiu for informaikk, Universiee i Oslo Forelesning 26 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) MAT1030 Diskre Maemaikk 5. mai 2009 2 Li repeisjon

Detaljer

Harald Bjørnestad: Variasjonsregning en enkel innføring.

Harald Bjørnestad: Variasjonsregning en enkel innføring. Haral Bjørnesa: Variasjonsregning en enkel innføring. Tiligere har vi løs oppgaven me å finne eksremalveriene ( maks./min. veriene) av en gi funksjon f () når enne funksjonen oppfyller beseme krav. Vi

Detaljer

Løsningsforslag. Fag 6027 VVS-teknikk. Oppgave 1 (10%) Oppgave 2 (15%)

Løsningsforslag. Fag 6027 VVS-teknikk. Oppgave 1 (10%) Oppgave 2 (15%) Fag 67 VVS-eknikk Eksamen 8. mai 998 Løsningsforslag Oppgave (%) (NR = Normalreglemene, ekniske besemmelser,.ugave, 99) Nødvendig akareal som skal dreneres pr. aksluk faslegges, ofe avhengig av akes fallforhold.

Detaljer

Betydning av feilspesifisert underliggende hasard for estimering av regresjonskoeffisienter og avhengighet i frailty-modeller

Betydning av feilspesifisert underliggende hasard for estimering av regresjonskoeffisienter og avhengighet i frailty-modeller Beydning av feilspesifiser underliggende hasard for esimering av regresjonskoeffisiener og avhengighe i fraily-modeller Bjørnar Tumanjan Morensen Maser i fysikk og maemaikk Oppgaven lever: Mai 2007 Hovedveileder:

Detaljer

Matematikk 1P-Y. Teknikk og industriell produksjon

Matematikk 1P-Y. Teknikk og industriell produksjon Maemaikk 1P-Y Teknikk og indusriell produksjon «Å kunne regne i eknikk og indusriell produksjon innebærer å forea innsillinger på maskiner og å uføre beregning av rykk og emperaur og blandingsforhold i

Detaljer

Oppgaveverksted 3, ECON 1310, h14

Oppgaveverksted 3, ECON 1310, h14 Oppgaveverksed 3, ECON 30, h4 Oppgave I denne oppgaven skal du forklare de økonomiske mekanismene i hver deloppgave, men de er ikke men a du skal bruke id på å forklare modellen uover de som blir spur

Detaljer

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Obligaorisk øvelsesoppgave våren 22 Ved sensuren illegges alle oppgavene lik vek For å få godkjen besvarelsen må den i hver fall: gi mins

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 5..5 YS-MEK 5..5 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )

Detaljer

Spesiell relativitetsteori

Spesiell relativitetsteori Spesiell relaivieseori 6.05.06 FYS-MEK 0 6.05.06 Einseins posulaene. Fysikkens lover er de samme i alle inerialsysemer.. Lyshasigheen er den samme i alle inerialsysemer, og er uavhengig av observaørens

Detaljer

FYSIKK-OLYMPIADEN 2012 2013

FYSIKK-OLYMPIADEN 2012 2013 Norsk Fysikkærerforening Norsk Fysisk Seskaps faggruppe for underisning FYSIKK-OLYMPIADEN 0 0 Andre runde: 7/ 0 Skri øers: Nan, fødsesdao, e-posadresse og skoens nan Varighe: kokkeimer Hjepemider: Tabe

Detaljer

Authorized Distributor. Bjørn Birkeland

Authorized Distributor. Bjørn Birkeland Auhorized Disribuor Baeriesing Bjørn Birkeland Tes av baeridreve usyr Auhorized Disribuor Dagens baeridreve usyr har omfaende f funksjonalie som har en svær uforusigbar påvirkning på baeribelasningen.

Detaljer

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013 Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger

Detaljer

~/stat230/teori/bonus08.tex TN. V2008 Introduksjon til bonus og overskudd

~/stat230/teori/bonus08.tex TN. V2008 Introduksjon til bonus og overskudd ~/sa23/eori/bonus8.ex TN STAT 23 V28 Inrodukson il bonus og overskudd Bankinnskudd Ana a vi ønsker å see e viss beløp y i banken ved id = for å ha y n ved id = n. Med en reneinensie δ må vi see inn y =

Detaljer

Obligatorisk oppgave ECON 1310 høsten 2014

Obligatorisk oppgave ECON 1310 høsten 2014 Obligaorisk oppgave EON 30 høsen 204 Ved sensuren vil oppgave elle 20 prosen, oppgave 2 elle 50 prosen, og oppgave 3 elle 30 prosen. For å få godkjen må besvarelsen i hver fall: gi mins re nesen rikige

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 6..4 oblig 5: mideis hjemmeeksamen forusening for å a slueksamen krees indiiduell innleering blir lag u mandag 3. mars innleeringsfris mandag. mars Samale mellom sudener og lærer

Detaljer

Levetid og restverdi i samfunnsøkonomisk analyse

Levetid og restverdi i samfunnsøkonomisk analyse Visa Analyse AS Rappor 35/11 Leveid og resverdi i samfunnsøkonomisk analyse Haakon Vennemo Visa Analyse 5. januar 2012 Dokumendealjer Visa Analyse AS Rapporiel Rappor nummer xxxx/xx Leveid og resverdi

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Iniu for fyikk Ekamenoppgave i TFY49 Inrumenering Faglig konak under ekamen: Seinar Raaen Tlf.: 482 96 758 Ekamendao: 3. juni 23 Ekamenid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv

Detaljer

Fy1 - Prøve i kapittel 5: Bevegelse

Fy1 - Prøve i kapittel 5: Bevegelse Fy1 - Prøve i kapiel 5: Bevegelse Løsningsskisser Oppgave 1 En lekebil sarer med å rille oppover e skråplan med faren -1.6m/s. 1.5 sekunder eer saridspunke har lekebilen en far på.4 m/s nedover skråplane.

Detaljer

og ledelse av forsyningskjeder Kapittel 4 Del A - Prognoser SCM200 Innføring i Supply Chain Management

og ledelse av forsyningskjeder Kapittel 4 Del A - Prognoser SCM200 Innføring i Supply Chain Management Logisikk og ledelse av forsyningskjeder Kapiel 4 Del A - Prognoser M200 Innføring i Suin Man Rasmus Rasmussen PREDIKSJON En prediksjon (forecas forecas) er en prognose over hva som vil skje i framiden.

Detaljer

TR ansistor Alle henvisninger til figurer er relevant for Weste

TR ansistor Alle henvisninger til figurer er relevant for Weste el 3: Inerkonnek YNGVAR BERG I. Innhold TR ansisor Alle henvisninger il figurer er relevan for Wese & Harris [].. Innhold. 2. Inroduksjon il inerkonnek. Kapiel 4.5 side 96-97. 3. Mosand i inerkonnek. Kapiel

Detaljer

Løsningsforslag til obligatorisk øvelsesoppgave i ECON 1210 høsten 06

Løsningsforslag til obligatorisk øvelsesoppgave i ECON 1210 høsten 06 Løsningsforslag il obligaorisk øvelsesoppgave i ECON 0 høsen 06 Oppgave (vek 50%) (a) Definisjon komparaive forrinn: Den ene yrkesgruppen produserer e gode relaiv mer effekiv enn den andre yrkesgruppen.

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Bevegelse i én dimensjon 15.1.214 FYS-MEK 111 15.1.214 1 Malab: mulig å bruke på egen PC med UiO lisens hjelp med insallasjon på daa-verksed eller i forkurs Forsa ledige plasser i forkurs: Fredag kl.1-13

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig konak under eksamen: Jon Andreas Søvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK

Detaljer

Funksjonslære Derivasjon Matematikk 2

Funksjonslære Derivasjon Matematikk 2 Funksjonslære Derivasjon Maemaikk 2 Avdeling for lærerudanning, Høgskolen i Vesfold 19 mars 2009 1 Innledning La f(x) være en funksjon, alså, en sørrelse som er avhengig av x De kan ofe være hensiksmessig

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 3..7 YS-MEK 3..7 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )

Detaljer

1 Trigonometriske Funksjoner Vekt: 1. 2 Trigonometriske Funksjoner Vekt: 1

1 Trigonometriske Funksjoner Vekt: 1. 2 Trigonometriske Funksjoner Vekt: 1 OPPGAVER TIL FORELESNINGSUKE NUMMER Ukeoppgavene skal leveres som selvsendige arbeider. De forvenes a alle har sa seg inn i insiues krav il innlevere oppgaver: Norsk versjon: hp://www.ifi.uio.no/sudinf/skjemaer/erklaring.pdf

Detaljer

Spesialisering: Anvendt makro 5. Modul

Spesialisering: Anvendt makro 5. Modul Spesialisering: Anvend makro 5. Modul 1.B Lineære regresjonsmodeller og minse kvadraers meode (MKM) Drago Berghol Norwegian Business School (BI) 10. november 2011 Oversik I. Inroduksjon il økonomeri II.

Detaljer

INF5490 RF MEMS. L10: RF MEMS resonatorer II. V2008, Oddvar Søråsen Institutt for informatikk, UiO

INF5490 RF MEMS. L10: RF MEMS resonatorer II. V2008, Oddvar Søråsen Institutt for informatikk, UiO INF549 RF MEMS L: RF MEMS resonaorer II 8, Oddvar Søråsen Insiu for informaikk, UiO Dagens forelesning Laeral vibrerende resonaor: Kam-resonaoren irkemåe Dealer modellering A phasor -modellering B modellering

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Del 13 og 14: Interkonnekt, design av ledere og designmarginer

Del 13 og 14: Interkonnekt, design av ledere og designmarginer Del 13 og 14: Inerkonnek, design av ledere og designmarginer YNGVAR BERG I. Innhold Alle henvisninger il figurer er relevan for Wese & Harris [1]. 1. Innhold. 2. Inroduksjon il inerkonnek. Kapiel 4.5 side

Detaljer

Andre ordens system og vibrasjoner

Andre ordens system og vibrasjoner Andr ordns sysm og vibrasonr Hvordan mål Hvordan s opp n modll Sidspor vibrasonr Transfrfunkson Elkrisk Mkanisk Rsonrnd snsorr Scion 3.4: Dynamic Modls (Fradn Scion 8: Vlociy and accllraion (Fradn Paynr:

Detaljer

Sensorveiledning ECON2200 Våren 2014

Sensorveiledning ECON2200 Våren 2014 Oppgave a) Sensorveiledning ECON00 Våren 04 f( ) + ln f ( ) 6 b) ( ) ( ) f( ) + f ( ) + + + De er ikke krav om å forenkle il en besem form, alle svar er ree. c) f( ) ln g ( ) g ( ) f ( ) g ( ) d) e) f)

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Iniu for fyikk Ekamenoppgave i TFY49 Inrumenering Faglig konak under ekamen: Seinar Raaen Tlf.: 482 96 758 Ekamendao: 2. mai 25 Ekamenid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv C,

Detaljer

Repetisjon Eksamensverksted i dag, kl , Entropia

Repetisjon Eksamensverksted i dag, kl , Entropia Repeisjon 30.05.016 Eksamensverksed i dag, kl. 1 16, Enropia Emneevaluering: dialogmøe nese uke (eer eksamen) a konak med meg hvis du vil være med vikig for oss å få ilbakemelding FYS-MEK 1110 30.05.016

Detaljer

TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18

TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18 TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18 1) Panamagikkoffisiel over frausgallons il lier den30. apriliår. Bensinprisenvardaca4USdollar prus gallon. Hva ilsvarer dee i kroner prlier, når 1

Detaljer

Andre ordens system og vibrasjoner

Andre ordens system og vibrasjoner Andr ordns sysm og vibrasonr Hvordan mål Hvordan s opp n modll Sidspor vibrasonr Transfrfunkson Elkrisk Mkanisk Rsonrnd snsorr Scion 3.4: Dynamic Modls (Fradn) Scion 8: Vlociy and accllraion (Fradn) Scion

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

FYS 105 Fysikk Ordinær eksamen vår 2005

FYS 105 Fysikk Ordinær eksamen vår 2005 FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon

Detaljer

Skjulte Markov Modeller

Skjulte Markov Modeller CpG øy Skjule Markov Modeller år CG er eer hverandre i en DA sekvens vil C ofe muere il T ved meylase. (kalles ofe CpG for å ikke forveksles med pare C-G i o DA råder). CpG dinukleoiden forekommer mye

Detaljer

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1 . Berak følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < T = 0 + Y, 0 < < Hvor Y er BNP, C er priva konsum, I er privae realinveseringer, G er offenlig kjøp av varer og jeneser, T er

Detaljer

6. mai 2018 MAT Obligatorisk oppgave 2 av 2 - Løsningsforslag

6. mai 2018 MAT Obligatorisk oppgave 2 av 2 - Løsningsforslag 6. mai 218 MAT 24 Obligaoris oppgave 2 av 2 - Løsningsforslag Oppgave 1. La X være veorromme X = C([ 1, 1], R usyr med sup-norm. For j = 1,..., n, la a j R og la x j [ 1, 1]. La F : X R være definer ved

Detaljer

Potensiell energi Bevegelsesmengde og kollisjoner

Potensiell energi Bevegelsesmengde og kollisjoner Poensiell energi eegelsesengde og kollisjoner 9.3.5 FYS-MEK 9.3.5 Energidiagraer energibearing: E K x U x K x U x Ux du dx F du dx likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell

Detaljer

2. Bevegelse. Fysikk for ingeniører. Klassisk mekanikk. 2. Bevegelse. Side 2-1.

2. Bevegelse. Fysikk for ingeniører. Klassisk mekanikk. 2. Bevegelse. Side 2-1. Beegelse Side - Beegelse Vi skal nå a for oss beegelse Vi skal definere de grunnleggende begrepene posisjon, hasighe (og far), og akselerasjon Dee er begrep som du benyer il daglig, men i må presisere

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi.3.5 YS-ME.3.5 Areid-energi eorem areid:, ne d kineisk energi,, ne d ne dr d d C ne dr kureinegral langs en kure C sar i r, slu i r uˆ N uˆ N uˆ uˆ N uˆ N uˆ d d ds d d C ds mange

Detaljer

Eksamen R2, Hausten 2009

Eksamen R2, Hausten 2009 Eksamen R, Hausen 009 Del Tid: imar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med cenimeermål og vinkelmålar er illane. Oppgåve a) Deriver funksjonen f x x sinx Vi bruker produkregelen for derivasjon

Detaljer

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering Forelesning 25 Trær Dag Normann - 23. april 2008 Beskjeder Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4, blir avleregning, slik a sudenene ikke kan belage seg på

Detaljer

Oppgave 1. = 2(1 4) = 6. Vi regner også ut de andre indreproduktene:

Oppgave 1. = 2(1 4) = 6. Vi regner også ut de andre indreproduktene: Løsning Eksamen i ELE 379 Maemaikk Valgfag Dao 7. juni 26 kl 9-4 Dee e e foreløpig løsningsforslag som ikke er komple. De skal ikke publiseres i denne form. Oppgave. (a) Vi ve a kolonnevekorene il A er

Detaljer

Forelesning 14 REGRESJONSANALYSE II. Regresjonsanalyse. Slik settes modellen opp i SPSS

Forelesning 14 REGRESJONSANALYSE II. Regresjonsanalyse. Slik settes modellen opp i SPSS Forelesning 4 REGRESJOSAALYSE II Regresjonsanalyse Saisisk meode for å forklare variansen i en avhengig variabel u fra informasjon fra en eller flere uavhengige variabler. Eksempel: Kjønn Udanning Alder

Detaljer

INF april 2017

INF april 2017 IN 310 19. april 017 Segmenering ved erskling Global erskling Kap 10.3 Generelle hisogramfordelinger og klassifikasjonsfeil To populære ersklingsalgorimer ruken av kaner, og effeken av søy og glaing Lokal

Detaljer

x(t) = sin(1000t)+cos(1000t). Amplituden til det stasjonære utgangssignalet er da lik:

x(t) = sin(1000t)+cos(1000t). Amplituden til det stasjonære utgangssignalet er da lik: LM006M- Maemaikk : Ekamen mandag 0.mai, 00 Oppgave Lavpafiler Lavpafilere kal dimenjonere lik a knekkfrekvenen blir 500 rad/ og relaiv dempningkoeffiien kal være lik 0,5. erom moanden er på 4 Ω må kapaianen

Detaljer

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering Beskjeder MAT1030 Diskre maemaikk Forelesning 25: Trær Dag Normann Maemaisk Insiu, Universiee i Oslo 23. april 2008 Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4,

Detaljer

Det bærbare, 4-kanals oscilloskopet Fluke 190 Series II ScopeMeter har 200 MHz båndbredde og 2,5 GS/s samplinghastighet i sanntid.

Det bærbare, 4-kanals oscilloskopet Fluke 190 Series II ScopeMeter har 200 MHz båndbredde og 2,5 GS/s samplinghastighet i sanntid. En førse kikk på DSO-er Denne innføringen i digiale lagringsoscilloskop (DSO-er) ar deg med på en rask, men omfaende omvisning i DSO-funksjoner og -målinger. Brukerarikkel E oscilloskop måler og viser

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse i én dimensjon 21.1.215 FYS-MEK 111 21.1.215 1 Lærebok kan henes på ekspedisjonskonore. Lenke il bealingsside: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/15/bok.hml FYS-MEK 111 21.1.215

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse i én dimensjon 17.1.213 Forelesningsplan: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/13/plan213.hm FYS-MEK 111 17.1.213 1 Mekanikk Kinemaikk Dynamikk læren om beegelser uen å a hensyn il

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Helikopterlab TTK4115 Lineær systemteori

Helikopterlab TTK4115 Lineær systemteori NTNU Norge eknik-naurvienkaelige univerie Fakule for informajoneknologi, maemaikk og elekroeknikk Iniu for eknik kyberneikk Helikoerlab TT4 Lineær yemeori Projekraor 0.0.03 Av: Grue 4 6664 & 669846 Rune

Detaljer

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Institutt for elektronikk og telekommunikasjon LØSNINGSFORSLAG KRETSDEL Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Faglig kontakt under eksamen: Ragnar Hergum - tlf. 73 59 20 23 / 920 87

Detaljer

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009 Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )

Detaljer

Løsningsforslag eksamen TFY des 2013

Løsningsforslag eksamen TFY des 2013 Løsningsforslag eksamen TFY416 18 des 1 Ins for fysikk, NTNU Oppgae 1 a) Toal mekanisk energi er bear når sylinderne ruller ned skråplane fordi de kun er konseraie krefer som irker. Den oale mekaniske

Detaljer

OPPSUMMERING FORELESNINGER UKE 35

OPPSUMMERING FORELESNINGER UKE 35 OPPSUMMERIG FORELESIGER UKE 35 Kromaografis separasjon bygger på soffers (lieves-)fordeling mellom en sasjonær fase og en mobil fase. Reensjonen besemmes primær av: Mobilfasens egensaper, sasjonærfasens

Detaljer

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved Sensorveiledning: ELE 37191 Maemaikk valgfag Eksamensdao: 13.06.2012 09:00 1:00 Toal anall sider: 5 Anall vedlegg: 0 Tillae hjelpemidler: BI-dener eksamenskalkulaor TEXAS INSTRUMENTS BA II Plus Innføringsark:

Detaljer