Harald Bjørnestad: Variasjonsregning en enkel innføring.

Størrelse: px
Begynne med side:

Download "Harald Bjørnestad: Variasjonsregning en enkel innføring."

Transkript

1 Haral Bjørnesa: Variasjonsregning en enkel innføring.

2 Tiligere har vi løs oppgaven me å finne eksremalveriene ( maks./min. veriene) av en gi funksjon f () når enne funksjonen oppfyller beseme krav. Vi har også løs e ilsvarene probleme for funksjoner av flere variable. I alle isse oppgavene var e gi en funksjon, og vi søke eer e punke som ga funksjonen eksremalveri. I variasjonsregning er e eksremalproblem av en hel annen ype vi skal løse. Vi skal besemme en ukjen funksjon slik a en besem sørrelse J, som får en besem veri for hver gi funksjon, får en eksremalveri. Probleme som ga opphave il variasjonsregningen ble formuler av Johann Bernoulli i 696: La A og B være o punker ( B ligger lavere enn A). Ana a e maeriel punk kan bevege seg fra A il B bare uner påvirkning av yngekrafen ( vs. uen friksjon). Den korese veien er selvfølgelig en ree linjen som forbiner punkene. Men hvilken kurve gir en korese ien? Oppgaven ble løs av Johann sammen me broren Jacob og essuen av Newon og Leibniz. Løsningen er en såkale sykloien. Denne egenskapen hos sykloien har gi en navne en brakisokrone kurven. (Brachisos beyr kores, og chronos beyr i på gresk). VARIASJONEN Ana a vi har en funksjon av re variable F(, y( ), ( )). er F C. Her er C mengen av o ganger eriverbare funksjoner me koninuerlige erivere. Probleme som kalles e enklese variasjonsprobleme, kan formuleres slik: Maksimer J ( y) F(, y( ), ( )) når y ( ) y og y( ) y ( I ) For enhver funksjon y () vil inegrale J (y) ana forskjellige verier. Vi skal alså finne en funksjonen som gjør a inegrale blir sørs mulig. (Dersom oppgaven hae vær å finne minimum kunne vi i see se på funksjonen F(, y( ), ( )) ). Probleme kan illusreres geomerisk: La A(, y ) og B(, y) være o punker i y-plane. Enhver kurve som forbiner A me B gir inegrale i ( I ) en besem veri. Finn en kurven som gjør a inegrale blir sørs ( ev. mins.) y B y A Fig

3 3 La oss berake o kurver som forbiner A og B. (Se Fig ). La en funksjonen som løser probleme, og la y y + αμ( ) C μ ) μ( ).Her er α e reel all, og μ( ) C en funksjon. ( y ( ) C være være en funksjon er y y y ( ) + αμ( ) B y A y ( ) Fig Legg merke il a nær y ( ). y ( ) y og y ( ) y. Hvis α er lien så vil y() ligge Da vi har forusa a y er opimal vil J ( y ) J ( y + αμ) for alle α. La oss hole funksjon μ () konsan. Da vil I( α ) J ( y +αμ) være en funksjon av α gi ve I( α) F(, y ( ) + αμ( ), ( ) + αμ'( )). Vi har I ( ) J ( y) og I( α ) I() for alle α. Da α er e inre punk i efinisjonsområe il I vil I '(). Deriverer vi uner inegralegne får vi: I'( α ) ( F(, y ( ) + αμ( ), ( ) + αμ'( )) α ( F' y (, y ( ) + αμ( ), ( ) + αμ' ( )) μ( ) + F' (, y ( ) + αμ( ), ( ) + αμ'( )) μ'( )) I' () ( F' y (, y ( ), ( )) μ ( ) + F' I en mer kompak noasjon får vi (, y ( ), ( )) μ'( )) I' () μ ( ) + μ' ( ) (II) y y ' hvor inikerer a e erivere er evaluer i (, y, )

4 4 Dersom vi benyer elvis inegrasjon på le nr o får vi μ '( ) μ( ) Seer vi ee inn i (II) får vi: I() ( ) ' μ μ( ) μ( ) Av ee følger a y må være en løsning av ligningen (III) For å komme hi benyer vi oss av følgene: Variasjonsregningens funamenallemma: Ana a f er en koninuerlig funksjon over [ ], og a f ( ) μ( ) for enhver funksjon μ μ() som er ganger eriverbar i inervalle og som ilfressiller ranbeingelsene μ ) μ( ). Da er f() for alle [, ] ( Ligningen ( III ) kalles Euler-ligningen, eer en sveisiske maemaikeren Leonar Euler som i 744 vise a ersom en funksjon y() skal løse probleme i ( I ), må funksjonen passe inn i ( III ). Vi oppsummerer: Ana a F(,y ) er en funksjon av re variable og a en er o ganger eriverbar me koninuerlige erivere. En nøvenig beingelse for a y() skal maksimere/ minimere J ( y) F(, ) blan alle illae funksjoner y(), er a y() er en løsning av Euler-ligningen Dersom F(,y ) er konkav i y og vil vi ha løs maksimeringsprobleme, og ersom F(,y ) er konveks i y og vil vi ha minimumsløsningen.

5 5 ( I enkele ilfeller kan vi se ireke om en funksjon, F, er konkav eller konveks. I anre ilfeller krever e regning som e vil a for lang i å komme inn på i ee kore kurse.) Eksempel Løs probleme: min ( y + ), y(), y() e Vi har Da blir F (, ) y + y og () ' Euler-ligningen blir y-y eller y y Dee er en annenorens lineær ifferensialligning me konsane koeffisiener, og løsningen blir: y y( ) Ae + Be For å besemme konsanene A og B seer vi inn ranbeingelsene: y() og y() e Da får vi: A + B, søke funksjonen blir Ae + Be e som gir A e og B e slik a en y( ) e + e Sien funksjonen F(, ) åpenbar er konveks, har vi løs probleme.

6 6 TO SPESIALTILFELLER AV EULER-LIGNINGEN Dersom y ikke inngår eksplisi i funksjonsurykke, vs funksjonen kan skrives F(, ) vil og Euler-ligningen reuseres il eller C ( IV ) Dersom ikke inngår eksplisi i funksjonsurykke for F, har vi e såkale auonome ilfelle. Euler-ligningen vil a reuseres il en førseorens ifferensialligning i y il å besemme y(). For å komme frem il resulae må vi uføre e par maemaiske riks. Vi minner om en oale erivere av funksjonen F (, ) : F + + ' (V) Fra Euler-ligningen (III) finner vi ( F ). Seer vi ee inn i (V) får vi y ' F + ( ) + ' Hvis nå alså ikke inngår eksplisi i funksjonsurykke, vil F ' ( ) ( F ) og vi får: og vi har F C ( VI ) I anvenelser, for eksempel innenfor økonomisk eori er e vanlig a en variable er ien,. Funksjonsurykke er ofe beegne me slik a en funksjonen som skal maksimeres/ minimeres har følgene useene F (,, & ) Den erivere me hensyn på ien beegnes som ofes me & (leses -prikk ).

7 7 Eksempel Finn Euler-ligningen ilorne probleme inegrale J ( ) ( + & + e ) Me som variabel og () som funksjon blir Euler-ligningen & Vi har + e, & &, & && Euler-ligningen: + e && eller && e Eksempel 3 Gi inegrale +. Vis a eksremalene blir sirkler. Sien y mangler i funksjonsurykke, kan vi bruke (IV ). C gir oss + C og viere +. Kvarering og orning av leene gir C C eller C ± C C Her finner vi y ve å inegrere (subsiusjon u C ) y m C + m + C C C C Eller + ( y C) C Alså sirkler.

8 8 Oppgave Gi probleme min ( + ), y() og y() a) Finn Euler-ligningen og løs en. b) Finn en løsningen som ilfressiller rankravene. Oppgave Løs probleme maks ( 4 & ), (), () 3 Oppgave 3 Finn Euler-ligningene som er ilorne inegrale i) ii) F (, ) y + 3y + F(, ) e ay a iii) ( ) F(, ) ( y ) + y e F(, ) når Oppgave 4 a) Løs ifferensialligningen y '' y b) Vis a y Ae + Be er en løsning av ifferensialligningen y '' y c) Løs probleme min ( y + y + y + ), y(), y() Oppgave 5 Vis a Euler-ligningen som ilorner probleme min b ( + & + & ) blir & + & a

9 9 Oppgave 6 a) Løs ifferensialligningen y '' + b) Vis a ifferensialligningen y '' + har løsningen y Aln + B + c) Løs probleme min (y + 3y + ), y() y() 4 Oppgave 7 Gi o punker i plane A (, y ) og B (, ). y Grafen som forbiner punkene kaller vi y y(). Buelengen, vs lengen av en kurven som forbiner A og B er gi ve L + Vis a en korese avsanen er en ree linjen. Oppgave 8 Vi har gi variasjonsprobleme T 4 Maks e ln(k K& ), K ( ) K, K( T ) KT Vis a Euler-ligningen kan skrives på formen A K& + BK& + CK Hvor A,B og C er konsaner. Løs Euler-ligningen.

10 FASIT a) + C, y + C + C 4 3 b) y ) i) y ''+ ii) y '' a + a iii) y '' a + ( a ) y 4 a) y Ae + Be c) Ranbeingelsene gir A -B e e 6 a) C ln + C c) y ( ) ln + 4ln 4 4 8) Euler-ligningen blir 4 K && 5K& + 4K som har løsningen 7 4 K C e + Ce

av Erik Bédos, Matematisk Institutt, UiO, 25. mai 2007.

av Erik Bédos, Matematisk Institutt, UiO, 25. mai 2007. Om den diskree Fourier ransformen av Erik Bédos, Maemaisk Insiu, UiO,. mai 7. Vi lar H beegne indreproduk romme som besår av alle koninuerlige komplekse funksjoner definer på inervalle [, π] med indreproduke

Detaljer

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Oppgave 1. = 2(1 4) = 6. Vi regner også ut de andre indreproduktene:

Oppgave 1. = 2(1 4) = 6. Vi regner også ut de andre indreproduktene: Løsning Eksamen i ELE 379 Maemaikk Valgfag Dao 7. juni 26 kl 9-4 Dee e e foreløpig løsningsforslag som ikke er komple. De skal ikke publiseres i denne form. Oppgave. (a) Vi ve a kolonnevekorene il A er

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Forelesning nr.9 INF 1410

Forelesning nr.9 INF 1410 Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for

Detaljer

Anbefalte oppgaver uke 36

Anbefalte oppgaver uke 36 Anbefalte oppgaver uke 36 Høsten 2017 Løsningsforslag 1 Vi begynner me å skrive om ligningen litt, først til x y x + y = x2 + y, (1) y og så eller Nå eriverer vi, og får slik at xy y 2 = x 3 + xy + x 2

Detaljer

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering Beskjeder MAT1030 Diskre maemaikk Forelesning 25: Trær Dag Normann Maemaisk Insiu, Universiee i Oslo 23. april 2008 Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4,

Detaljer

1 Trigonometriske Funksjoner Vekt: 1. 2 Trigonometriske Funksjoner Vekt: 1

1 Trigonometriske Funksjoner Vekt: 1. 2 Trigonometriske Funksjoner Vekt: 1 OPPGAVER TIL FORELESNINGSUKE NUMMER Ukeoppgavene skal leveres som selvsendige arbeider. De forvenes a alle har sa seg inn i insiues krav il innlevere oppgaver: Norsk versjon: hp://www.ifi.uio.no/sudinf/skjemaer/erklaring.pdf

Detaljer

Fart. Eksempel: Gjennomsnittsfart

Fart. Eksempel: Gjennomsnittsfart Far ALV EGELAND, NAROM Når vi ilbakelegger 100 km i løpe av 2 imer uavhengig av om vi opper unervei har vi en gjennomnifar på 50 km/h. Vi ville ha bruk like lang i erom vi hae kjør me konan far på 50 km/h.

Detaljer

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering Forelesning 25 Trær Dag Normann - 23. april 2008 Beskjeder Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4, blir avleregning, slik a sudenene ikke kan belage seg på

Detaljer

Go to and use the code Hva var viktig i siste forelesning? FYS-MEK

Go to   and use the code Hva var viktig i siste forelesning? FYS-MEK Go o www.meni.com and use he code 65 37 7 Ha ar ikig i sise forelesning? FYS-MEK 111.1.18 1 FYS-MEK 111.1.18 Beegelse i én dimensjon ().1.18 Ukesoppgaer og oblig 1 er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/18/maeriale/maeriale18.hml

Detaljer

Eksamen R2, Hausten 2009

Eksamen R2, Hausten 2009 Eksamen R, Hausen 009 Del Tid: imar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med cenimeermål og vinkelmålar er illane. Oppgåve a) Deriver funksjonen f x x sinx Vi bruker produkregelen for derivasjon

Detaljer

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved Sensorveiledning: ELE 37191 Maemaikk valgfag Eksamensdao: 13.06.2012 09:00 1:00 Toal anall sider: 5 Anall vedlegg: 0 Tillae hjelpemidler: BI-dener eksamenskalkulaor TEXAS INSTRUMENTS BA II Plus Innføringsark:

Detaljer

MAT1030 Forelesning 26

MAT1030 Forelesning 26 MAT030 Forelesning 26 Trær Roger Anonsen - 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) Forelesning 26 Li repeisjon Prims algorime finne de minse uspennende ree i en veke graf en grådig algorime i den forsand

Detaljer

Funksjonslære Derivasjon Matematikk 2

Funksjonslære Derivasjon Matematikk 2 Funksjonslære Derivasjon Maemaikk 2 Avdeling for lærerudanning, Høgskolen i Vesfold 19 mars 2009 1 Innledning La f(x) være en funksjon, alså, en sørrelse som er avhengig av x De kan ofe være hensiksmessig

Detaljer

Bevegelse i én dimensjon (2)

Bevegelse i én dimensjon (2) Beegelse i én dimensjon () 5..6 Daa-lab i dag: Hjelp med Pyhon / Malab insallasjon Førse skri Oblig er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek/6/maeriale/maeriale6.hml Innleeringsfris: Tirsdag,

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 sforslag forkunnskapstest Faktoriser, hvis mulig, uttrkket +. (A) ( + 5)( ) (B) ( 5)( + ) (C) ( + )( )

Detaljer

Løsningsforslag for regneøving 3

Løsningsforslag for regneøving 3 Ulever: 3.mars 7 Løsningsforslag for regneøving 3 Oppgave : a Se opp ligning for spenningen over som funksjon av id, for. R v + - Kres Løsning: Beraker kresen førs: I iden før null vil spenningen over

Detaljer

Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur

Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur KÅRE BÆVRE Høsten 2005 1 Vekstrater og eksponensiell vekst 1.1 Vekstrater i iskret ti Vekstraten til en størrelse Y angir hvor stor

Detaljer

FYS3220 Oppgaver om Fourieranalyse

FYS3220 Oppgaver om Fourieranalyse FYS3220 Oppgaver om Fourieranalyse Innhold Enkle fourieranalyse oppgaver... 1 1) egn frekvensspeker for e sammensa sinus signal... 1 2) Fra a n og b n il c n og θ... 2 Fourier serieanalyse... 2 3) Analyse

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Bevegelse i én dimensjon 15.1.214 FYS-MEK 111 15.1.214 1 Malab: mulig å bruke på egen PC med UiO lisens hjelp med insallasjon på daa-verksed eller i forkurs Forsa ledige plasser i forkurs: Fredag kl.1-13

Detaljer

Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen

Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen MAT1030 Diskre Maemaikk Forelesning 26: Trær Roger Anonsen Insiu for informaikk, Universiee i Oslo Forelesning 26 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) MAT1030 Diskre Maemaikk 5. mai 2009 2 Li repeisjon

Detaljer

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser.

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser. 4.4 INNE- OG TKOPLING AV EN KONDENSATO 1 4.4 INN- OG TKOPLING AV EN KONDENSATO Ved opp -og uladning av kondensaorer varierer srøm og spenning. De er vanlig å bruke små boksaver for å angi øyeblikksverdier

Detaljer

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Obligaorisk øvelsesoppgave våren 22 Ved sensuren illegges alle oppgavene lik vek For å få godkjen besvarelsen må den i hver fall: gi mins

Detaljer

Løsning: V = Ed og C = Q/V. Spenningen ved maksimalt elektrisk felt er

Løsning: V = Ed og C = Q/V. Spenningen ved maksimalt elektrisk felt er Gruppeøving 6 Elekrisie og magneisme Flervalgsoppgaver 1. Dersom en kondensaor har en kapasians på på 7.28 µf, hvor mye må plaene lades opp for a poensialdifferansen mellom plaene skal bli 25.0 V?. 15

Detaljer

Obligatorisk oppgave ECON 1310 høsten 2014

Obligatorisk oppgave ECON 1310 høsten 2014 Obligaorisk oppgave EON 30 høsen 204 Ved sensuren vil oppgave elle 20 prosen, oppgave 2 elle 50 prosen, og oppgave 3 elle 30 prosen. For å få godkjen må besvarelsen i hver fall: gi mins re nesen rikige

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x.

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x. UNIVERSITETET I BERGEN De maemaisk-nauvienskapelige fakule Eksamen i emne MAT Bukekus i maemaikk Fedag 8 febua, kl 9-4 BOKMÅL Tillae hjelpemidle: Læebok og kalkulao i samsva med fakulee sine egle Oppgave

Detaljer

INF 2310 Digital bildebehandling. Hva er segmentering? forelesning nr 11 12/ Segmentering av bilder. To segmenterings-kategorier

INF 2310 Digital bildebehandling. Hva er segmentering? forelesning nr 11 12/ Segmentering av bilder. To segmenterings-kategorier INF 310 Digial bildebehandling forelesning nr 11 1/4 005 Segmenering av bilder Dagens ema: - Ikke-koneksuell erskling Lieraur: Efford, DIP, kap. 10.1-10. Friz Albregsen Deparmen of Informaics Universiy

Detaljer

Løsningsforslag til obligatorisk øvelsesoppgave i ECON 1210 høsten 06

Løsningsforslag til obligatorisk øvelsesoppgave i ECON 1210 høsten 06 Løsningsforslag il obligaorisk øvelsesoppgave i ECON 0 høsen 06 Oppgave (vek 50%) (a) Definisjon komparaive forrinn: Den ene yrkesgruppen produserer e gode relaiv mer effekiv enn den andre yrkesgruppen.

Detaljer

Sensorveiledning ECON2200 Våren 2014

Sensorveiledning ECON2200 Våren 2014 Oppgave a) Sensorveiledning ECON00 Våren 04 f( ) + ln f ( ) 6 b) ( ) ( ) f( ) + f ( ) + + + De er ikke krav om å forenkle il en besem form, alle svar er ree. c) f( ) ln g ( ) g ( ) f ( ) g ( ) d) e) f)

Detaljer

Teknisk appendiks ECON 2915 Vekst og næringsstruktur

Teknisk appendiks ECON 2915 Vekst og næringsstruktur Teknisk appeniks ECON 2915 Vekst og næringsstruktur KÅRE BÆVRE Høsten 2005 Versjon 1 Dette notatet er ment som en støtte for stuenter som tar kurset ECON 2915 - Vekst og utvikling. Her behanles en el sentrale

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 2014 2.8.2 Vi merker oss først at funksjonen f er båe kontinuerlig og eriverbar på intervallet [1,2],

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse i én dimensjon 21.1.215 FYS-MEK 111 21.1.215 1 Lærebok kan henes på ekspedisjonskonore. Lenke il bealingsside: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/15/bok.hml FYS-MEK 111 21.1.215

Detaljer

EKSAMEN TMA4100 HØST 2014 LØSNINGSFORSLAG. du/dx = e x du = e x dx, Her har vi brukt analysens fundamentalteorem til å derivere telleren.

EKSAMEN TMA4100 HØST 2014 LØSNINGSFORSLAG. du/dx = e x du = e x dx, Her har vi brukt analysens fundamentalteorem til å derivere telleren. EKSAMEN TMA400 HØST 04 ØSNINGSFORSAG Oppgave. Uner rottegnet står et + e x, og en eriverte til ette uttrykket er e x, som står utenfor rottegnet. Sett erfor u +e x. Da får vi og vi kan løse intergralet:

Detaljer

Løsningsforslag øving 6, ST1301

Løsningsforslag øving 6, ST1301 Løsningsforslag øving 6, ST1301 Oppgave 1 Løse Euler-Loka ligningen ved ruk av Newon's meode. Ana a vi har en organisme med maksimal alder lik n år. Vi ser kun på hunnene i populasjonen. La m i være anall

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 014 Løsningsforslag Øving 03.7. Økningen i uksen, F, kan approksimeres som se sie 131 i boka F F =

Detaljer

(x 0,y 0,0) α. Oppgave 3. Ved tiden t har vi følgende situasjon: α = ω1t β = ω2t

(x 0,y 0,0) α. Oppgave 3. Ved tiden t har vi følgende situasjon: α = ω1t β = ω2t Oppgave 3 Ve ien har vi følgene siuasjon: oer vinkel om aksen parallell me -aksen: oer vinkel om aksen l: β l,, Punkes koorinaer ve ien kan besemmes ve hjelp av følgene serie av basisransformasjoner. ransformasjonene

Detaljer

x, og du dx = w dy (cosh u) = sinh u H sinh w H x = sinh w H x. dx = H w w > 0, så h har ikke flere lokale ekstremverdier.

x, og du dx = w dy (cosh u) = sinh u H sinh w H x = sinh w H x. dx = H w w > 0, så h har ikke flere lokale ekstremverdier. NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving 3 Avsnitt 3. u 49 a) Fra tabell 3.4 på sie i boka: (cosh u) = sinh u. Her har vi at u = w H, og u = w y H. Det følger

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse i én dimensjon 17.1.213 Forelesningsplan: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/13/plan213.hm FYS-MEK 111 17.1.213 1 Mekanikk Kinemaikk Dynamikk læren om beegelser uen å a hensyn il

Detaljer

4. Viktige kvantemekaniske teoremer

4. Viktige kvantemekaniske teoremer FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske

Detaljer

Styring av romfartøy STE6122

Styring av romfartøy STE6122 Syring av romfarøy STE6122 3HU -. 1LFNODVVRQ Høgskolen i Narvik Høs 2000 Forelesningsnoa 8 1 6W\ULQJ RJ UHJXOHULQJ DY RULHQWHULQJ,, Nødvendig med nøyakig syring og/eller regulering av orienering i en rekke

Detaljer

Oppgaveverksted 3, ECON 1310, h14

Oppgaveverksted 3, ECON 1310, h14 Oppgaveverksed 3, ECON 30, h4 Oppgave I denne oppgaven skal du forklare de økonomiske mekanismene i hver deloppgave, men de er ikke men a du skal bruke id på å forklare modellen uover de som blir spur

Detaljer

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009 Løsningsforslag eksamen MAT Grunnkurs i Matematikk I høsten 9 OPPGAVE (a) Vi har w = + ( ) =. I et komplekse plan ligger w i 4. kvarant og vinkelen θ mellom tallet og en relle aksen har tan θ =, vs. at

Detaljer

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1 . Berak følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < T = 0 + Y, 0 < < Hvor Y er BNP, C er priva konsum, I er privae realinveseringer, G er offenlig kjøp av varer og jeneser, T er

Detaljer

YF kapittel 3 Formler Løsninger til oppgavene i læreboka

YF kapittel 3 Formler Løsninger til oppgavene i læreboka YF kapiel 3 Formler Løsninger il oppgavene i læreoka Oppgave 301 a E 0,15 l 0,15 50 375 Den årlige energiproduksjonen er 375 kwh. E 0,15 l 0,15 70 735 Den årlige energiproduksjonen er 735 kwh. Oppgave

Detaljer

INF april 2017

INF april 2017 IN 310 19. april 017 Segmenering ved erskling Global erskling Kap 10.3 Generelle hisogramfordelinger og klassifikasjonsfeil To populære ersklingsalgorimer ruken av kaner, og effeken av søy og glaing Lokal

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESIEE I AGDE Gimsa E K S A M E N S O P P G A V E : FAG: MA-9 Maemaikk LÆE: Pe Henik Hogsa Klasse: Dao:..5 Eksamensi a-il: 9.. Eksamensoppgaven beså av ølgene Anall sie: 5 inkl. osie velegg Anall oppgave:

Detaljer

Logaritmer og eksponentialfunksjoner

Logaritmer og eksponentialfunksjoner Logaritmer og eksponentialfunksjoner Dette er fra e to første forelesningene i MA02 våren 2008. Noe er skrevet mer ut, men mange etaljer er utelatt. De er utelatt me vilje, for at u skal fylle em ut selv!

Detaljer

Våren Ordinær eksamen

Våren Ordinær eksamen Våren - Ordinær ekaen. Vi enker a en parikkel beeger eg lang en re linje (-aken. Parikkelen arer i r i pijn =. ed iden =. Parikkelen haighe funkjn a iden er gi ed: ( hr.. a eregn parikkelen akelerajn a

Detaljer

Algebra R2, Prøve 1 løsning

Algebra R2, Prøve 1 løsning Algebra R, Prøve løsig Del Tid: 70 mi Hjelpemidler: Skrivesaker Oppgave E rekke er gi ved a og a Du skal ) udersøke hva slags rekke de er Vi fier de førse leddee: a a a a, 6, 3 0, 4 4 3 4 De ser u som

Detaljer

Jernbaneverket. OVERBYGNING Kap.: 8 t Regler for prosjektering Utgitt:

Jernbaneverket. OVERBYGNING Kap.: 8 t Regler for prosjektering Utgitt: e Hovedkonore Helsveis spor Side: 1 av 5 1 HENSIKT OG OMFANG... 2 2 KRAV... 3 2.1 Hovedspor... 3 2.1.1 Varig ufesing... 3 2.1.2 Minse kurveradius... 3 2.1.3 Ballas... 3 2.1.4 Sviller... 3 2.1.4.1 Svilleype...

Detaljer

og ledelse av forsyningskjeder Kapittel 4 Del A - Prognoser SCM200 Innføring i Supply Chain Management

og ledelse av forsyningskjeder Kapittel 4 Del A - Prognoser SCM200 Innføring i Supply Chain Management Logisikk og ledelse av forsyningskjeder Kapiel 4 Del A - Prognoser M200 Innføring i Suin Man Rasmus Rasmussen PREDIKSJON En prediksjon (forecas forecas) er en prognose over hva som vil skje i framiden.

Detaljer

4. Viktige kvantemekaniske teoremer

4. Viktige kvantemekaniske teoremer FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske

Detaljer

TMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag

TMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Høst 206 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 2 2..0: Vi bruker eisjoe for ikke-vertikale tagetlijer sie 97 i læreboke). Tagetlije gjeom et pukt

Detaljer

(coshu) = sinhudu. dx. Her har vi at u = w Hx, og du dx = w dy. dx = H w w. H sinh w H x = sinh w H x.

(coshu) = sinhudu. dx. Her har vi at u = w Hx, og du dx = w dy. dx = H w w. H sinh w H x = sinh w H x. NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 3 Avsnitt 3. 49 a) Fra tabell 3.4 på sie 222 i boka: (coshu) = sinhuu. Her har vi at u = w H, og u = w y H. Det følger

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

Faktor - en eksamensavis utgitt av ECONnect

Faktor - en eksamensavis utgitt av ECONnect Fakor - en eksamensavis ugi av ECONnec Pensumsammendrag: FIN3005 Makrofinans Forfaer: Marin Frøland E-pos: marinom@sud.nnu.no Skreve: Høsen 009 Anall sider: 41 FIN3005 - Pensumsammendrag Om ECONnec: ECONnec

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 OpenGL (vekt 1 5 )

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 OpenGL (vekt 1 5 ) UNIVERSITETET I OSLO De maemaisk-naurvienskapelige fakule Eksamen i INF3320/INF4320 Meoder i grask daabehandling og diskre geomeri Eksamensdag: 7. desember 2007 Tid for eksamen: 14:30 17:30 Oppgavesee

Detaljer

~/stat230/teori/bonus08.tex TN. V2008 Introduksjon til bonus og overskudd

~/stat230/teori/bonus08.tex TN. V2008 Introduksjon til bonus og overskudd ~/sa23/eori/bonus8.ex TN STAT 23 V28 Inrodukson il bonus og overskudd Bankinnskudd Ana a vi ønsker å see e viss beløp y i banken ved id = for å ha y n ved id = n. Med en reneinensie δ må vi see inn y =

Detaljer

Forelesning 2: Førsteordens lineære differensiallikninger

Forelesning 2: Førsteordens lineære differensiallikninger Forelesning 2: Førsteorens lineære ifferensiallikninger Tron Stølen Gustavsen 16. januar, 2009 Innhol Lesning 1 2.1. Likninger me konstante koeffisienter 1 2.2. Generelle koeffisienter 4 Referanser 5 Lesning.

Detaljer

Øving 1: Bevegelse. Vektorer. Enheter.

Øving 1: Bevegelse. Vektorer. Enheter. Lørdagsverksed i fysikk. Insiu for fysikk, NTNU. Høsen 007. Veiledning: 8. sepember kl :5 5:00. Øving : evegelse. Vekorer. Enheer. Oppgave a) Per løper 800 m på minuer og 40 sekunder. Hvor sor gjennomsnisfar

Detaljer

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter.

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter. TFE4110 Digialeknikk med kreseknikk Løsningsforslag il regneøving 5 vårsemeser 2008 Løsningsforslag il regneøving 5 Ulever: irsdag 29. april 2008 Oppgave 1: a) Tegn egningen for en eksklusiv eller por

Detaljer

M1_01. Funksjonene f og g er definert ved f( x)= x 1. g( f( x)) er da lik. b ( x + 3) d ( x + 2) e x MA M1 Side 1

M1_01. Funksjonene f og g er definert ved f( x)= x 1. g( f( x)) er da lik. b ( x + 3) d ( x + 2) e x MA M1 Side 1 Funksjonene f og g er efinert ve f( )= 1 og g ( ) = ( +3). M1_01 g( f( )) er a lik a ( 1)( + 3) b ( + 3) 1 c ( ) ( + ) e + 8 MA13001 M1 Sie 1 En funksjon f er efinert ve: M1_0 f( )= 1 hvis < 1 f( )= +1

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi 7..7 YS-MEK 7..7 Areid-energi eorem areid:, v ne d kineisk energi K, K K, ne v d ne dr d d C ne dr kurveinegral langs en kurve C sar i r, slu i r uˆ N uˆ N v vuˆ v uˆ N uˆ N vuˆ

Detaljer

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Torsdag 8. august 2002

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Torsdag 8. august 2002 NTNU Sie 1 av 7 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Torsag 8. august 2002 Eksamen gitt av Kåre Olaussen Dette løsningsforslaget

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011. c) Hva er kritisk verdi for testen dersom vi hadde valgt et signifikansnivå på 10%?

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011. c) Hva er kritisk verdi for testen dersom vi hadde valgt et signifikansnivå på 10%? Forelesning 4 og 5 MET59 Økonomeri ved David Kreiberg Vår 011 Diverse oppgaver Oppgave 1. Ana modellen: Y β + β X + β X + β X + u i 1 i i 4 4 i i Du esimerer modellen og oppnår følgende resulaer ( n 6

Detaljer

Løsningsforslag. b) Hva er den totale admittansen til parallellkoblingen i figuren over? Oppgi både modul og fasevinkel.

Løsningsforslag. b) Hva er den totale admittansen til parallellkoblingen i figuren over? Oppgi både modul og fasevinkel. Løsningsforslag FYS / FY / FYS Elektromagnetisme, torsag 8. esember Ve sensurering vil alle elspørsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenummer), men vi forbeholer oss retten til

Detaljer

Løysingsforslag for oppgåvene veke 17.

Løysingsforslag for oppgåvene veke 17. Løysingsforslag for oppgåvene veke 17. Oppgåve 1 Reningsfel for differensiallikningar gi i oppg. 12.6.3 med numeriske løysingar for gi inialkrav (og ei par il). a) b) c) d) Oppgåve 2 a) c) b) Reningsfele

Detaljer

Potensiell energi Bevegelsesmengde og kollisjoner

Potensiell energi Bevegelsesmengde og kollisjoner Poensiell energi eegelsesengde og kollisjoner 6.3.27 YS- MEK 6.3.27 Energidiagraer energibearing: E K U K U U du/d..5 du d du d likeekspunk U/U -.5 -. -.5 -.2 iniu i poensiell energi sabil likeekspunk

Detaljer

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Eksamensoppgave høsten 2011

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Eksamensoppgave høsten 2011 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Eksamensoppgave høsen 2 Ved sensuren illegges alle oppgavene lik vek For å beså eksamen, må besvarelsen i hver fall: gi mins re rikige svar

Detaljer

FYSIKK-OLYMPIADEN 2012 2013

FYSIKK-OLYMPIADEN 2012 2013 Norsk Fysikkærerforening Norsk Fysisk Seskaps faggruppe for underisning FYSIKK-OLYMPIADEN 0 0 Andre runde: 7/ 0 Skri øers: Nan, fødsesdao, e-posadresse og skoens nan Varighe: kokkeimer Hjepemider: Tabe

Detaljer

Eksamen i STK4060/STK9060 Tidsrekker, våren 2006

Eksamen i STK4060/STK9060 Tidsrekker, våren 2006 Eksamen i STK4060/STK9060 Tidsrekker, våren 2006 Besvarelsen av oppgavene nedenfor vil ugjøre de vesenlige grunnlage for karakergivningen, og ugangspunke for den munlige eksaminasjonen. De er meningen

Detaljer

Determinanter. Kapittel 6. Determinanter for 2 2-matriser. La oss beregne arealet av dette parallellogrammet. Vi tegner på noen hjelpelinjer:

Determinanter. Kapittel 6. Determinanter for 2 2-matriser. La oss beregne arealet av dette parallellogrammet. Vi tegner på noen hjelpelinjer: Kapittel 6 Determinanter En matrise inneholer mange tall og erme mye informasjon så mye at et kan være litt overvelene Vi kan konensere ne all informasjonen i en kvaratisk matrise til ett enkelt tall som

Detaljer

Spesialisering: Anvendt makro 5. Modul

Spesialisering: Anvendt makro 5. Modul Spesialisering: Anvend makro 5. Modul 1.B Lineære regresjonsmodeller og minse kvadraers meode (MKM) Drago Berghol Norwegian Business School (BI) 10. november 2011 Oversik I. Inroduksjon il økonomeri II.

Detaljer

Rør og rørdeler. BASAL mufferør ig. Maks tillatt avvinkling (mm/m) Overdekn. min/max (m) Mål (mm) Vekt ca. kg. DN / t Dm 0,5-10,0 0,5-10,0

Rør og rørdeler. BASAL mufferør ig. Maks tillatt avvinkling (mm/m) Overdekn. min/max (m) Mål (mm) Vekt ca. kg. DN / t Dm 0,5-10,0 0,5-10,0 Rør og rørdeler BASAL mufferør ig / Dm Overdekn. min/max (m) Maks illa avvinkling (mm/m) 0 33 33 284 284 0,5-10,0 0,5-10,0 50 50 35 55 0 0 37 37 41 353 353 353 0,5-8,0 0,5-8,0 0,5-8,0 50 50 50 50 140 250

Detaljer

3. Beregning av Fourier-rekker.

3. Beregning av Fourier-rekker. Forelesigsoaer i maemaikk. 3. Beregig av 3.. Formlee for Fourier-koeffisieee. Vi går re på sak: a f være e sykkevis koiuerlig fuksjo med periode p. De uedelige rigoomeriske rekka cos( ) si ( ) a + a +

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Usa eksamen i: ECON315/415 Inroducory Economerics Eksamensdag: Fredag 11. augus 26 Tid for eksamen: kl. 9: 12: Oppgavesee er på 5 sider Tillae hjelpemidler: Alle

Detaljer

En sammenligning av økonomiske teorier for regional vekst

En sammenligning av økonomiske teorier for regional vekst En sammenligning av økonomiske eorier for regional veks av Grehe Lunde Masergradsoppgave i samfunnsøkonomi 30 sudiepoeng Insiu for økonomi Norges fiskerihøgskole Universiee i Tromsø Mai 2008 I Forord Arbeide

Detaljer

Virkninger av ubalansert produktivitetsvekst («Baumols sykdom»)

Virkninger av ubalansert produktivitetsvekst («Baumols sykdom») 1 Jon Vislie; februar 2018 ECON 3735 vår 2018 Forelesningsnoa #2 Virkninger av ubalanser produkiviesveks («Baumols sykdom») I Forelesningsnoa #1 så vi på generelle likevekseffeker i en o-sekor-økonomi,

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013 Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger

Detaljer

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM INEC1800 ØKONOMI, FINANS OG REGNSKA EINAR BELSOM HØS 2017 FORELESNINGSNOA 6 rouksjonsteknologi og kostnaer* Fokuset i ette notatet er på beriftenes atfer uner ulike markesformer, fra tilfellet er beriften

Detaljer

Bevegelse i én dimensjon (2)

Bevegelse i én dimensjon (2) Beegelse én dmensjon 6..5 Gruppeundersnng begynner denne uken. Oppgaer fnner du på semesersden: hp://www.uo.no/suder/emner/mana/fys/fys-mek/5/maerale/maerale5.hml FYS-MEK 6..5 Beegelseslgnnger V sarer

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVEITETET I DE imsa E K M E N O P P V E : : M-9 Maemaikk LÆE: Pe enik ogsa Klasse: Dao:.. Eksamensi a-il: 9.. Eksamensoppgaen beså a ølgene nall sie: 6 inkl. osie elegg nall oppgae: nall elegg: Tillae

Detaljer

STAD. Innreguleringsventil ENGINEERING ADVANTAGE

STAD. Innreguleringsventil ENGINEERING ADVANTAGE Innreguleringsventiler STA Innreguleringsventil Trykkvelikehol & Vannkvalitet Balansering & Regulering Romtemperaturregulering ENGINEERING AVANTAGE STA innreguleringsventil gjør innregulering enkelt, brukervennlig

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig konak under eksamen: Jon Andreas Søvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao:. juni 26 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv

Detaljer

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009 Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )

Detaljer

Potensiell energi Bevegelsesmengde og kollisjoner

Potensiell energi Bevegelsesmengde og kollisjoner Poensiell energi eegelsesengde og kollisjoner.3.4 YS-MEK.3.4 Energidiagraer energibearing: E K K d d d d likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell energi usabil likeekspunk

Detaljer

8 Vektorer og kurver. Løsning til KONTROLLOPPGAVER OPPGAVE 1. t t ) Vi finner skjæringspunktet med y-aksen ved å sette x = 0.

8 Vektorer og kurver. Løsning til KONTROLLOPPGAVER OPPGAVE 1. t t ) Vi finner skjæringspunktet med y-aksen ved å sette x = 0. Løning il KONTROLLOPPGAVER 8 Vekorer og kurver OPPGAVE 1 a) 1) Vi lager abell, velger o enkle -verdier og regner u verdiene for x og y. x 6 y ) Vi finner kjæringpunke med y-aken ved å ee x =. 1 y 1 Linja

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi 3.3.4 olig 5: midveis hjemmeeksamen forusening for å a slueksamen kreves individuell innlevering lir lag u mandag 3. mars innleveringsfris mandag. mars YS-ME 3.3.4 Areid-energi

Detaljer

TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18

TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18 TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18 1) Panamagikkoffisiel over frausgallons il lier den30. apriliår. Bensinprisenvardaca4USdollar prus gallon. Hva ilsvarer dee i kroner prlier, når 1

Detaljer

SNF-rapport nr. 21/04

SNF-rapport nr. 21/04 SNF-rappor nr. /04 PRISIN V FORSIKRINSKONRKER MED RENERNI av Roger F. Peersen Eirik M. Samnøy SNF-Prosjek nr. 7000 SMFUNNS- O NÆRINSLIVSFORSKNIN S Bergen, November 004 Dee eksemplar er fremsil eer avale

Detaljer

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s. eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m

Detaljer

Betydning av feilspesifisert underliggende hasard for estimering av regresjonskoeffisienter og avhengighet i frailty-modeller

Betydning av feilspesifisert underliggende hasard for estimering av regresjonskoeffisienter og avhengighet i frailty-modeller Beydning av feilspesifiser underliggende hasard for esimering av regresjonskoeffisiener og avhengighe i fraily-modeller Bjørnar Tumanjan Morensen Maser i fysikk og maemaikk Oppgaven lever: Mai 2007 Hovedveileder:

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kiisk energi..8 FYS-MEK..8 hp://pingo.upb.de/ access number: 63473 To isbåer, en med masse m og en med masse m, kjører på en friksjonsfri, horisonal, frossen innsjø. Begge båene sarer fra ro,

Detaljer

Aliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem

Aliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem Forelesning 9.februar 24 Delkapilene 4.4-4.6 fra læreboken, 4.3 er il selvsudium. Repeisjon om sampling og aliasing Diskre-il-koninuerlig omforming Inerpolasjon med pulser Oversamling bedrer inerpolasjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO De maemaisk-naurvienskapelige fakule Eksamen i INF3320 Meoder i grafisk daabehandling og diskre geomeri Eksamensdag: 2. desember 2009 Tid for eksamen: 14.30 17.30 Oppgavesee er på

Detaljer