Løsningsforslag for regneøving 3
|
|
- Emma Andreassen
- 7 år siden
- Visninger:
Transkript
1 Ulever: 3.mars 7 Løsningsforslag for regneøving 3 Oppgave : a Se opp ligning for spenningen over som funksjon av id, for. R v + - Kres Løsning: Beraker kresen førs: I iden før null vil spenningen over være lik v. Kirchoffs spenningslov, summen av alle spenninger i alle lukkede sløyer er lik null. v + v = R ( ( Ved å benye Ohms lov for v r får vi: vr( = RiR( Vi ve a srømmen gjennom mosanden er den samme som srømmen gjennom kondensaoren og a srømmen gjennom en kondensaor er gi av den derivere av spenningen med hensyn på id. ir( = i ( dv i ( = d Seer disse [3] og [] inn i ligning []: dv ( R + v ( = d R er en konsan og vi ordner variablene på hver sin side, v c ( på en side og på den andre siden: dv ( R = v ( d dv ( = d v R ( Endrer variabelnavn og inegrerer begge sider fra = il :
2 ( v v dx = x R vc ( ln ( x = v R ln ( vc ( ln ( v = R v ( ln = v R v = ve = ve τ ( Seer inn v =V og får: τ v = Ve qed (... dy R De er verd å merke seg a idskonsanen τ som er produke mellom farad og ohm er sekund u fra følgende: En farad er definer som evnen il å lagre en coulomb med ladninger per vol poensialforskjell mellom o ledere: = V En ohm er definer som mosanden(resisans, reakans eller impedans nødvendig for å skape en vol i poensialforskjell per ampere srøm. Med andre ord Ohms lov: Ω= V A Ampere er en grunnenhe, men kan også defineres som coulomb per sekund: A = s Seer vi dee sammen så får vi a produke mellom farad og ohm blir: V Ω = s V = s b Beregn oal kapasians mellom ilkoblingspunkene a og b. ølgende verdier for c-c9 =µ =5µ 3=5,µ 4=µ 5=68µ 6=68µ 7=µ 8=5µ 9=,µ
3 a b Kres Løsning: Slår sammen, og 3 : = ( Slår sammen 5, 6 og 9 : ( (5 6 9 = Disse sår ilsammen i parallell med 4 : ( (( = ølgende kondensaorer sår da i serie med hverandre: 8 ekvivalenen il, og 3 ekvivalenen il 4, 5, 6 og 9 Alle disse sår så igjen i parallell il 7 : ( 3 (( Her ser vi for a ved en fullsendig uregning så blir formelen for ekvivalen kapasians hel uhånderlig. Bruk mellomsvar, men med ilsrekkelig anall siffer: µ 9µ ,µ 4,65µ 5µ ( 3 (( c Vi kobler inn en mosand og en srømkilde Mellom klemmene a og b, i kres. a i a R b
4 Kres 3 Srømkilden i a = 5µA, og mosanden R =,kω. Når ilsrekkelig lang id har gå, oppnår vi seady-sae. Hvor sor blir da spenningen over klemmene V ab. Løsning: Såkal seady-sae vil her bey a kondensaoren har oppnådd en konsan spenning over seg. Ved konsan spenning så er kondensaorer å berake som åpne kreser. Dee fordi a hvis de går srøm u eller inn av de så vil de forandre spenning: dv i d (= Den derivere av spenningen med hensyn på id er jo de samme som spenningsforandringen over id. Er forandringen null så er srømmen null. Dermed er dee i «seady-sae» ekvivalen med a kondensaorene fjernes fra kresen. Da sier vi igjen med en srømkilde og en mosand i en lukke sløyfe. Spenning V ab er den sammen som spenningen over mosanden, spenningen over mosanden er gi av mosanden i ohm ganger med srømmen i ampere. Vab = Ri a =,kω 5µ A=,,5V = 3,V Oppgave : a Beskriv følgende med egne ord: I. Nodespenningsmeoden Løsning:. Navngi alle nodene. Tilordne nodespenningene spenningsvariable for eksempel v,v osv 3. Hvis noen av nodene har en spenningskilde forbunde mellom o noder ugjør disse nodene en supernode. KVL gir spenningen mellom disse nodene il å være lik spenningskilden. 4. or de reserende nodene bruk Kirchoffs srømlov il å see opp ligning for alle srømmene u av noden. 5. or supernodene sees de opp ligninger for KL for supernoden se under e. 6. Løs ligningssee for å få de reserende spenningene. II. Tidskonsanen τ (au Løsning: Tidskonsanen i en R-kres kan berakes på o forskjellige måer:. Den iden de ar for angenen for spenningskurven il kondensaoren å nå påryk spenning over kresen.. Tiden de ar for spenningen å nå: (-e - V påryk ved oppladning og; e - V påryk ved uladning e - er da når =τ
5 b Tegn oppbygningen il en kondensaor. Navngi de enkele elemenene og gi en kor forklaring på hvordan de påvirker kondensaorens egenskaper. Løsning: Plaer Dielekrikum En kondensaor besår i prinsippe av o plaer, avskil med e dielekrikum mellom. Kondensaorens kapasians avhenger av 4 paramre: Plaenes areal, plaenes avsand il hverandre og dielekrikume. Sørre plaeareal gir sørre kapasians. Kapasiansen øker jo nærmere hverandre plaene er. Dielekrikumes isolasjonsevne medvirker på å besemme hvor lang fra hverandre plaene kan være, og således vil bedre isolasjon i dielekrikume kunne gi høyere kapasians c Hva er spesiel med oppbygningen av elekrolykondensaorer? Hva må man passe på ved bruk av disse? Løsning: Elekrolye kondensaorer benyer en kjemisk forbindelse for å bygge opp energien. Reverseres spenningen over disse så uvikler de gass via elekrolyse av forbindelsen. orbindelsen er kapsle for å ikke ørke inn, men dee vil gjøre a ved elekrolyse vil de bygge seg opp e rykk i kondensaoren og de vil il slu eksplodere. d Hvor sor srøm må il, for å få e umiddelbar spenningssprang over en kondensaor? Løsning: En spenningsendring i en kondensaor er avhengig av de blir en ladningsforskjell mellom sidene på den. Med andre ord a de bygger seg opp elekroner på den ene siden og e ilsvarende fravær av elekroner på den andre siden. Dee vil fra usiden forone seg som a de går en srøm igjennom kondensaoren, mens i virkeligheen er de bare de a srømmen inn er like sor som srømmen u. dv i d (= En øyeblikkelig spenningsendring ser vi rask u fra ligningen vil kreve en uendelig srøm. En uendelig srøm kan kun være en eoreisk berakning og en øyeblikkelig spenningsendring kan derfor ikke skje. En eoreisk berakningen ilsier a vi renger en renger en gi mengde ladningsendring, K, i kondensaoren for å gi ønske spenningsendring. or a dee skal skje insanan må disse forflye seg inn på null id, alså uendelig srøm. or de maemaiske nysgjerrige av oss er de en inerresan berakning av produke mellom srøm og id gir ladning. I dee ilfelle skal vi ha en uendelig srøm på null id, hvorav produke av disse skal bli K. i = K = K Dee blir heller spesiel før vi benyer grenseverdier: lim i = K i
6
7 Oppgave 3: a Srømmen i en kondensaor er gi av ligningen dv i = u fra denne, finn e urykk for spenningen. d [] Løsning: Ordner på hver side og inegrerer. Husk på inegreringskonsanen for ubeseme inegral, i dee ilfelle kal v. De blir o løsninger, avhengig om srømmen er en funksjon av iden eller ikke. Med konsan srøm: dv i = d y= v( x= i dy = dx y= v x= i v ( = + v Med srøm som en funksjon av id:
8 y= v x= x= x= ( dv i( = d y= v( x= i x dy = ( dx v ( = ixdx ( + v b En kondensaor blir påryk en spenning v(: inn e urykk for srømmen i(. ( = sin ( ω Løsning: Seer inn i formelen for sammenhengen med v( og i(: dv( i( = d d = sin d = cos ( ω ( ω v [] c Hva er faseforskjellen φ, mellom v( og i(? Tegn kurve for srøm og spenning i samme diagram. (mins perioder Løsning: Vi kan enen gjøre begge om il sinus, eller begge om il cosinus. Sammenhengen er gi av: sin ( x + π = cos ( x cos( x π = sin ( x Vi gjør srømmen om il en funksjon av sinus og får: i( = sin ( ω+ π ase forskjellen er da ganske enkel pi/
9 .8 v( i( ,5,5 id Oppgave 4: - v ( + + v ( - + v R ( - R Kres ** Verdier: =5µ, =µ, R = kω or < har kondensaorene spenningene v (=5V og v (=V a inn v (, v ( og V R ( for. Løsning: Vi slår sammen kondensaorene il en ekvivalen kapasians: eq = + Spenning over dem er: veq ( = v ( v( Merk a v ( har mosa polarie i forhold il v (. Vi har videre a når bryeren lukkes så vil:
10 eq ( = ( v v R U fra Kirchoffs spenningslov. Vi hener inn ligningen fra oppgave. Ersaer V med sarspenningen over eq, τ ersaes med R eq og v c ( er v eq (: R eq = eq ( veq V e Alså blir: R + ( = ( = ( ( ( R eq 5 kω µ 5+ 4ms v v v v e ( = V 5V e = 5e V or å finne spenningen over hver av kondensaorene går vi via srømmen: v ( = i( x dx + v Srømmen finner vi le u fra Ohms lov: ( ( v ( ( R v vr + ir ( = = e R R Seer så inn i ligningen for v c ( og får ligningene for v (: x= v ( ( x v ( R eq v = e dx+ v( R x= x= v ( ( x v R eq = Reqe + v( R x= eq = ( ( ( eq R v v e + v( Seer inn for eq: R + = ( v ( ( v e + v( + Seer så inn allverdier: 5µ µ µ kω 5µ + µ = ( V 5V e + 5V 5µ + µ 4ms = 7 e V ( Samme uregning for v (, men foregne for srømmen må snus:
11 v v v e v + R + ( = ( ( ( + ( 5µ µ ( 5V V 5µ kω 5 + µ µ 4 = ms e + V = 3V ( e + V 5µ + µ 4ms ( 7 3e = + V b Beregn energien lagre i kondensaorene og før bryeren lukkes Løsning: Energien i en kondensaor er gi ved: E = V Energien i de o kondensaorene er da gi ved: Eeq ( = ( v ( + v ( Energien før bryerene lukkes er da gi ved iniialbeingelsene for spenningene: Eeq ( = ( v ( ( ( + v = µ J 4mJ c Beregn energien lagre i kondensaorene og når. Løsning: Seer inn for =. Ren maemaisk er de kanskje bes å gjøre dee via grenseverdier. Eeq ( = ( v ( + v ( ( 5 ( 7 ( 7 3 = e + + e µ J = ( µ J 36mJ dvis a energien lever mosanden svarer il differansen mellom svarene i b og c. Løsning: Effeken lever il mosanden er kvadrae av spenningen del på mosanden: ( ( v ( R pr = R orbruk energi er inegrale av effek med hensyn på id. z= ( ( E = pr z dz z= Effek lever il mosanden må da bli når iden går mo uendelig:
12 ( ( ( v ( v ( z= z= R z= z= z= z= z R eq ( vr ( z Elever = E = p z dz = dz R = R e dz z z= ( ( ( eq R eq = v v e z= eq = ( v( v( Her kan vi see inn all og se a energien lever er lik differansen mellom energien i kondensaorene ved = og = : ( 5 4 µ = V V 4,5mJ Differansen: Elever = ( v ( + v ( ( v ( + v ( = ( µ J = ( 5 ( ( 7 µ J 4,5mJ
13 Oppgave 5 fra eksamen 6: R + v ( - v a + - R R 3 R 4 i b Kres ** Verdier: V a =3V, I b =4AΩ, R =Ω, R =6Ω, R 3 =6Ω, R 4 =3Ω, =, Kresen har så i ro i lang id, og oppnådd seady-sae. Ved iden endres ilsanden på begge bryerne som vis i kresen. Spenningen V ( skal finnes og skisseres. a Hva er spenningen V ( før iden? Løsning: Spenningen over kondensaoren vil være den samme som spenningen over R 3 og R 4 har før iden null. Spenningen vil være sabil og dermed går ingening av srømmen i b gjennom kondensaoren. Da vil de heller ikke ligge noen spenning over R. Spenningen blir da: v( < = vr3( < = vr4( < RR 3 4 = ib R3 + R4 Seer inn verdier: 63 = 4A Ω= 8V 6+ 3 b Tegn opp kresen slik den ser u eer a vensre og høyre bryer har henholdsvis lukke og åpne. Gjør en forenkling av kresen ved å lage en Thèvenin-ekvivalen for kresen se fra kondensaoren. Tegn Thèvenin-ekvivalen se fra kondensaoren. Løsning: Se fra kondensaoren blir Thèvenin-mosanden: RR 6 RT = R3 + = 6Ω+ Ω= Ω R+ R 6+ Og Thèvenin-spenningen blir: R 6 VT = va = 3V = V R + R 6+
14 c inn og skisser spenningen V ( over kondensaoren. Angi kresens idskonsan på idsaksen.
15 Oppgave 6 - frivillig R conv v conv + - R blis blis Kres ** Kres ** viser ilnærme skjema over virkemåe il en kamerablis. Blisen fyrer av ved a bryeren slår over ved iden (når uløseren rykkes. Når blisen har bruk opp ladningen lagre i kondensaoren, kobler bryeren over il D-D omformeren for å få lade opp kondensaoren igjen. D-D omformeren er en kres som ar en lav baerispenning (gjerne 3-9V, og ransformerer de opp il den spenning blisen skal ha. I dee ilfelle 5V D. or både å spare plass i kamerae, og ikke overbelase baerie, er designe på D-D omformeren slik a den har en sor indre mosand R conv. Med sor indre mosand kan ikke D-D omformeren drive blisen direke, og er derfor avhengig av en kondensaor il å lagre energien i. Når energien er lagre i kondensaoren, kan den frigjøres i løpe av millisekund gjennom blisen, og vi får e veldig skap, men korvarig lysglim. D-D omformeren er i denne oppgaven represener ved sin Thèvenin ekvivalen. Den har en spenningskilde, med en mosand i serie. Hva omformeren egenlig besår av er ikke av ineresse i denne oppgaven. Blisen vi har i denne oppgaven bruker en spenning på 5V. I løpe av 5ms har blisen appe bliz for ~99,3% av spenningen. Kondensaoren har en sandardverdi på µ. Oppladning av bliskondensaoren ar sekund (for å nå ~99,3%. a Hvor sor mosand har blislampen R blis? Løsning: Vi seer opp ligningen for en R-kres: v = V e τ ( conv Vi har a 99,3% av spenningen er appe ved iden 5τ. Vi ve a de er de samme som 5ms: 5ms = 5Rblizbliz 3ms = Rbliz µ 3ms Rbliz = =, 4Ω µ b Hvor mye energi lagres i kondensaoren? Løsning: Kondensaorenergien er gi av: E = Vconv Seer inn allene: 5 = V µ =, mj c Hvor sor maks-srøm rekker fra D-D omformeren under oppladning av bliskondensaoren?
16 Løsning: Vi må da førs finne mosanden il omformeren: s = 5Rconvbliz,s = Rconv bliz,s,s Rconv = = =,9k Ω bliz µ Maksimalsrømmen er når kondensaoren ikke er opplade i de hele a og all spenningen legger seg over mosanden: Vconvbliz 5V µ imaks = = =, 8A,s,s d Gi a omformeren har en virkningsgrad på 98%, hvor sor maks-srøm rekkes da fra baerie hvis vi har en baerispenning på 7,V (6 AA baeri, NIMH (ips: samme effek som rekkes fra omformeren, må og gis il omformeren. Husk % av effeken forsvinner under veis e Skisser spenningen og srømmen inn på kondensaoren som funksjon av id. f Hvor lang id ar de før blisen er i sand il å avfyre med ~4% av maksimal effek?
TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)
TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.
DetaljerVed opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser.
4.4 INNE- OG TKOPLING AV EN KONDENSATO 1 4.4 INN- OG TKOPLING AV EN KONDENSATO Ved opp -og uladning av kondensaorer varierer srøm og spenning. De er vanlig å bruke små boksaver for å angi øyeblikksverdier
DetaljerForelesning nr.9 INF 1410
Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for
DetaljerLøsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter.
TFE4110 Digialeknikk med kreseknikk Løsningsforslag il regneøving 5 vårsemeser 2008 Løsningsforslag il regneøving 5 Ulever: irsdag 29. april 2008 Oppgave 1: a) Tegn egningen for en eksklusiv eller por
DetaljerLøsning: V = Ed og C = Q/V. Spenningen ved maksimalt elektrisk felt er
Gruppeøving 6 Elekrisie og magneisme Flervalgsoppgaver 1. Dersom en kondensaor har en kapasians på på 7.28 µf, hvor mye må plaene lades opp for a poensialdifferansen mellom plaene skal bli 25.0 V?. 15
Detaljert [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet
FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,
DetaljerMatematikk 1P-Y. Teknikk og industriell produksjon
Maemaikk 1P-Y Teknikk og indusriell produksjon «Å kunne regne i eknikk og indusriell produksjon innebærer å forea innsillinger på maskiner og å uføre beregning av rykk og emperaur og blandingsforhold i
DetaljerEnkle kretser med kapasitans og spole- bruk av datalogging.
Laboraorieøvelse i FY3-Elekrisie og magneisme år 7 Fysisk Insiu, NTNU Enkle kreser med kapasians og spole- bruk av daalogging. Laboraorieoppgaver Oppgave -Spenning i kres a: Mål inngangsspenningen og spenningsfalle
DetaljerFYS3220 Oppgaver om Fourieranalyse
FYS3220 Oppgaver om Fourieranalyse Innhold Enkle fourieranalyse oppgaver... 1 1) egn frekvensspeker for e sammensa sinus signal... 1 2) Fra a n og b n il c n og θ... 2 Fourier serieanalyse... 2 3) Analyse
DetaljerEksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
Institutt for elektronikk og telekommunikasjon LØSNINGSFORSLAG KRETSDEL Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Faglig kontakt under eksamen: Ragnar Hergum - tlf. 73 59 20 23 / 920 87
DetaljerTFE4101 Vår Løsningsforslag Øving 2. 1 Strøm- og spenningsdeling. (5 poeng)
TFE4101 Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon Løsningsforslag Øving 2 1 Strøm- og spenningsdeling. (5 poeng) Sett opp formelen for strømdeling
DetaljerEksamensoppgave i TFY4190 Instrumentering
Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao:. juni 26 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv
DetaljerH Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning
H Ø G S K O L E N I B E R G E N Avdeling for lærerudanning Eksamensoppgave Ny/usa eksamen høs 004 Eksamensdao: 07--004 Fag: NAT0-FY Naur og miljøfag 60sp. ALN modul fysikk 5 sp. Klasse/gruppe: UTS/NY/ALN
DetaljerMAT1030 Forelesning 26
MAT030 Forelesning 26 Trær Roger Anonsen - 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) Forelesning 26 Li repeisjon Prims algorime finne de minse uspennende ree i en veke graf en grådig algorime i den forsand
DetaljerForelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen
MAT1030 Diskre Maemaikk Forelesning 26: Trær Roger Anonsen Insiu for informaikk, Universiee i Oslo Forelesning 26 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) MAT1030 Diskre Maemaikk 5. mai 2009 2 Li repeisjon
DetaljerUKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.
UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent
DetaljerHarald Bjørnestad: Variasjonsregning en enkel innføring.
Haral Bjørnesa: Variasjonsregning en enkel innføring. Tiligere har vi løs oppgaven me å finne eksremalveriene ( maks./min. veriene) av en gi funksjon f () når enne funksjonen oppfyller beseme krav. Vi
Detaljera) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
Detaljer1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1
. Berak følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < T = 0 + Y, 0 < < Hvor Y er BNP, C er priva konsum, I er privae realinveseringer, G er offenlig kjøp av varer og jeneser, T er
DetaljerTFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18
TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18 1) Panamagikkoffisiel over frausgallons il lier den30. apriliår. Bensinprisenvardaca4USdollar prus gallon. Hva ilsvarer dee i kroner prlier, når 1
DetaljerEksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG
Side 1 av 17 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44
DetaljerUKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s
UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan
DetaljerKondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C = 1volt
Kondensator - apacitor Lindem jan.. 008 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi
DetaljerKondensator. Symbol. Lindem 22. jan. 2012
UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator
DetaljerEksamensoppgave i TFY4190 Instrumentering
Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao: 6. mai 27 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler:
DetaljerEksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG
Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland
DetaljerINF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS
INF34 Del Teori og oppgaver Grunnleggende Digial CMOS INF34 Grunnleggende digial CMOS Transisor som bryer CMOS sår for Complemenary Meal On Semiconducor. I CMOS eknologi er de o komplemenære ransisorer,
Detaljertiden - t er i teller og nevner og kan derfor strykes mot herandre og gi formelen:
.5 ELEKTISK ABEID OG ELEKTISK EFFEKT 1.5 ELEKTISK ABEID OG ELEKTISK EFFEKT ABEID Ved å kombinere idligere kjene formler som..1,.1.1,.3.1 får vi en formel for arbeid som er prakisk å bruke i elekro: Formlene
DetaljerTillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x
UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-RØNDELAG Aving for eknologi Målform: Bokmål Eksamensdao: 3..4 Varighe/eksamensid: 9-5 Emnekode: Emnenavn: Klasse(r): ELE33 Indusriell auomaisering ELAH Sudiepoeng: Faglærer(e): (navn og
DetaljerEksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG
Side av 7 NORGES TEKNISKNATURITENSKAPLIGE UNIERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 7 59 2 2 / 92 87 72 Bjørn B. Larsen 7 59 44 9 Eksamen i emne
DetaljerEKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK
Side 1 av 13 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333
DetaljerINF5490 RF MEMS. L10: RF MEMS resonatorer II. V2008, Oddvar Søråsen Institutt for informatikk, UiO
INF549 RF MEMS L: RF MEMS resonaorer II 8, Oddvar Søråsen Insiu for informaikk, UiO Dagens forelesning Laeral vibrerende resonaor: Kam-resonaoren irkemåe Dealer modellering A phasor -modellering B modellering
DetaljerPunktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
Detaljer~/stat230/teori/bonus08.tex TN. V2008 Introduksjon til bonus og overskudd
~/sa23/eori/bonus8.ex TN STAT 23 V28 Inrodukson il bonus og overskudd Bankinnskudd Ana a vi ønsker å see e viss beløp y i banken ved id = for å ha y n ved id = n. Med en reneinensie δ må vi see inn y =
DetaljerOppgave 1 (30%) SVAR: R_ekv = 14*R/15 0,93 R L_ekv = 28*L/15 1,87 L
Oppgave 1 (3%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen på denne. Reduser
DetaljerGo to and use the code Hva var viktig i siste forelesning? FYS-MEK
Go o www.meni.com and use he code 65 37 7 Ha ar ikig i sise forelesning? FYS-MEK 111.1.18 1 FYS-MEK 111.1.18 Beegelse i én dimensjon ().1.18 Ukesoppgaer og oblig 1 er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/18/maeriale/maeriale18.hml
DetaljerBevegelse i én dimensjon (2)
Beegelse i én dimensjon () 5..6 Daa-lab i dag: Hjelp med Pyhon / Malab insallasjon Førse skri Oblig er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek/6/maeriale/maeriale6.hml Innleeringsfris: Tirsdag,
DetaljerThéveninmotstanden finnes ved å måle kortslutningsstrømmen (se figuren under).
Oppgave 1 (10 %) a) Kirchoffs spenningslov i node 1 gir følgende ligning 72 12 24 30 hvor to av strømmene er definert ut av noden, mens strømmen fra strømkilden går inn i noden. 2 72 720 Løser med hensyn
DetaljerTillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler
UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee
DetaljerBeskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering
Beskjeder MAT1030 Diskre maemaikk Forelesning 25: Trær Dag Normann Maemaisk Insiu, Universiee i Oslo 23. april 2008 Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4,
DetaljerYF kapittel 3 Formler Løsninger til oppgavene i læreboka
YF kapiel 3 Formler Løsninger il oppgavene i læreoka Oppgave 301 a E 0,15 l 0,15 50 375 Den årlige energiproduksjonen er 375 kwh. E 0,15 l 0,15 70 735 Den årlige energiproduksjonen er 735 kwh. Oppgave
DetaljerLøsningsforslag øving 6, ST1301
Løsningsforslag øving 6, ST1301 Oppgave 1 Løse Euler-Loka ligningen ved ruk av Newon's meode. Ana a vi har en organisme med maksimal alder lik n år. Vi ser kun på hunnene i populasjonen. La m i være anall
DetaljerForelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering
Forelesning 25 Trær Dag Normann - 23. april 2008 Beskjeder Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4, blir avleregning, slik a sudenene ikke kan belage seg på
Detaljer, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.
eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m
DetaljerLøsningsforslag til øving 4
Institutt for fysikk, NTNU FY3 Elektrisitet og magnetisme II Høst 25 Løsningsforslag til øving 4 Veiledning mandag 9. og onsdag 2. september Likeretter a) Strømmen som leveres av spenningskilden må gå
Detaljerav Erik Bédos, Matematisk Institutt, UiO, 25. mai 2007.
Om den diskree Fourier ransformen av Erik Bédos, Maemaisk Insiu, UiO,. mai 7. Vi lar H beegne indreproduk romme som besår av alle koninuerlige komplekse funksjoner definer på inervalle [, π] med indreproduke
DetaljerMot3.: Støy i forsterkere med tilbakekobling
Mo3.: Søy i forserkere med ilbakekoblig Hiil har vi diskuer forserkere ue ilbakekoblig ("ope-loop"). Nå vil vi diskuere virkige av ilbakekoblig. Geerel beyes ilbakekoblig for å... edre forserkig, edre
Detaljer1 Trigonometriske Funksjoner Vekt: 1. 2 Trigonometriske Funksjoner Vekt: 1
OPPGAVER TIL FORELESNINGSUKE NUMMER Ukeoppgavene skal leveres som selvsendige arbeider. De forvenes a alle har sa seg inn i insiues krav il innlevere oppgaver: Norsk versjon: hp://www.ifi.uio.no/sudinf/skjemaer/erklaring.pdf
DetaljerTFE4101 Vår Løsningsforslag Øving 1. 1 Ohms lov. Serie- og parallellkobling. (35 poeng)
TFE4101 Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon Løsningsforslag Øving 1 1 Ohms lov. Serie- og parallellkobling. (35 poeng) a) Hvilke av påstandene
DetaljerForelesning nr.4 IN 1080 Mekatronikk. Vekselstrøm Kondensatorer
Forelesning nr.4 IN 1080 Mekatronikk Vekselstrøm Kondensatorer Dagens temaer Mer om Thévenins og Nortons teoremer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser
DetaljerLABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve
LABORATORIERAPPORT RL- og RC-kretser AV Kristian Garberg Skjerve Sammendrag Oppgavens hensikt er å studere pulsrespons for RL- og RC-kretser, samt studere tidskonstanten, τ, i RC- og RL-kretser. Det er
DetaljerLøsningsforslag eksamen TFY des 2013
Løsningsforslag eksamen TFY416 18 des 1 Ins for fysikk, NTNU Oppgae 1 a) Toal mekanisk energi er bear når sylinderne ruller ned skråplane fordi de kun er konseraie krefer som irker. Den oale mekaniske
DetaljerElektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE002-3H HiST-FT-EDT Øving 4; løysing Oppgave R R 3 R 6 E R 2 R 5 E 2 R 4 Figuren over viser et likestrømsnettverk med ideelle spenningskilder og resistanser. Verdiene er: E = 40,0
DetaljerFysikkolympiaden Norsk finale 2017
Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig konak under eksamen: Jon Andreas Søvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK
DetaljerBevegelse i én dimensjon
Bevegelse i én dimensjon 15.1.214 FYS-MEK 111 15.1.214 1 Malab: mulig å bruke på egen PC med UiO lisens hjelp med insallasjon på daa-verksed eller i forkurs Forsa ledige plasser i forkurs: Fredag kl.1-13
DetaljerEksamen R2, Hausten 2009
Eksamen R, Hausen 009 Del Tid: imar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med cenimeermål og vinkelmålar er illane. Oppgåve a) Deriver funksjonen f x x sinx Vi bruker produkregelen for derivasjon
DetaljerBevegelse i én dimensjon
Beegelse i én dimensjon 17.1.213 Forelesningsplan: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/13/plan213.hm FYS-MEK 111 17.1.213 1 Mekanikk Kinemaikk Dynamikk læren om beegelser uen å a hensyn il
DetaljerInstitutt for elektronikk og telekommunikasjon. Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 24. mai Tid. Kl.
Side av 2 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Eksamen
DetaljerØving 1: Bevegelse. Vektorer. Enheter.
Lørdagsverksed i fysikk. Insiu for fysikk, NTNU. Høsen 007. Veiledning: 8. sepember kl :5 5:00. Øving : evegelse. Vekorer. Enheer. Oppgave a) Per løper 800 m på minuer og 40 sekunder. Hvor sor gjennomsnisfar
DetaljerKrefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013
Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger
DetaljerLØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155
DetaljerRepetisjon 20.05.2015
Repeisjon 0.05.015 FYS-MEK 1110 0.05.015 1 Eksamen: Onsdag, 3. Juni, 14:30 18:30 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser
DetaljerKondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt
Kondensator - apacitor Lindem. mai 00 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi si
DetaljerBevegelse i én dimensjon
Beegelse i én dimensjon 21.1.215 FYS-MEK 111 21.1.215 1 Lærebok kan henes på ekspedisjonskonore. Lenke il bealingsside: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/15/bok.hml FYS-MEK 111 21.1.215
DetaljerElektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE2-A 3H HiST-AFT-EDT Øving ; løysing Oppgave En ladning på 65 C passerer gjennom en leder i løpet av 5, s. Hvor stor blir strømmen? Strømmen er gitt ved dermed blir Q t dq. Om vi forutsetter
DetaljerFasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1
Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar
DetaljerTFE4100 Kretsteknikk Kompendium. Eirik Refsdal <eirikref@pvv.ntnu.no>
TFE4100 Kretsteknikk Kompendium Eirik Refsdal 16. august 2005 2 INNHOLD Innhold 1 Introduksjon til elektriske kretser 4 1.1 Strøm................................ 4 1.2 Spenning..............................
DetaljerRepetisjon Eksamensverksted i dag, kl , Entropia
Repeisjon 30.05.016 Eksamensverksed i dag, kl. 1 16, Enropia Emneevaluering: dialogmøe nese uke (eer eksamen) a konak med meg hvis du vil være med vikig for oss å få ilbakemelding FYS-MEK 1110 30.05.016
DetaljerNewtons lover i to og tre dimensjoner 09.02.2015
Newons loer i o og re dimensjoner 9..5 FYS-MEK 3..4 Innleering Oblig : på grunn a forsinkelse med deilry er frisen usa il onsdag,.., kl. Innleering Oblig : fris: mandag, 6.., kl. Mideiseksamen: 6. mars
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer 1 Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondesator Oppbygging,
DetaljerLøsningsforslag til ukeoppgave 10
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 10 Oppgave 17.15 Tegn figur og bruk Kirchhoffs 1. lov for å finne strømmene. Vi begynner med I 3 : Mot forgreningspunktet kommer det to strømmer,
DetaljerKontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
DetaljerNewtons lover i to og tre dimensjoner
Newons loer i o og re dimensjoner 8..16 Innleeringsfris oblig 1: Tirsdag, 9.Feb. kl.18 Innleering kun ia: hps://deilry.ifi.uio.no/ Fellesinnleeringer (N 3): Alle må bidra il besarelsen i sin helhe. Definer
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
DetaljerForelesning nr.7 INF 1410. Kondensatorer og spoler
Forelesning nr.7 IF 4 Kondensatorer og spoler Oversikt dagens temaer Funksjonell virkemåte til kondensatorer og spoler Konstruksjon Modeller og fysisk virkemåte for kondensatorer og spoler Analyse av kretser
DetaljerPotensiell energi Bevegelsesmengde og kollisjoner
Poensiell energi eegelsesengde og kollisjoner 9.3.5 FYS-MEK 9.3.5 Energidiagraer energibearing: E K x U x K x U x Ux du dx F du dx likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell
Detaljer(x 0,y 0,0) α. Oppgave 3. Ved tiden t har vi følgende situasjon: α = ω1t β = ω2t
Oppgave 3 Ve ien har vi følgene siuasjon: oer vinkel om aksen parallell me -aksen: oer vinkel om aksen l: β l,, Punkes koorinaer ve ien kan besemmes ve hjelp av følgene serie av basisransformasjoner. ransformasjonene
DetaljerEksamensoppgave i TFY4190 Instrumentering
Iniu for fyikk Ekamenoppgave i TFY49 Inrumenering Faglig konak under ekamen: Seinar Raaen Tlf.: 482 96 758 Ekamendao: 3. juni 23 Ekamenid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv
DetaljerLF til KRETSDELEN AV Eksamen i TFE4101 Kretsteknikk og digitalteknikk
Institutt for elektronikk og telekommunikasjon LF til KRETSDELEN AV Eksamen i TFE4101 Kretsteknikk og digitalteknikk Faglig kontakt under eksamen: Ragnar Hergum tlf. 73 59 20 23 / 920 87 172 (oppgave 1,
DetaljerSystem 2000 HLK-Relais-Einsatz Bruksanvisning
Sysem 2000 HLK-Relais-Einsaz Sysem 2000 HLK-Relais-Einsaz Ar. Nr.: 0303 00 Innholdsforegnelse 1. rmasjon om farer 2 2. Funksjonsprinsipp 2 3. onasje 3 4. Elekrisk ilkopling 3 4.1 Korsluningsvern 3 4.2
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
DetaljerTekniske data Nominell strøm In, hovedkontakter
konakorer Beskrivelse modulære konakorer er førs og frems uvikle for lys og varmesyring, men kan også benyes for småmoordrif relaer il varmesyring. Konakorene syres ved hjelp av e fas signal. Rød fane
DetaljerForelesning nr.5 IN 1080 Mekatronikk. RC-kretser
Forelesning nr.5 IN 080 Mekatronikk R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Ulike typer respons R-kretser Impedans og fasevinkler Serielle R-kretser
DetaljerKontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Mandag 14. august Tid. Kl LØSNINGSFORSLAG
Side av 8 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 / 92
DetaljerEKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator
DetaljerLøsningsforslag for regneøving 1
Løsningsforslag for regneøving TFE40 Digitalteknikk med kretsteknikk Løsningsforslag til regneøving vårsemester 008 tlevert: fredag 5. februar 008 Forord Løsningsforslaget presenterer en grundig gjennomgang
DetaljerMatematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon
DetaljerForelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser
Forelesning nr.5 INF 1411 Elektroniske systemer R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og fasevinkler Serielle
DetaljerForelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov
Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
DetaljerMandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;
DetaljerFYS1120 Elektromagnetisme H10 Midtveiseksamen
FYS1120 Elektromagnetisme H10 Midtveiseksamen Oppgave 1 a) Vi ser i denne oppgave på elektroner som akselereres gjennom et elektrisk potensial slik at de oppnår en hastighet 1.410. Som vist på figuren
DetaljerObligatorisk oppgave ECON 1310 høsten 2014
Obligaorisk oppgave EON 30 høsen 204 Ved sensuren vil oppgave elle 20 prosen, oppgave 2 elle 50 prosen, og oppgave 3 elle 30 prosen. For å få godkjen må besvarelsen i hver fall: gi mins re nesen rikige
DetaljerLøsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011
Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Oppgave 1. a) Vi velger her, og i resten av oppgaven, positiv retning oppover. Dermed gir energibevaring m 1 gh = 1 2 m 1v 2 0 v 0 = 2gh. Rett
DetaljerE K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
HØGSKOLEN I GDER Grisad E K S M E N S O P P G V E : FG: FYS05 Fysikk LÆRER: Per Henrik Hogsad Klasser: Dao:.09.08 Eksaensid, fra-il: 09.00 4.00 Eksaensoppgaen besår a følgende nall sider: 5 inkl forside
DetaljerFasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1
Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar
DetaljerLøsningsforslag for obligatorisk øving 1
TFY4185 Måleteknikk Institutt for fysikk Løsningsforslag for obligatorisk øving 1 Oppgave 1 a Vi starter med å angi strømmen i alle grener For Wheatstone-brua trenger vi 6 ukjente strømmer I 1 I 6, som
Detaljer