Krefter og betinget bevegelser Arbeid og kinetisk energi
|
|
- Odd Carlsen
- 9 år siden
- Visninger:
Transkript
1 Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3
2 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen analyiske beregninger du må også kommenere og inerpreere resulaene: en plo alene er erdiløs YS-MEK 9..3
3 riksjon empirisk lo for saisk friksjon: f f ma N s s : saisk friksjonskoeffisien empirisk lo for dynamisk friksjon: d N d d : dynamisk friksjonskoeffisien kraf irker mosa beegelsesrening d s YS-MEK
4 Eksempel: En bil kjører med konsan far gjennom en sing med kureradius. ingen beegelse i z rening: N mg ma N mg z bilen kjører med konsan far i y rening: f y D ma y riksjon fra eien f y er krafen som akselererer bilen fremoer i y rening. or å holde faren konsan må fremdriende friksjon kompensere lufmosanden D. D for å a singen renger bilen senripealakselerasjonen: a riksjon fra eien f er krafen som akselererer bilen rund singen: f ma m beingelse for a bilen ikke sklir: f m N s mg s sg YS-MEK
5 Eksempel: Jeg snurrer en ball som er fese på en snur a lengde L i e horisonal plan med inkelhasighe. Ha er inkelen med erikalen? i ser bor fra lufmosanden konakkraf: snordrage T langrekkende kraf: graiasjon W T y snordrage: T T y T sin( ) T cos( ) y rening: ingen beegelse: a y T cos() mg T NL: T T sin( ) y Ty W T cos( ) ma mg ma y rening renger senripealakselerasjon for å holde sirkelbane: a ( ) T sin( ) m YS-MEK
6 Eksempel: Jeg snurrer en ball som er fese på en snur a lengde L i e horisonal plan med inkelhasighe. Ha er inkelen med erikalen? y rening: T cos() mg rening: T sin( ) m Lsin() rening: T sin( ) mlsin( ) y rening: T ml ml cos( ) mg cos( ) 9 cos( ) g L cos( ) g L g L YS-MEK
7 Jeg singer en ball i en snor i en erikal bane. I de nederse punke på banen er snordrage:. Sørre en yngden il ballen. Like sor som yngden il ballen 3. Mindre enn yngden il ballen, men sørre enn null 4. Null YS-MEK
8 Jeg singer en ball i en snor i en erikal sirkelbane med den minse inkelhasigheen den kan ha for å holde seg i en sirkelbane. I de øerse punke på banen er snordrage:. Sørre en yngden il ballen. Like sor som yngden il ballen 3. Mindre enn yngden il ballen, men sørre enn null 4. Null YS-MEK
9 Jeg singer en ball i en snor i en erikal bane. I de nederse punke på banen er snordrage:. Sørre en yngden il ballen. Like sor som yngden il ballen 3. Mindre enn yngden il ballen, men sørre enn null 4. Null Snordrage T: kraf fra snoren på ballen Graiasjon G NL i y rening: T G may senripealakselerasjon mo sirkelens senrum: a y T mg m T mg m Snordrage er sørre en yngden il ballen. YS-MEK
10 Jeg singer en ball i en snor i en erikal sirkelbane med den minse inkelhasigheen den kan ha for å holde seg i en sirkelbane. I de øerse punke på banen er snordrage:. Sørre en yngden il ballen. Like sor som yngden il ballen 3. Mindre enn yngden il ballen, men sørre enn null 4. Null NL i y rening: T G may senripealakselerasjon mo sirkelens senrum: a y T mg m Jo sørre far jo sørre snordrage. Snoren kan bare dra, ikke dye: T> mins mulig far T= T m mg g g YS-MEK 9..3
11 en anlig problemsilling: finn hasighe som funksjon a posisjon. i kan bruke den anlige meoden: idenifiser krefene Newons andre lo akselerasjon inegrasjon hasighe () inegrasjon posisjon () finn id for å komme il posisjon bruk iden for å finne ( ) = ( ) Denne meoden il allid fungere. De kan ære anskelig eller umulig å gjøre analyisk bruk numeriske meoder Vi får hasighe () og posisjon () for alle ider. I ugangspunk ar i ikke ineresser i iden, bare i hasighe for en iss posisjon. Vi prøer å finne en enklere og mer direke meode. YS-MEK 9..3
12 Eksempel: erikal kas i ser bor fra lufmosand enese kraf er graiasjon mg ma a g iniialbeingelser: finn id for å komme il høyde h: g y() inegrasjon: ( ) () ad g () h g g y( ) y() ( ) d ( g) d g g h g i finner hasigheen: ( ) g gh gh o løsninger: på eien opp og ned m m mgh energi YS-MEK 9..3
13 Newons andre lo i en dimensjon: ne ma d m d ne d m d m d d ne d d d m d m ( ) m ( ) ne W, (,, ) d arbeid ufør a krafen mellom id og K m kineisk energi arbeid-energi eorem: W, K K arbeid er ilfør mekanisk energi. YS-MEK
14 i renger forsa hasigheen () for å beregne arbeide W, ne (,, ) d his krafen ahenger bare a ne ne posisjonen og ikke a hasigheen: (,, ) ( ( )) eksempler: graiasjon fjærkraf W, ne ( ) d ne ( ) d d d ( ) ( ) ne ( ) d arbeid-energi eorem: ne ( ) d m m m i måler arbeid i Joule: J Nm kg s YS-MEK
15 arbeid-energi eorem: W, K K alernai formulering for Newons andre lo bare gyldig i inerialsysemer arbeid ufør a neokrafen ne j j summe a alle krefene W ne ne d j j d j j d W j j for å bruke arbeid-energi eoreme må i a hensyn il alle krefene ne his krafen ahenger a hasighe: (,, ) d K K ne his krafen er bare posisjonsahengig: ( ) d K K YS-MEK
16 konsan kraf : W d d d ) ( eksempel: erikal kas uen lufmosand h y m m y mg W y y y dy mg h dy mgh arbeid-energi eorem: W, K K arbeid er negai kineisk energi blir mindre mgh m m his massen faller ned igjen: W mg dy mg( h) mgh h arbeid er posii kineisk energi øker på høyde null: kineisk energi er de samme som i ugangspunk K m massen beeger seg i mosa rening arbeide ufør a graiasjonskrafen på massen for hele beegelsen er null YS-MEK
17 En ekløfer løfer en ek fra gule. Mens han løfer den:. gjør han posii arbeid på eken, og eken gjør posii arbeid på ham.. gjør han negai arbeid på eken, og eken gjør posii arbeid på ham. 3. gjør han posii arbeid på eken, og eken gjør negai arbeid på ham. 4. gjør han negai arbeid på eken, og eken gjør negai arbeid på ham. arbeide ufør a ekløferen på eken: arbeide il krafen fra ekløferen på eken kraf og forflyning har samme foregn arbeid er posii arbeide ufør a eken på ekløferen: arbeide il krafen fra eken på ekløferen (mokraf) kraf og forflyningen har mosa foregn arbeid er negai YS-MEK
18 Du beeger en masse m en meer il høyre og ilbake igjen en meer il ensre. riksjonskrafen er =N. or den oale beegelsen gjør friksjonskrafen:. posii arbeid på klossen.. negai arbeid på klossen. 3. ingen arbeid på klossen. riksjon irker allid i mosa beegelsesrening arbeide er negai for beegelsen il høyre arbeide er også negai for beegelsen il ensre riksjonskraf er hasighesahengig: N klossen aper energi når den beeger seg syseme gjeninner ikke energien ed å inerere beegelsen Verikal kas med lufmosand? YS-MEK
Arbeid og kinetisk energi
Arbeid og kineisk energi 3..7 YS-MEK 3..7 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )
DetaljerArbeid og kinetisk energi
Arbeid og kineisk energi 5..5 YS-MEK 5..5 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )
DetaljerArbeid og kinetisk energi
Arbeid og kineisk energi 6..4 oblig 5: mideis hjemmeeksamen forusening for å a slueksamen krees indiiduell innleering blir lag u mandag 3. mars innleeringsfris mandag. mars Samale mellom sudener og lærer
DetaljerNewtons lover i to og tre dimensjoner 09.02.2015
Newons loer i o og re dimensjoner 9..5 FYS-MEK 3..4 Innleering Oblig : på grunn a forsinkelse med deilry er frisen usa il onsdag,.., kl. Innleering Oblig : fris: mandag, 6.., kl. Mideiseksamen: 6. mars
DetaljerBetinget bevegelse neste uke: ingen forelesning (17. og 19.2) ingen data verksted (19. og 21.2) gruppetimer som vanlig
Beinge beegelse 0.0.04 nese ke: ingen forelesning (7. og 9.) ingen daa erksed (9. og.) grppeimer som anlig Mandag, 7.. innleering oblig 3 Mandag, 4.. ingen innleering sjanse for repeisjon FYS-MEK 0 0.0.04
DetaljerBetinget bevegelse
Beinge beegelse 15.0.016 FYS-MEK 1110 15.0.016 1 epeisjon: ball som spreer lfmosand: F D = D () normalkraf: = +k y j 0 y y > graiasjon: G = mgj nmerisk beregning: hensiksmessig alg a idsseg = 0.001 s =
DetaljerBetinget bevegelse
Beinge beegelse 13.0.017 FYS-MEK 1110 13.0.017 1 epeisjon: ball som spreer lfmosand: F D = D () normalkraf: = +k y j 0 y y > graiasjon: G = mgj nmerisk beregning: hensiksmessig alg a idsseg = 0.001 s =
DetaljerArbeid og kinetisk energi
Arbeid og kiisk energi..8 FYS-MEK..8 hp://pingo.upb.de/ access number: 63473 To isbåer, en med masse m og en med masse m, kjører på en friksjonsfri, horisonal, frossen innsjø. Begge båene sarer fra ro,
DetaljerNewtons lover i to og tre dimensjoner
Newons loer i o og re dimensjoner 3..4 Innleering: på papir på ekspedisjonskonore: bruk forsiden elekronisk på froner én pdf fil nan på førse side egenerklæring med signaur innleeringsboks på ekspedisjon
DetaljerArbeid og potensiell energi
Areid og poensiell energi.3.5 YS-ME.3.5 Areid-energi eorem areid:, ne d kineisk energi,, ne d ne dr d d C ne dr kureinegral langs en kure C sar i r, slu i r uˆ N uˆ N uˆ uˆ N uˆ N uˆ d d ds d d C ds mange
DetaljerNewtons lover i to og tre dimensjoner
Newons loer i o og re dimensjoner 8..16 Innleeringsfris oblig 1: Tirsdag, 9.Feb. kl.18 Innleering kun ia: hps://deilry.ifi.uio.no/ Fellesinnleeringer (N 3): Alle må bidra il besarelsen i sin helhe. Definer
DetaljerBevegelse i én dimensjon
Beegelse i én dimensjon 21.1.215 FYS-MEK 111 21.1.215 1 Lærebok kan henes på ekspedisjonskonore. Lenke il bealingsside: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/15/bok.hml FYS-MEK 111 21.1.215
DetaljerBevegelse i én dimensjon (2)
Beegelse i én dimensjon () 5..6 Daa-lab i dag: Hjelp med Pyhon / Malab insallasjon Førse skri Oblig er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek/6/maeriale/maeriale6.hml Innleeringsfris: Tirsdag,
DetaljerBevegelse i én dimensjon
Beegelse i én dimensjon 17.1.213 Forelesningsplan: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/13/plan213.hm FYS-MEK 111 17.1.213 1 Mekanikk Kinemaikk Dynamikk læren om beegelser uen å a hensyn il
DetaljerGo to and use the code Hva var viktig i siste forelesning? FYS-MEK
Go o www.meni.com and use he code 65 37 7 Ha ar ikig i sise forelesning? FYS-MEK 111.1.18 1 FYS-MEK 111.1.18 Beegelse i én dimensjon ().1.18 Ukesoppgaer og oblig 1 er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/18/maeriale/maeriale18.hml
DetaljerArbeid og kinetisk energi
Arbei og kineik energi 4..4 Samale mellom uener og lærer i y-mek : orag, 7.eb., kl. 4:, rom Ø443 YS-MEK 4..4 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N :
DetaljerArbeid og potensiell energi
Areid og poensiell energi 7..7 YS-MEK 7..7 Areid-energi eorem areid:, v ne d kineisk energi K, K K, ne v d ne dr d d C ne dr kurveinegral langs en kurve C sar i r, slu i r uˆ N uˆ N v vuˆ v uˆ N uˆ N vuˆ
DetaljerArbeid og potensiell energi
Areid og poensiell energi 3.3.4 olig 5: midveis hjemmeeksamen forusening for å a slueksamen kreves individuell innlevering lir lag u mandag 3. mars innleveringsfris mandag. mars YS-ME 3.3.4 Areid-energi
DetaljerE K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
HØGSKOLEN I GDER Grisad E K S M E N S O P P G V E : FG: FYS05 Fysikk LÆRER: Per Henrik Hogsad Klasser: Dao:.09.08 Eksaensid, fra-il: 09.00 4.00 Eksaensoppgaen besår a følgende nall sider: 5 inkl forside
DetaljerArbeid og kinetisk energi
Arbeid og kiik energi..3 YS-MEK..3 arbeid-energi eorem:, K K arbeid er ilfør mekanik energi. kiik energi K m arbeid generel:, (,, ) arbeid hi krafen er bare poijonahengig: d, ( ) d ( ) d alernai formulering
DetaljerPotensiell energi Bevegelsesmengde og kollisjoner
Poensiell energi eegelsesengde og kollisjoner.3.4 YS-MEK.3.4 Energidiagraer energibearing: E K K d d d d likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell energi usabil likeekspunk
DetaljerPotensiell energi Bevegelsesmengde og kollisjoner
Poensiell energi eegelsesengde og kollisjoner 9.3.5 FYS-MEK 9.3.5 Energidiagraer energibearing: E K x U x K x U x Ux du dx F du dx likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell
DetaljerPotensiell energi Bevegelsesmengde og kollisjoner
Poensiell energi eegelsesengde og kollisjoner 6.3.27 YS- MEK 6.3.27 Energidiagraer energibearing: E K U K U U du/d..5 du d du d likeekspunk U/U -.5 -. -.5 -.2 iniu i poensiell energi sabil likeekspunk
DetaljerRepetisjon 20.05.2015
Repeisjon 0.05.015 FYS-MEK 1110 0.05.015 1 Eksamen: Onsdag, 3. Juni, 14:30 18:30 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser
DetaljerArbeid og potensiell energi
Areid og poensiell energi 6..3 YS-ME 6..3 areid:, d ne, ne dr areid-energi eorem, ineis energi: areid er ilfør meanis energi ureinegral langs en ure C sar i r slu i r os: generell ahenger areid a eien!
DetaljerArbeid og kinetisk energi
Arbei og kineik energi 9..6 YS-MEK 9..6 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N : ynamik rikjonkoeiien kra irker moa beegelerening: N YS-MEK 9..6 hp://pingo.upb.e/
DetaljerBevegelse i én dimensjon
Bevegelse i én dimensjon 15.1.214 FYS-MEK 111 15.1.214 1 Malab: mulig å bruke på egen PC med UiO lisens hjelp med insallasjon på daa-verksed eller i forkurs Forsa ledige plasser i forkurs: Fredag kl.1-13
DetaljerRepetisjon Eksamensverksted i dag, kl , Entropia
Repeisjon 30.05.016 Eksamensverksed i dag, kl. 1 16, Enropia Emneevaluering: dialogmøe nese uke (eer eksamen) a konak med meg hvis du vil være med vikig for oss å få ilbakemelding FYS-MEK 1110 30.05.016
DetaljerBevegelsesmengde og kollisjoner
eegelsesengde og kollisjoner.3.4 FYS-MEK.3.4 Konseraie krefer poensiell energi: U( r U( x, y, z konserai kraf F U y arbeid uahengig a eien x F y D C x ikke-konserai kraf FYS-MEK.3.4 Energibearing energi
DetaljerRepetisjon
Repeisjon 19.05.014 FYS-MEK 1110 19.05.014 1 Eksamen: Tirsdag, 3. Jni, 9:00 13:00 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser
DetaljerBevegelse i én dimensjon (2)
Beegelse én dmensjon 6..5 Gruppeundersnng begynner denne uken. Oppgaer fnner du på semesersden: hp://www.uo.no/suder/emner/mana/fys/fys-mek/5/maerale/maerale5.hml FYS-MEK 6..5 Beegelseslgnnger V sarer
Detaljer, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.
eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m
DetaljerØving 1: Bevegelse. Vektorer. Enheter.
Lørdagsverksed i fysikk. Insiu for fysikk, NTNU. Høsen 007. Veiledning: 8. sepember kl :5 5:00. Øving : evegelse. Vekorer. Enheer. Oppgave a) Per løper 800 m på minuer og 40 sekunder. Hvor sor gjennomsnisfar
DetaljerArbeid og kinetisk energi
Arbei og kineik energi 9..8 YS-MEK 9..8 rikjon empirik lov for aik frikjon: f < f, ma µ N µ : aik frikjonkoeffiien empirik lov for ynamik frikjon: f µ N µ : ynamik frikjonkoeffiien µ < µ kraf virker moa
DetaljerBevegelse i én dimensjon
Beegelse én dmensjon 16.1.218 FYS-MEK 111 16.1.218 1 Gruppeundersnng begynner rsdag, 23.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/18/plan218.hm Oppgaer og forelesnngene legges u på semesersden.
DetaljerLøsningsforslag eksamen TFY des 2013
Løsningsforslag eksamen TFY416 18 des 1 Ins for fysikk, NTNU Oppgae 1 a) Toal mekanisk energi er bear når sylinderne ruller ned skråplane fordi de kun er konseraie krefer som irker. Den oale mekaniske
DetaljerBevegelse i én dimensjon
Beegelse én dmensjon 19.1.217 FYS-MEK 111 19.1.217 1 Gruppeundersnng begynner onsdag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/17/plan217.hm Oppgaer og forelesnngene legges u på semesersden.
DetaljerLøsningsforslag til eksempeloppgave 2 i fysikk 2, 2009
Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )
DetaljerBevegelse i én dimensjon
Beegelse én dmensjon 21.1.215 FYS-MEK 111 21.1.216 1 Gruppeundersnng og daalab begynner mandag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/16/plan216web.hm Oppgaer og forelesnngene legges
DetaljerLøsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009
Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen
DetaljerPotensiell energi Bevegelsesmengde
Poensell energ eegelsesengde 2.3.23 YS-MEK 2.3.23 konsera kraf kraf so bare ahenger a possjon arbed ahenger bare a sar- og slupossjon, kke a een ello arbed er null hs sar- og slupossjon er densk kan fnne
DetaljerBetinget bevegelse og friksjon
Betinget beegele og rikjon 1.0.014 nete uke: ingen orelening (17. og 19.) ingen ata erkte (19. og 1.) gruppetimer om anlig Manag, 17.. innleering oblig 3 Manag, 4.. ingen innleering jane or repetijon FYS-MEK
Detaljer2. Bevegelse. Fysikk for ingeniører. Klassisk mekanikk. 2. Bevegelse. Side 2-1.
Beegelse Side - Beegelse Vi skal nå a for oss beegelse Vi skal definere de grunnleggende begrepene posisjon, hasighe (og far), og akselerasjon Dee er begrep som du benyer il daglig, men i må presisere
DetaljerSpesiell relativitetsteori
Spesiell relaivieseori 6.05.06 FYS-MEK 0 6.05.06 Einseins posulaene. Fysikkens lover er de samme i alle inerialsysemer.. Lyshasigheen er den samme i alle inerialsysemer, og er uavhengig av observaørens
DetaljerH Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning
H Ø G S K O L E N I B E R G E N Avdeling for lærerudanning Eksamensoppgave Ny/usa eksamen høs 004 Eksamensdao: 07--004 Fag: NAT0-FY Naur og miljøfag 60sp. ALN modul fysikk 5 sp. Klasse/gruppe: UTS/NY/ALN
DetaljerLøsningsforslag til midtveiseksamen i FYS1000, 17/3 2016
Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016 Oppgave 1 Vi har v 0 =8,0 m/s, v = 0 og s = 11 m. Da blir a = v2 v 0 2 2s = 2, 9 m/s 2 Oppgave 2 Vi har v 0 = 5,0 m/s, v = 16 m/s, h = 37 m og m
DetaljerKinematikk i to og tre dimensjoner 29.01.2014
Knemkk o og re dmensoner 29.1.214 FYS-MEK 111 29.1.214 1 hp://pngo.up.de/ ccess numer:7182 En len l der en sørre lsel som hr død er. Mssen l lselen er sørre enn mssen l len. Hlke følgende usgn er korrek?
DetaljerTFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18
TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18 1) Panamagikkoffisiel over frausgallons il lier den30. apriliår. Bensinprisenvardaca4USdollar prus gallon. Hva ilsvarer dee i kroner prlier, når 1
DetaljerLøsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010
NTNU Institutt for Fysikk øsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3 juni 2010 Oppgae 1 a) His i elger nullniå for potensiell energi ed bunnen a skråningen, har du i utgangspunktet
DetaljerKap 5 Anvendelser av Newtons lover
Kap 5 Anendelser a Newtons loer 5.7 En stor kule holdes på plass a to lette stålkabler. Kulens asse er 49 kg. a) este strekket (kraften) T i kabelen so danner en inkel på 4 ed ertikalen. b) este strekket
DetaljerBetinget bevegelse og friksjon
Betinget beegele og rikjon 16.0.017 ingen gruble-gruppe inntil iere FYS-MEK 1110 16.0.017 1 Betinget beegele beegele: r (t) bane: r () beegele lang banen: (t) hatighet: r r ( t) uˆ ( t) t t r uˆ tangenialektor:
DetaljerNewtons lover i to og tre dimensjoner
Newtons loer i to og tre dimensjoner 6..17 FYS-MEK 111 6..17 1 Beegelse i tre dimensjoner Beegelsen er karakterisert ed posisjon, hastighet og akselerasjon. Vi må bruker ektorer: posisjon: r( = x t i +
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2008
Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >
DetaljerLøsningsforslag til ukeoppgave 4
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave
DetaljerBevegelsesmengde og kollisjoner Flerpartikkelsystemer
eegelsesengde og kollsjoner lerparkkelsyseer 6.3.5 YS-MEK 6.3.5 Meseksaen: 6.3. kl. 3 6 oppgaer a sae ype so ukesoppgaer (kke sor prosjekoppgae so oblgene en oppgae kreer e le sykk Malab eller Pyhon kode
DetaljerFYSIKK-OLYMPIADEN 2012 2013
Norsk Fysikkærerforening Norsk Fysisk Seskaps faggruppe for underisning FYSIKK-OLYMPIADEN 0 0 Andre runde: 7/ 0 Skri øers: Nan, fødsesdao, e-posadresse og skoens nan Varighe: kokkeimer Hjepemider: Tabe
DetaljerFiktive krefter
Fiktie krefter 5.04.013 FYS-MEK 1110 5.04.013 1 Fiktie krefter problem: Newtons loer gjelder bare i inertialsystemer hordan analyserer i en beegelse i et akselerert system? z z x y transformasjon transformasjon
DetaljerKinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:
DetaljerFAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVESITETET I AGDE Grimsd E K S A M E N S O P P G A V E : FAG: FYS Fysikk LÆE: Fysikk : Per Henrik Hosd Klsse(r): Do:.. Eksmensid, fr-il: 9. 4. Eksmensoppen besår følende Anll sider: 4 (inkl. forside)
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerRotasjonsbevegelser 13.04.2015
Roasjonsbevegelser 3.04.05 Mveseksamen: resulaer leges u nese uke løsnngsforslag på semesersden koneeksamen bare for sudener med begrunne fravær kke nødvendg å så på mveseksamen for å gå opp l slueksamen
DetaljerVåren Ordinær eksamen
Våren - Ordinær ekaen. Vi enker a en parikkel beeger eg lang en re linje (-aken. Parikkelen arer i r i pijn =. ed iden =. Parikkelen haighe funkjn a iden er gi ed: ( hr.. a eregn parikkelen akelerajn a
DetaljerFy1 - Prøve i kapittel 5: Bevegelse
Fy1 - Prøve i kapiel 5: Bevegelse Løsningsskisser Oppgave 1 En lekebil sarer med å rille oppover e skråplan med faren -1.6m/s. 1.5 sekunder eer saridspunke har lekebilen en far på.4 m/s nedover skråplane.
DetaljerLøsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6
Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet
DetaljerUNIVERSITETET I OSLO
vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark
DetaljerLøsningsforslag til ukeoppgave 2
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 2 Oppgave 2.15 a) F = ma a = F/m = 2m/s 2 b) Vi bruker v = v 0 + at og får v = 16 m/s c) s = v 0 t + 1/2at 2 gir s = 64 m Oppgave 2.19 a) a =
DetaljerBevegelsesmengde og kollisjoner Flerpartikkelsystemer
eegelsesengde og kollsjoner lerparkkelsyseer 7.3.4 YS-EK 7.3.4 YS-EK 7.3.4 Kollsjoner bearng a beegelsesengde:,,,, p p p p elassk kollsjon bearng a energ,,,,,,,,,, fullsendg uelassk kollsjon:,,,,,, resusjonskoeffsen:
DetaljerBetinget bevegelse og friksjon
Betinget beegele og rikjon 18.0.015 FYS-MEK 1110 18.0.015 1 Betinget beegele beegele: r (t) bane: r () beegele lang banen: (t) hatighet: r r ( t) uˆ ( t) t t r uˆ tangenialektor: ( t) art lang eien: (
DetaljerNewtons lover i to og tre dimensjoner
Newons loe i o og e dimensjone 5..14 FYS-MEK 111 5..14 1 FYS-MEK 111 5..14 Skå kas uen lufmosand akseleasjon: g y x ) sin( ) ( ) cos( ) ( j g a ˆ hasighe: 1 ) sin( ) ( ) cos( ) ( g y x posisjon: Skå kas
DetaljerNewtons lover i to og tre dimensjoner
Newons loe i o og e dimensjone 11..16 Oblig e lag u. Innleeing: Tisdag, 3.. FYS-MEK 111 11..16 1 FYS-MEK 111 11..16 Skå kas uen lufmosand akseleasjon: g y x ) sin( ) ( ) cos( ) ( j g a ˆ hasighe: 1 ) sin(
DetaljerRepetisjonsoppgaver kapittel 3 - løsningsforslag
Repetisjonsoppgaer kapittel 3 - løsningsforslag Krefter Oppgae 1 a) De tre setningene er 1. En kraft irker på et legeme fra et annet legeme.. En kraft som irker på et legeme, kan endre beegelsen til legemet
DetaljerRotasjonsbevegelser
Roasjonsbevegelser 3.3.4 FYS-EK 3.3.4 assesener y r V R rd r( r) dv V d R V d V d R z x Newons. lov: F ex d P d V yre kraf: akselerasjon l assesenere ndre krefer: ngen påvrknng på assesenere FYS-EK 3.3.4
DetaljerStyringsteknikk. Kraner med karakter. ABUS kransystemer målrettet krankjøring. setter ting i bevegelse. Kransystemer. t t v. max.
Kraner med karaker max. 0 ABUS kransysemer målree krankjøring Syringseknikk Kransysemer seer ing i beegelse Konakorsyre moorer den raskese eien fra A il B Erfarne kranførere er forrolig med oppførselen
DetaljerFysikkolympiaden 1. runde 26. oktober 6. november 2009
Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Uniersitetet i Oslo Fysikkolympiaden. runde 6. oktober 6. noember 009 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner
DetaljerBevegelse i én dimensjon (2)
Beegelse én dmensjon..4 Gruppeundersnng begynner denne uken. Oppger fnner du på semesersden: hp://www.uo.no/suder/emner/mn/fys/fys-mek/4/merle/merle4.hml FYS-MEK..4 Sudenrepresenner for FYS-MEK kurse lbkemeldng
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerLøsning: V = Ed og C = Q/V. Spenningen ved maksimalt elektrisk felt er
Gruppeøving 6 Elekrisie og magneisme Flervalgsoppgaver 1. Dersom en kondensaor har en kapasians på på 7.28 µf, hvor mye må plaene lades opp for a poensialdifferansen mellom plaene skal bli 25.0 V?. 15
DetaljerFAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS7 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 Ekaenid, fra-il: 9.. Ekaenoppgaen beår a følgende Anall
DetaljerKinematikk i to og tre dimensjoner
Knem o og re dmensoner 4.2.215 Hr du hene boen men e bel? YS-MEK 111 4.2.215 1 Esempel: En msse m = 1 g er fese l en fær med færonsn = 1 N/m og n beege seg på e bord uen frson og lufmosnd. Mssen beeger
DetaljerFysikk for ingeniører. 4. Arbeid og energi. Løsninger på blandede oppgaver. Side 4-1
4 rbeid o eneri Løsniner på blandede oppaer Side 4 - Løsniner på blandede oppaer Oppae 4: a) Je et at når riksjonstallet er µ, er størrelsen a riksjonskraten = µ N der N er normalkraten ra underlaet Siden
Detaljert [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet
FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,
DetaljerØving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.
Lørdagserksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 22. september kl 2:5 5:. Øing 3: Impuls, beegelsesmengde, energi. Bearingsloer. Oppgae a) Du er ute og sykler på en stor parkeringsplass.
DetaljerStyring av romfartøy STE6122
Syring av romfarøy STE6122 3HU -. 1LFNODVVRQ Høgskolen i Narvik Høs 2000 Forelesningsnoa 12 1 %UXN DY UHDNVMRQVWUXVWHUH Reaksjonsrusere benyes ved banekorreksjoner, for dumping av spinn og il akiv regulering
DetaljerFlerpartikkelsystemer Rotasjonsbevegelser
lerparkkelsysemer Roasjonsbevegelser.4.6 Resulaer fra mveseksamen på semesersen: hp://www.uo.no/suer/emner/mana/fys/ys-mek/v6/beskjeer/fysmekmev6resula.pf YS-MEK.4.6 lerparkkelsysemer j y k neokraf på
DetaljerFAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS5 Fyikk LÆRER: Fyikk : Per Henrik Hogad Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 4 inkl. foride Anall
DetaljerFYS 105 Fysikk Ordinær eksamen vår 2005
FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon
DetaljerNewtons lover i to og tre dimensjoner
Newons loe i o og e dimensjone 11..15 Oblig : De mangle alledie fo paameene i oppgae k) (fo å skie e pogam). En n esjon ble lag u i gå. Fellesinnleeinge i Deil: De e mulig å definee en guppe. Ski også
DetaljerTFY4115 Fysikk. Nettside: Laboratoriekurs: 13 regneøvinger Minst 8 må innleveres og godkjennes
TFY4115 Fysikk Emneoersyn: Mekanikk ( 50 %) Newtons loer Energi, beegelsesmengde, kollisjoner Rotasjon, spinn Statisk likeekt Singninger Termodynamikk ( 50 %): Def. Temperatur og arme. Termodynamikkens
DetaljerMatematikk 1P-Y. Teknikk og industriell produksjon
Maemaikk 1P-Y Teknikk og indusriell produksjon «Å kunne regne i eknikk og indusriell produksjon innebærer å forea innsillinger på maskiner og å uføre beregning av rykk og emperaur og blandingsforhold i
DetaljerT 1 = (m k + m s ) a (1)
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2008. Løsningsforslag til Øving 2. Oppgave 1 a) Vi ser på et system bestående av en kloss på et horisontalt underlag og en snor med masse. Vi
DetaljerBevegelsesmengde og kollisjoner Flerpartikkelsystemer
eegelsesengde og kollsjoner lerparkkelsyseer 07.04.06 esealuerng: hps://neskjea.uo.no/answer/7744.hl YS-EK 0 07.04.06 YS-EK 0 07.04.06 Kollsjoner,, 0, p p p p elassk kollsjon bearng a energ,,,, ) ( ) (
DetaljerFysikkolympiaden Norsk finale 2017
Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!
DetaljerUNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1
Introduksjon UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Tid for eksamen: 3 timer Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter
DetaljerStivt legemers dynamikk
Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3
DetaljerLØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
DetaljerFysikk 2 Eksamen våren Løsningsforslag
Fysikk - Løsningsforslag Oppgae a) C Q Det elektriske feltet fra en punktladning Q er gitt ed E ke r, og feltstyrken il ata ed astand til ladningen. Retningen til feltet er definert slik at det peker i
DetaljerA) 1 B) 2 C) 3 D) 4 E) 5
Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra
DetaljerFYSIKK-OLYMPIADEN
Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 017 018 Andre runde: 6. februar 018 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet
Detaljer6. Rotasjon. Løsning på blandede oppgaver.
6 otasjon Løsninger på blandede oppgaver ide 6-6 otasjon Løsning på blandede oppgaver Oppgave 6: O tanga har lengde L m Når stanga dreies fra horisontal til vertikal stilling, synker massesenteret en høyde
Detaljer