Bevegelsesmengde og kollisjoner Flerpartikkelsystemer

Størrelse: px
Begynne med side:

Download "Bevegelsesmengde og kollisjoner Flerpartikkelsystemer"

Transkript

1 eegelsesengde og kollsjoner lerparkkelsyseer YS-MEK 6.3.5

2 Meseksaen: 6.3. kl. 3 6 oppgaer a sae ype so ukesoppgaer (kke sor prosjekoppgae so oblgene en oppgae kreer e le sykk Malab eller Pyhon kode (kke e fullsendg progra, bare den esenlge delen Tllae hjelpedler (uen a de er beho : Øgr og Lan: Sørrelser og enheer fyskk og eknkk eller ngell, Lan, Øgr: ysske sørrelser og enheer: Nan og syboler Roann: Maeask forelsalng Elekronsk kalkulaor a godkjen ype. orelark edlegg Husk å forklare ha du gjør. YS-MEK 6.3.5

3 YS-MEK Kollsjoner bearng a beegelsesengde:,,,, p p p p elassk kollsjon bearng a energ,,,,,,,,,, ( ( fullsendg uelassk kollsjon:,,,,,, resusjonskoeffsen: uelassk kollsjon:,,,, r

4 Eksepel Ha er aksal høyde h for ball? ( anar a alle kollsjoner er elassk ase : begge baller faller energbearng: gh gh ase : ball kollderer ed gule bearng a energ og beegelsesengde: hasgheen snur ase 3: ball kollderer ed ball oenan sø så puls fra graasjon bearng a beegelsesengde elassk sø: bearng a energ YS-MEK

5 YS-MEK bearng a energ ( ( ( ( ( ( ( ( bearng a beegelsesengde: seer nn: ( ( ( ( 3 ( 3 hs 3 3

6 Eksepel Ha er aksal høyde h for ball? ( anar a alle kollsjoner er elassk ase : begge baller faller energbearng: gh gh ase : ball kollderer ed gule bearng a energ og beegelsesengde: hasgheen snur 3 ase 3: ball kollderer ed ball 3 ase 4: begge baller spreer opp: energbearng for ball gh h g 9 g 9 g gh 9h YS-MEK

7 Ikke-senral sø kan elge e koordnasyse slk a, beegelsen eer kollsjonen er odensjonal e plan danne a,,, hs de rker ngen yre krefer er beegelsesengde bear:,,, kan se separa på x og y renng:,, x,, x,, x,, y,, y,, y hs kollsjonen er elassk er energ bear:,,, 3 lgnnger, en 4 ukjene:,, x,,, y,,, x,,, y renger er nforasjon o krefene for a besee hasgheene eer kollsjonen. YS-MEK

8 kan odellere kollsjonen: kuler ed radus R asand ello senrene: r r ( r ( asand ello oerflaene: r realssk odell for konakkraf ello kulene: (ed depnng N3L: fra NL: på fra på fra på fra på a a R k r 3 R r r r r R R nuersk løsnng: Euler-Croer for begge kuler YS-MEK

9 YS-MEK

10 YS-MEK 6.3.5

11 YS-MEK 6.3.5

12 5 5 sae possjoner ed sae hasgheer ed (, = forskjellge asser YS-MEK 6.3.5

13 hp://pngo.upb.de/ access nuber: 878 Regn faller ned en åpen ogn so rller på e re, frksjonsfr spor. Hasgheen l ognen l. øke. ære uforandre C. nke D. e kke assen øker ed regn so sales ogn hasgheen nker YS-MEK

14 En regndråpe faller og adsorberer anndap før: p( u eer: p( ( ( p p( p( ( u Newons andre lo: dp p ex ( u for e kor dsnerall og en konnuerlg adsorpsjon: dp d ex ( u d rakelgnng relahasghe rel u ex rel d a YS-MEK

15 Rake erdensro ngen yre krefer gass srøer u ed hasghe rela l rakeen ex rel d d rel x renng: rel d d rel d d d rel d ( ( d ( rel ( d ( ( rel ln ( ln ( ( ( ( ( rel rel ( ln ( ( ln ( asse blr ndre og hasghe øker YS-MEK

16 hp://pngo.upb.de/ access nuber: 878 En ankogn rller på e re, frksjonsfr spor. Undersden a ogn er ue slk a æsken renner u. Hasgheen l ognen l. øke. ære uforandre C. nke D. e kke dp d ex ( u d æsken so renner u har sae horsonalhasghe so ogn hasgheen l ogn forandrer seg kke YS-MEK

17 lerparkkelsyseer y r j r j x ex ex j j syse: N parkler possjon: ( r hasghe: ( beegelsesengde: p ( ( yre kraf på parkler: ex ndre kraf fra parkkel j på parkkel : dr j neokraf på parkkel : ne beegelse for hele sysee: ex ne j j ex d p j j (NL d p d d j j (N3L ex p P (NL for e flerparkkelsyse beegelsesengde for hele sysee: P p YS-MEK

18 Massesener R M r eksepel: fnner assesenere separa for x og y renng: X M x a a 3a 3 a Y M y a a a 3 a R aˆ a ˆj YS-MEK

19 hp://pngo.upb.de/ access nuber: 878 Ha er assesenere for dee sysee?. x c =a. x c =3/a C. x c =5/4a D. x c =3/8a E. Ve kke y 5 a a x X M x a 5a 8 3 a YS-MEK

20 lerparkkelsyse NL: ex d beegelsesengde: asse: hasghe: M assesener: akselerasjon: V d P R M R P P p M p r d d V R M ex d P d MV a MV M obs: obs: R V r NL for flerparkkelsyse YS-MEK 6.3.5

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer eegelsesengde og kollsjoner lerparkkelsyseer 7.3.4 YS-EK 7.3.4 YS-EK 7.3.4 Kollsjoner bearng a beegelsesengde:,,,, p p p p elassk kollsjon bearng a energ,,,,,,,,,, fullsendg uelassk kollsjon:,,,,,, resusjonskoeffsen:

Detaljer

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer eegelsesengde og kollsjoner lerparkkelsyseer 07.04.06 esealuerng: hps://neskjea.uo.no/answer/7744.hl YS-EK 0 07.04.06 YS-EK 0 07.04.06 Kollsjoner,, 0, p p p p elassk kollsjon bearng a energ,,,, ) ( ) (

Detaljer

Potensiell energi Bevegelsesmengde

Potensiell energi Bevegelsesmengde Poensell energ eegelsesengde 2.3.23 YS-MEK 2.3.23 konsera kraf kraf so bare ahenger a possjon arbed ahenger bare a sar- og slupossjon, kke a een ello arbed er null hs sar- og slupossjon er densk kan fnne

Detaljer

Bevegelsesmengde og kollisjoner

Bevegelsesmengde og kollisjoner eegelsesengde og kollisjoner.3.4 FYS-MEK.3.4 Konseraie krefer poensiell energi: U( r U( x, y, z konserai kraf F U y arbeid uahengig a eien x F y D C x ikke-konserai kraf FYS-MEK.3.4 Energibearing energi

Detaljer

Rotasjonsbevegelser

Rotasjonsbevegelser Roasjonsbevegelser 3.3.4 FYS-EK 3.3.4 assesener y r V R rd r( r) dv V d R V d V d R z x Newons. lov: F ex d P d V yre kraf: akselerasjon l assesenere ndre krefer: ngen påvrknng på assesenere FYS-EK 3.3.4

Detaljer

Potensiell energi Bevegelsesmengde og kollisjoner

Potensiell energi Bevegelsesmengde og kollisjoner Poensiell energi eegelsesengde og kollisjoner 9.3.5 FYS-MEK 9.3.5 Energidiagraer energibearing: E K x U x K x U x Ux du dx F du dx likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell

Detaljer

Flerpartikkelsystemer Rotasjonsbevegelser

Flerpartikkelsystemer Rotasjonsbevegelser lerparkkelsysemer Roasjonsbevegelser.4.6 Resulaer fra mveseksamen på semesersen: hp://www.uo.no/suer/emner/mana/fys/ys-mek/v6/beskjeer/fysmekmev6resula.pf YS-MEK.4.6 lerparkkelsysemer j y k neokraf på

Detaljer

Potensiell energi Bevegelsesmengde og kollisjoner

Potensiell energi Bevegelsesmengde og kollisjoner Poensiell energi eegelsesengde og kollisjoner.3.4 YS-MEK.3.4 Energidiagraer energibearing: E K K d d d d likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell energi usabil likeekspunk

Detaljer

Bevegelse i én dimensjon (2)

Bevegelse i én dimensjon (2) Beegelse én dmensjon 6..5 Gruppeundersnng begynner denne uken. Oppgaer fnner du på semesersden: hp://www.uo.no/suder/emner/mana/fys/fys-mek/5/maerale/maerale5.hml FYS-MEK 6..5 Beegelseslgnnger V sarer

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse én dmensjon 21.1.215 FYS-MEK 111 21.1.216 1 Gruppeundersnng og daalab begynner mandag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/16/plan216web.hm Oppgaer og forelesnngene legges

Detaljer

Potensiell energi Bevegelsesmengde og kollisjoner

Potensiell energi Bevegelsesmengde og kollisjoner Poensiell energi eegelsesengde og kollisjoner 6.3.27 YS- MEK 6.3.27 Energidiagraer energibearing: E K U K U U du/d..5 du d du d likeekspunk U/U -.5 -. -.5 -.2 iniu i poensiell energi sabil likeekspunk

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse én dmensjon 16.1.218 FYS-MEK 111 16.1.218 1 Gruppeundersnng begynner rsdag, 23.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/18/plan218.hm Oppgaer og forelesnngene legges u på semesersden.

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse én dmensjon 19.1.217 FYS-MEK 111 19.1.217 1 Gruppeundersnng begynner onsdag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/17/plan217.hm Oppgaer og forelesnngene legges u på semesersden.

Detaljer

Rotasjonsbevegelser 13.04.2015

Rotasjonsbevegelser 13.04.2015 Roasjonsbevegelser 3.04.05 Mveseksamen: resulaer leges u nese uke løsnngsforslag på semesersden koneeksamen bare for sudener med begrunne fravær kke nødvendg å så på mveseksamen for å gå opp l slueksamen

Detaljer

Flerpartikkelsystemer Massesenter

Flerpartikkelsystemer Massesenter lepakkelsysee assesene.4.3 YS-EK.4.3 YS-EK.4.3 Kollsjone beang a beegelsesenge:,,,, p p p p elassk kollsjon beang a eneg,,,,,,,,,, ( ( fullseng uelassk kollsjon:,,,,,, esusjonskoeffsen: uelassk kollsjon:,,,,

Detaljer

Bevegelsesmengde Kollisjoner

Bevegelsesmengde Kollisjoner eegelsesengde Kollisjoner 4.3.3 neste uke: ingen forelesning ingen gruppeunderisning ingen datalab på grunn a idteiseksaen FYS-MEK 4.3.3 Energibearing energi i systeet er beart: E tot = K +U + E T arbeid

Detaljer

Bevegelse i én dimensjon (2)

Bevegelse i én dimensjon (2) Beegelse én dmensjon..4 Gruppeundersnng begynner denne uken. Oppger fnner du på semesersden: hp://www.uo.no/suder/emner/mn/fys/fys-mek/4/merle/merle4.hml FYS-MEK..4 Sudenrepresenner for FYS-MEK kurse lbkemeldng

Detaljer

Bevegelse i én dimensjon (2)

Bevegelse i én dimensjon (2) Beegelse i én dimensjon () 5..6 Daa-lab i dag: Hjelp med Pyhon / Malab insallasjon Førse skri Oblig er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek/6/maeriale/maeriale6.hml Innleeringsfris: Tirsdag,

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legeers dnakk 7.04.05 Resultater fra veseksaen på seestersden. Eneste krav for å ta slutteksaen: 7 av 0 oblger. Gruppete dag: Gruppe 5 (Ø394) slås saen ed gruppe 7 på Ø443 FYS-MEK 0 7.04.05 kraftoent:

Detaljer

Bevegelsesmengde og kollisjoner

Bevegelsesmengde og kollisjoner eegelsesengde og kollisjoner 4.4.6 Midteisealuering: https://nettskjea.uio.no/answer/7744.htl Oblig 4: nye initialbetingelser i oppgaedel i og j FYS-MEK 4.4.6 Konseratie krefter potensiell energi: U r

Detaljer

Go to and use the code Hva var viktig i siste forelesning? FYS-MEK

Go to   and use the code Hva var viktig i siste forelesning? FYS-MEK Go o www.meni.com and use he code 65 37 7 Ha ar ikig i sise forelesning? FYS-MEK 111.1.18 1 FYS-MEK 111.1.18 Beegelse i én dimensjon ().1.18 Ukesoppgaer og oblig 1 er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/18/maeriale/maeriale18.hml

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 3..4 Innleering: på papir på ekspedisjonskonore: bruk forsiden elekronisk på froner én pdf fil nan på førse side egenerklæring med signaur innleeringsboks på ekspedisjon

Detaljer

Newtons lover i to og tre dimensjoner 09.02.2015

Newtons lover i to og tre dimensjoner 09.02.2015 Newons loer i o og re dimensjoner 9..5 FYS-MEK 3..4 Innleering Oblig : på grunn a forsinkelse med deilry er frisen usa il onsdag,.., kl. Innleering Oblig : fris: mandag, 6.., kl. Mideiseksamen: 6. mars

Detaljer

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG HØGSKOLEN I GDER Grisad E K S M E N S O P P G V E : FG: FYS05 Fysikk LÆRER: Per Henrik Hogsad Klasser: Dao:.09.08 Eksaensid, fra-il: 09.00 4.00 Eksaensoppgaen besår a følgende nall sider: 5 inkl forside

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 8..16 Innleeringsfris oblig 1: Tirsdag, 9.Feb. kl.18 Innleering kun ia: hps://deilry.ifi.uio.no/ Fellesinnleeringer (N 3): Alle må bidra il besarelsen i sin helhe. Definer

Detaljer

Krefter og betinget bevegelser 14.02.2013

Krefter og betinget bevegelser 14.02.2013 Krefer og benge beegeler 4..3 FYS-MEK 4..3 Benge beegele beegele: r bane: r beegele lang banen: haghe: r r u r u angenalekor: far lang een: akeleraon: a u u u u angenalakeleraon: enrpealakeleraon: a a

Detaljer

Betinget bevegelse

Betinget bevegelse Beinge beegelse 13.0.017 FYS-MEK 1110 13.0.017 1 epeisjon: ball som spreer lfmosand: F D = D () normalkraf: = +k y j 0 y y > graiasjon: G = mgj nmerisk beregning: hensiksmessig alg a idsseg = 0.001 s =

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 6..4 oblig 5: mideis hjemmeeksamen forusening for å a slueksamen krees indiiduell innleering blir lag u mandag 3. mars innleeringsfris mandag. mars Samale mellom sudener og lærer

Detaljer

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013 Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger

Detaljer

FYS3140 KORT INTRODUKSJON TIL KONTINUERLIGE GRUPPER

FYS3140 KORT INTRODUKSJON TIL KONTINUERLIGE GRUPPER FYS340 KORT INTRODUKSJON TIL KONTINUERLIGE GRUPPER I en konnuerlg gruppe avhenger hver eleen av e se av paraere a, a 2, a r, slk a e vlkårlg eleen ar foren G(a, a 2, a r ) Anall paraere r er gruppens densjon

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 5..5 YS-MEK 5..5 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 3..7 YS-MEK 3..7 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )

Detaljer

Betinget bevegelse

Betinget bevegelse Beinge beegelse 15.0.016 FYS-MEK 1110 15.0.016 1 epeisjon: ball som spreer lfmosand: F D = D () normalkraf: = +k y j 0 y y > graiasjon: G = mgj nmerisk beregning: hensiksmessig alg a idsseg = 0.001 s =

Detaljer

Repetisjon 20.05.2015

Repetisjon 20.05.2015 Repeisjon 0.05.015 FYS-MEK 1110 0.05.015 1 Eksamen: Onsdag, 3. Juni, 14:30 18:30 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser

Detaljer

Betinget bevegelse neste uke: ingen forelesning (17. og 19.2) ingen data verksted (19. og 21.2) gruppetimer som vanlig

Betinget bevegelse neste uke: ingen forelesning (17. og 19.2) ingen data verksted (19. og 21.2) gruppetimer som vanlig Beinge beegelse 0.0.04 nese ke: ingen forelesning (7. og 9.) ingen daa erksed (9. og.) grppeimer som anlig Mandag, 7.. innleering oblig 3 Mandag, 4.. ingen innleering sjanse for repeisjon FYS-MEK 0 0.0.04

Detaljer

Kinematikk i to og tre dimensjoner 29.01.2014

Kinematikk i to og tre dimensjoner 29.01.2014 Knemkk o og re dmensoner 29.1.214 FYS-MEK 111 29.1.214 1 hp://pngo.up.de/ ccess numer:7182 En len l der en sørre lsel som hr død er. Mssen l lselen er sørre enn mssen l len. Hlke følgende usgn er korrek?

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse i én dimensjon 21.1.215 FYS-MEK 111 21.1.215 1 Lærebok kan henes på ekspedisjonskonore. Lenke il bealingsside: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/15/bok.hml FYS-MEK 111 21.1.215

Detaljer

Høst 95 Test-eksamen. 1. Et legeme A med masse m = kg påvirkes av en kraft F gitt ved: F x = - t F y = k t 2 = 5.00N = 4.00 N/s k = 1.

Høst 95 Test-eksamen. 1. Et legeme A med masse m = kg påvirkes av en kraft F gitt ved: F x = - t F y = k t 2 = 5.00N = 4.00 N/s k = 1. Hø 95 Te-ekaen. E legee ed ae =.4 kg pårke a en kraf F g ed: F = - F = k = 5.N = 4. N/ k =.N/ llegg rker ngdekrafen nega -renng. a Bee reulankrafekoren. b Ved den = er legee ro orgo. Fnn pojon og haghe

Detaljer

Repetisjon

Repetisjon Repeisjon 19.05.014 FYS-MEK 1110 19.05.014 1 Eksamen: Tirsdag, 3. Jni, 9:00 13:00 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser

Detaljer

Repetisjon Eksamensverksted i dag, kl , Entropia

Repetisjon Eksamensverksted i dag, kl , Entropia Repeisjon 30.05.016 Eksamensverksed i dag, kl. 1 16, Enropia Emneevaluering: dialogmøe nese uke (eer eksamen) a konak med meg hvis du vil være med vikig for oss å få ilbakemelding FYS-MEK 1110 30.05.016

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kiik energi..3 YS-MEK..3 arbeid-energi eorem:, K K arbeid er ilfør mekanik energi. kiik energi K m arbeid generel:, (,, ) arbeid hi krafen er bare poijonahengig: d, ( ) d ( ) d alernai formulering

Detaljer

Fiktive krefter

Fiktive krefter Fiktie krefter 8.04.014 FYS-MEK 1110 8.04.014 1 Fiktie krefter proble: Newtons loer gjelder bare i inertialsysteer hordan analyserer i en beegelse i et akselerert syste? z z x y transforasjon transforasjon

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legees dnakk 8.04.06 FYS-MEK 0 8.04.06 Spnn spnn o punkt fo en patkkel ed asse og bevegelsesengde p: l p spnnsats: net d l Newtons ande lov: F net d p uten netto kaftoent e spnn bevat l kˆ l kˆ ˆj

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Knem o og re dmensoner 4.2.215 Hr du hene boen men e bel? YS-MEK 111 4.2.215 1 Esempel: En msse m = 1 g er fese l en fær med færonsn = 1 N/m og n beege seg på e bord uen frson og lufmosnd. Mssen beeger

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi.3.5 YS-ME.3.5 Areid-energi eorem areid:, ne d kineisk energi,, ne d ne dr d d C ne dr kureinegral langs en kure C sar i r, slu i r uˆ N uˆ N uˆ uˆ N uˆ N uˆ d d ds d d C ds mange

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider:

Detaljer

5. Bevegelsesmengde. Fysikk for ingeniører. 5. Bevegelsesmengde og massesenter. Side 5-1

5. Bevegelsesmengde. Fysikk for ingeniører. 5. Bevegelsesmengde og massesenter. Side 5-1 5 eegelsesmengde Fyskk for ngenører 5 eegelsesmengde og massesenter Sde 5 - Httl har forutsatt at åre legemer kan oppfattes som partkler Stort sett har behandlet dsse partklene som solerte legemer som

Detaljer

FYSIKK-OLYMPIADEN 2012 2013

FYSIKK-OLYMPIADEN 2012 2013 Norsk Fysikkærerforening Norsk Fysisk Seskaps faggruppe for underisning FYSIKK-OLYMPIADEN 0 0 Andre runde: 7/ 0 Skri øers: Nan, fødsesdao, e-posadresse og skoens nan Varighe: kokkeimer Hjepemider: Tabe

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legemers dynamkk 8.04.06 FYS-MEK 0 8.04.06 otasjon av et stvt legeme: defnsjon: z m treghetsmoment for legemet om aksen z (som går gjennom punktet O) kontnuerlg legeme med massetetthet (r) m ) dv

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse i én dimensjon 17.1.213 Forelesningsplan: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/13/plan213.hm FYS-MEK 111 17.1.213 1 Mekanikk Kinemaikk Dynamikk læren om beegelser uen å a hensyn il

Detaljer

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS7 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 Ekaenid, fra-il: 9.. Ekaenoppgaen beår a følgende Anall

Detaljer

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s. eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m

Detaljer

Stivt legemers dynamikk. Spinn

Stivt legemers dynamikk. Spinn Stvt legees nakk Spnn 9.4.14 ngen ata-vekste enne uke FYS-MEK 111 9.4.14 1 Eksepel R Et legee av asse M, aus R, og teghetsoent ulle ne et skåplan. koonatsste e aksen langs planet ogo assesenteet otasjon

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Bevegelse i én dimensjon 15.1.214 FYS-MEK 111 15.1.214 1 Malab: mulig å bruke på egen PC med UiO lisens hjelp med insallasjon på daa-verksed eller i forkurs Forsa ledige plasser i forkurs: Fredag kl.1-13

Detaljer

Kap 5 Anvendelser av Newtons lover

Kap 5 Anvendelser av Newtons lover Kap 5 Anendelser a Newtons loer 5.7 En stor kule holdes på plass a to lette stålkabler. Kulens asse er 49 kg. a) este strekket (kraften) T i kabelen so danner en inkel på 4 ed ertikalen. b) este strekket

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi 3.3.4 olig 5: midveis hjemmeeksamen forusening for å a slueksamen kreves individuell innlevering lir lag u mandag 3. mars innleveringsfris mandag. mars YS-ME 3.3.4 Areid-energi

Detaljer

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVRSITTT I AGDR Griad K S A M N S O P P G A V : FAG: FYS5 Fikk/Kjei LÆRR: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 kaenid, fra-il: 9. 4. kaenoppgaen beår a følgende Anall ider: 6 inkl.

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbei og kineik energi 4..4 Samale mellom uener og lærer i y-mek : orag, 7.eb., kl. 4:, rom Ø443 YS-MEK 4..4 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N :

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi 6..3 YS-ME 6..3 areid:, d ne, ne dr areid-energi eorem, ineis energi: areid er ilfør meanis energi ureinegral langs en ure C sar i r slu i r os: generell ahenger areid a eien!

Detaljer

EKSAMENSOPPGAVE. Avdeling for ingeniørutdanning. Faglig veileder: Per Ola Rønning Eksamenstid, fra - til: Antall vedlegg: 2

EKSAMENSOPPGAVE. Avdeling for ingeniørutdanning. Faglig veileder: Per Ola Rønning Eksamenstid, fra - til: Antall vedlegg: 2 Avdeling for ingeniørudanning EKSAENSOPPGAVE Fag: INSTUENTELL ANALYSE Gruppe(r): 3KA Eksaensoppgaven besår av Tillae hjelpeidler: Anall sider inkl. forside: 5 Fagnr: SO 437 K Dao: 07.1.99 Anall oppgaver:

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVERSITETET I AGDER Griad E K S A M E N S O G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : er Henrik Hogad Grehe Lehrann Klaer: Dao:.5.4 Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider: 6

Detaljer

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 6 inkl.

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi 7..7 YS-MEK 7..7 Areid-energi eorem areid:, v ne d kineisk energi K, K K, ne v d ne dr d d C ne dr kurveinegral langs en kurve C sar i r, slu i r uˆ N uˆ N v vuˆ v uˆ N uˆ N vuˆ

Detaljer

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVERITETET I AGDER Griad E K A M E N O G A V E : FAG: FY3 Fikk/Kjei ÆRER: Fikk : er Henrik Hogad Grehe ehrann Klaer: Dao:.5.4 Ekaenid, ra-il: 9. 4. Ekaenoppgaen beår a ølgende Anall ider: 6 inkl. oride

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons loer i to og tre dimensjoner 6..17 FYS-MEK 111 6..17 1 Beegelse i tre dimensjoner Beegelsen er karakterisert ed posisjon, hastighet og akselerasjon. Vi må bruker ektorer: posisjon: r( = x t i +

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbei og kineik energi 9..8 YS-MEK 9..8 rikjon empirik lov for aik frikjon: f < f, ma µ N µ : aik frikjonkoeffiien empirik lov for ynamik frikjon: f µ N µ : ynamik frikjonkoeffiien µ < µ kraf virker moa

Detaljer

Løsningsforslag FY105-eksamen 15. januar 2004

Løsningsforslag FY105-eksamen 15. januar 2004 Løsgsfoslag FY5-esae 5. jaua 4 Oppgae a) Newos.lo på losse g x x x+ x ed få x+ x Isa x() dffeesallgge: A s( + ϕ) + As( + ϕ) so se a x () As( ϕ) + e e løsg. Fa x ( ) Asϕ ϕ få : x() () A b) Toaleege l sysee

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbei og kineik energi 9..6 YS-MEK 9..6 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N : ynamik rikjonkoeiien kra irker moa beegelerening: N YS-MEK 9..6 hp://pingo.upb.e/

Detaljer

Løsningsforslag eksamen TFY des 2013

Løsningsforslag eksamen TFY des 2013 Løsningsforslag eksamen TFY416 18 des 1 Ins for fysikk, NTNU Oppgae 1 a) Toal mekanisk energi er bear når sylinderne ruller ned skråplane fordi de kun er konseraie krefer som irker. Den oale mekaniske

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legemes namkk 07.04.014 spnntu 6.-7. apl YS-MEK 1110 07.04.014 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel hastghet v( t) t ( t) t vnkelhastghet akseleasjon a( t) v t t t t ( t)

Detaljer

EKSAMEN I FAG SIF8052 VISUALISERING ONSDAG 11. DESEMBER 2002 KL LØSNINGSFORSLAG

EKSAMEN I FAG SIF8052 VISUALISERING ONSDAG 11. DESEMBER 2002 KL LØSNINGSFORSLAG Sde a 9 TU orges teknsk-natrtenskapelge nerstet Fakltet for fyskk nformatkk og matematkk Instttt for datateknkk og nformasjonstenskap EKSAME I FAG SIF85 VISUALISERIG OSDAG. DESEMER KL. 9. 4. LØSIGSFORSLAG

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSITETET I GDER Gad E K S M E N S O P P G V E : FG: FYS Fkk LÆRER: Fkk : Pe Henk Hogad Klae: Dao:.5. Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 6 nkl. fode nall oppgae: nall edlegg: Tllae

Detaljer

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS5 Fyikk LÆRER: Fyikk : Per Henrik Hogad Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 4 inkl. foride Anall

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ.3.7 YS- MEK.3.7 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d energbevarng vertkal kast: mg d mg fjær: k k d atom krstall: b π cos π b b d π sn b YS- MEK.3.7 kraft

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kiisk energi..8 FYS-MEK..8 hp://pingo.upb.de/ access number: 63473 To isbåer, en med masse m og en med masse m, kjører på en friksjonsfri, horisonal, frossen innsjø. Begge båene sarer fra ro,

Detaljer

Repetisjonsoppgaver kapittel 2 løsningsforslag

Repetisjonsoppgaver kapittel 2 løsningsforslag Repetisjonsoppgaer kapittel løsningsforslag Beegelse Oppgae a) Banelengden er den totale distansen Ida tilbakelegger. Først går Ida 5 m, deretter snur hun og går 5 m tilbake, før igjen går hele eien til

Detaljer

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6 Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet

Detaljer

FAG: FYS114 Fysikk/kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS114 Fysikk/kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVERSITETET I GDER Gad E K S M E N S O G V E : FG: FYS Fkk/kje LÆRER: Fkk : e Henk Hogad Kje : Gehe Lehann Klae: Dao:.5. Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: nkl. fode nall oppgae:

Detaljer

Våren Ordinær eksamen

Våren Ordinær eksamen Våren - Ordinær ekaen. Vi enker a en parikkel beeger eg lang en re linje (-aken. Parikkelen arer i r i pijn =. ed iden =. Parikkelen haighe funkjn a iden er gi ed: ( hr.. a eregn parikkelen akelerajn a

Detaljer

Fysikk 2 Eksamen våren Løsningsforslag

Fysikk 2 Eksamen våren Løsningsforslag Fysikk - Løsningsforslag Oppgae a) C Q Det elektriske feltet fra en punktladning Q er gitt ed E ke r, og feltstyrken il ata ed astand til ladningen. Retningen til feltet er definert slik at det peker i

Detaljer

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch.

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch. NOEN SANNSYNLIGHETER I BRIGE A Hans-Wlhelm Mørch. SANNSYNLIGHETER FOR HVORAN TRUMFEN(ELLER ANRE SORTER) ER FORELT Anta at du mangler n kort trumffargen. Ha er sannsynlgheten for at est har a a dem? La

Detaljer

Styringsteknikk. Kraner med karakter. ABUS kransystemer målrettet krankjøring. setter ting i bevegelse. Kransystemer. t t v. max.

Styringsteknikk. Kraner med karakter. ABUS kransystemer målrettet krankjøring. setter ting i bevegelse. Kransystemer. t t v. max. Kraner med karaker max. 0 ABUS kransysemer målree krankjøring Syringseknikk Kransysemer seer ing i beegelse Konakorsyre moorer den raskese eien fra A il B Erfarne kranførere er forrolig med oppførselen

Detaljer

Jernbaneverket. OVERBYGNING Kap.: 8 t Regler for prosjektering Utgitt:

Jernbaneverket. OVERBYGNING Kap.: 8 t Regler for prosjektering Utgitt: e Hovedkonore Helsveis spor Side: 1 av 5 1 HENSIKT OG OMFANG... 2 2 KRAV... 3 2.1 Hovedspor... 3 2.1.1 Varig ufesing... 3 2.1.2 Minse kurveradius... 3 2.1.3 Ballas... 3 2.1.4 Sviller... 3 2.1.4.1 Svilleype...

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 4.3.5 Mdtveseksamen: 6.3. Pensum: Kap. boken flere lærer på data-lab YS-MEK 4.3.5 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg

Detaljer

FYS 105 Fysikk Ordinær eksamen vår 2005

FYS 105 Fysikk Ordinær eksamen vår 2005 FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon

Detaljer

Forelesning 3 mandag den 25. august

Forelesning 3 mandag den 25. august Forelesg adag de 5 august Merkad 171 For å bevse e propossjo o heltall so volverer to eller flere varabler, er det typsk ye lettere å beytte duksjo på e av varablee e duksjo på oe av de adre Det er for

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legemes dnamkk 1.04.016 YS-MEK 1110 1.04.016 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel hastghet v( t) d ( t) d vnkelhastghet akseleasjon a( t) dv d ( t) d d vnkelakseleasjon 1

Detaljer

Harald Bjørnestad: Variasjonsregning en enkel innføring.

Harald Bjørnestad: Variasjonsregning en enkel innføring. Haral Bjørnesa: Variasjonsregning en enkel innføring. Tiligere har vi løs oppgaven me å finne eksremalveriene ( maks./min. veriene) av en gi funksjon f () når enne funksjonen oppfyller beseme krav. Vi

Detaljer

Spenningsforsterkningen til JFET kretsen er gitt ved A = g

Spenningsforsterkningen til JFET kretsen er gitt ved A = g øsnngsforslag tl FY-IN 204 eksaen 200. Oppgae I C A a) Transkonduktansen g for BJT er : g 40S. VT 25V Spennngsforsterknngen tl BJT kretsen er gtt ed A g 40S 5kΩ 200 VBJT C. Spennngsforsterknngen tl JFET

Detaljer

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje Kp Poijon / Highe / kelerjon D - Beegele lng en re linje Løning Lufpuebenk Highe: oocellene kn flye Siden ognen hr konn highe ed beegele på lufpuebenken, il beregningen highe ære uhengig foocellene poijon

Detaljer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer ynask prograerng Metoden ble foralsert av Rchard Bellann (RAN Corporaton på -tallet. Prograerng betydnngen planlegge, ta beslutnnger. (Har kke noe ed kode eller å skrve kode å gøre. ynask for å ndkere

Detaljer

Fysikkolympiaden Norsk finale 2016

Fysikkolympiaden Norsk finale 2016 Nosk fysikklæefoening Fysikkolypiaden Nosk finale 16 Fedag 8. apil kl. 9. til 11.3 Hjelpeidle: abell/foelsaling, loeegne og utdelt foelak Oppgaesettet bestå a 6 oppgae på side Lykke til! Oppgae 1 En patikkel

Detaljer

INF3400 Del 5 Statisk digital CMOS

INF3400 Del 5 Statisk digital CMOS INF400 Del 5 Sask dgal MOS Elmore forsnkelsesmodell modell: modell NANDN: NAND 1 9 Forsnkelsesmodell: N 1 j 1 j 1 NAND Ulegg 7 10 1 Parassk dsforsnkelse: V kaller dffusjonskapasanser for parasske kapasanser

Detaljer

Newtons tredje lov. Kinematikk i to og tre dimensjoner

Newtons tredje lov. Kinematikk i to og tre dimensjoner Newons ede lo Knemkk o og e dmensone 31.1.213 husk: nnleeng oblg #1 Mndg, 4.eb. kl.1 YS-MEK 111 31.1.213 1 Newons ede lo: Enhe knng h lld og lsende en moknng, elle den gensdge påknng o legeme på hende

Detaljer

TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18

TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18 TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18 1) Panamagikkoffisiel over frausgallons il lier den30. apriliår. Bensinprisenvardaca4USdollar prus gallon. Hva ilsvarer dee i kroner prlier, når 1

Detaljer

Øving 1: Bevegelse. Vektorer. Enheter.

Øving 1: Bevegelse. Vektorer. Enheter. Lørdagsverksed i fysikk. Insiu for fysikk, NTNU. Høsen 007. Veiledning: 8. sepember kl :5 5:00. Øving : evegelse. Vekorer. Enheer. Oppgave a) Per løper 800 m på minuer og 40 sekunder. Hvor sor gjennomsnisfar

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legeers dynakk 9.4. FYS-EK 9.4. Repetsjon Newtons andre lov for flerpartkkelsysteer: F ext hvor: r R d R (assesenter) dt separasjon: bevegelse tl assesenter bevegelse relatv tl assesenter K V N v

Detaljer