Eksamensoppgave i TFY4190 Instrumentering
|
|
- Judith Berntsen
- 7 år siden
- Visninger:
Transkript
1 Iniu for fyikk Ekamenoppgave i TFY49 Inrumenering Faglig konak under ekamen: Seinar Raaen Tlf.: Ekamendao: 3. juni 23 Ekamenid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv C, Godkjen lommekalkulaor K. Romann: Mahemaical formula (eller ilvarende) Engelk ordbok Annen informajon: Vedlegg - Laplace ranform Målform/pråk: Bokmål Anall ider: 5 Anall ider vedlegg: Konroller av: Dao Sign Merk! Sudener finner enur i Sudenweb. Har du pørmål om din enur må du konake iniue di. Ekamenkonore vil ikke kunne vare på like pørmål.
2 Oppgave Side 2 av 5 a) Finn den binære 2-komplemen repreenajonen av de deimale allene -7 og -27. Urykk vare i e 6 bi ord. b) Konverer deimal 23.8 il binær forma. c) E ingle-preciion binær all er repreener hexadeimal ved B8A. Den me ignifikane bi gir foregne, de nee 8 bi gir ekponenen, men de nee 23 bi gir frakjonen. Ekponenen er uen foregn og en bia på 27 benye. Hva er den deimale verdien av alle? Oppgave 2 a) Ana a Y n er ann verdi og M n er mål verdi av en ørrele. Bruk dee il å definere begrepene nøyakighe og preijon. b) Forklar kor hva okaike og yemaike feil er. Oppgave 3 8R B 4R B 2R B2 R V i R B3 - + Figuren over vier en kre med en operajonforerker og moander med verdier R, 2R, 4R og 8R. I illegg finne fire bryere B, B, B2 og B3. Inngangpenningen er V i og ugangpenningen er. a) Hvilken funkjon har kreen? b) Hvilken verdi får ranferfunkjonen /V i når bryerne B og B3 er lukke (B2 og B åpen)? Hvordan kan dee urykke binær?
3 Oppgave 4 Side 3 av 5 a) En 2bi AD omformer har penningområde fra -2.5 il 2.5 V. Hvor or er oppløningen? Ugangpenningen er gi ved 2-komplemen binær forma. Hvor or er den analoge inngangpenningen når ugangen er? b) Ana a de kal gjøre en digial ampling av e ignal om har makimal frekven f max. Hvordan bør ignale ample for å unngå aliaing? (Hin: beny Nyqui ampling eorem). Oppgave 5 V i + - c(), C() PID g(), G() yem a) E yem er yr ved bruk av en PID-regulaor om vi i figuren over. Gi urykk for ranferfunkjonen il PID regulaoren og bekriv de ulike leddene. Finn den oale ranferfunkjonen ()/V i () for de regulere yeme. b) Beem ugangignale y() når e enheeg (i idromme) kommer inn på e yem med 4 ranferfunkjon F = Plo ugangignale y(). Hva blir makimalverdien il y()? 2 + 2
4 Oppgave 6 Side 4 av 5 Z G Z Z 2 V V G Z L L E penningeg på 4V ende fra en kilde inn på en ranmijonlinje med reell impedan Z og lengde L om vi i figuren over. Denne ranmijonlinjen er å forbunde med en annen ranmijonlinje med reell impedan Z 2. Ved enden av den andre ranmijonlinjen er en la med impedan Z L. I figuren under er vi hvordan penningen eer kilden varierer med iden. V G [V] 2.5V 2.V 4 n [] a) Impedanene Z G = 5 og Z = 5.. Gi urykke for reflekjonkoeffiienen når ignale går fra ranmijonlinje il ranmijonlinje 2. Hva er impedanen Z 2 il den andre ranmijonlinja? b) Hva er haigheen il ignale i ranmijonlinje når L =5m? c) Hva beyr de a ignale går il null eer id?
5 Vedlegg (Appendix): Laplace ranform Side 5 av 5 Y Y() y(), > = exp y d y Y y c + j = expy d j2 c j Y y d y d 2 Y y y' y'' --Y F G f gd, yd convoluion -- u, uni ep -- exp u exp exp in
6 Løningkie - Ekamen 3. juni 23 Oppg.a -7 = - => 2-komp. = (neg. all) -27 = - => 2-komp. = (neg. all) Oppg.b 23.8 : 23 =>,.8*2 =.36 =>.36*2 =.72 =>.72*2 =.44 =>.44*2 =.88 =>.88*2 =.76 =>.76*2 =.52 =>.52*2 =.4 => ec 23.8 (deimal) =... (binær) Oppg.c B8A (hex)=> MSB (mo ignifican bi) gir foregne: = negaive number De nee 8 bi gir ekponenen: = 2 (dec) - bia(27) = -5 De nee 23 bi gir frakjonen: =. = /8+/6+/64 =.23 Dermed: -.23*2**-5 = -.23*3.52* -5 = * -5 Oppg.2a Nøyakighe A n = - Y n -M n / Y n Preijon P n = - M n -<M> / <M>, hvor <M> er middelverdien Oppg.2b Sokaike feil - predning av måledaa omkring korrek verdi. Syemaike feil - middelverdien av målingene gir konan avvik fra korrek verdi. Oppg.3a Kreen er en DAC. Oppg.3b B og B3 er lukke. B og B2 er åpen. /V i = - (/8+) = - (+8)/8= -9/8. Binær er dee proporjonal med (binær 9). Oppg.4a Oppløning: 5V/(2^2-) =.2V (2-kompl. binær) => negaiv all = (dec) Analog inngang er -365*.2 V = V Oppg.4b Nyqui: amplingfrekven f > 2f max. Beny lavpafiler med cu-off frekven f /2 for å fjerne høyfrekvene komponener.
7 Oppg.5a c C = K P e + K I e d + d K D e d E = K P E + K I K D E ledd: K P proporjonal, K I inegral, K D derivaiv konroll V i C G herefore C G = V i + C G = Oppg.5b Ved bruk av appendik få Y --F = = = y = exp y() ime [] Makimum ved = 2. Oppg.6a Z 2 Z Z = = = -- 3Z Z 2 + Z Z = 25 Z 2 = 833 Oppg.6b Signale renger iden =4 n på å ilbakelegge rekningen 2L = m, om gir a v=m/4n = 25km/ = 83% av lyhaigheen. Oppg.6c Signale vil gå mo null hvi den andre ranmijonlinja blir korlue, dv. reflekjonkoeffiien = -.
Eksamensoppgave i TFY4190 Instrumentering
Iniu for fyikk Ekamenoppgave i TFY49 Inrumenering Faglig konak under ekamen: Seinar Raaen Tlf.: 482 96 758 Ekamendao: 2. mai 25 Ekamenid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv C,
DetaljerEksamensoppgave i TFY4190 Instrumentering
Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao:. juni 26 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv
DetaljerEksamensoppgave i TFY4190 Instrumentering
Intitutt for fyikk Ekamenoppgave i FY49 Intrumentering Faglig kontakt under ekamen: Steinar Raaen lf.: 48 96 758 Ekamendato: 3. mai 4 Ekamentid (fra-til): 9: 3: Hjelpemiddelkode/illatte hjelpemidler: Alternativ
DetaljerEksamensoppgave i TFY4190 Instrumentering
Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao: 6. mai 27 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler:
DetaljerNynorsk / Bokmål / Engelsk NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4190 Instrumentering
Nynorsk / Bokmål / Engelsk Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Seinar Raaen, el.48296758 Eksamen TFY49 Insrumenering Torsdag 26. mai, 2 Tid: 9.-3. Tilla ved eksamen
DetaljerNynorsk / Bokmål / Engelsk NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4190 Instrumentering
Nynork / Bokmål / Engelk Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Steinar Raaen, tel. 482 96 758 Ekamen TFY49 Intrumentering Tirdag 29. mai, 22 Tid: 9.-3. Tillatt
DetaljerFYS3220 Uke 43 Regeneverksted
FYS Uke Regeneverked Oppvrmingoppgve Finn H() for følgende kreer.... b Signlmodellering: Sgnn... 7 Syring v Ovn. PID (H89-)... 75 Fekifer (ekmen H-)... NB! Oppgve 7 er den vikige oppgven denne uk. Den
DetaljerLøsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006
øningforlag O346E Dynamike Syemer H 6 ekamen. november 6 Oppgave Gi e yem med ranferfnkjonen H 58 + a Tidkonanen for yeme er T 8 4. Den aike forerkningen er H 5 Saik forerkning for en varmvannank kan handle
DetaljerLøsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 våren 2007
Side av Løningforlag Ekamen i Fy-mek/Fy-mef våren 7 Oppgave a) En pendel beår av en iv, maelø av av lengde L med en kule med mae m fee i enden. Den andre enden er fee i e frikjonfri hengel. Gjør rede for
DetaljerRetteveileder Eksamen i Fys-mek1110/Fys-mef1110 våren 2007
Side av 3 Reeveileder Ekamen i Fy-mek/Fy-mef våren 7 Oppgave a) En pendel beår av en iv, maelø av av lengde L med en kule med mae m fee i enden. Den andre enden er fee i e frikjonfri hengel. Gjør rede
DetaljerFAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS7 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 Ekaenid, fra-il: 9.. Ekaenoppgaen beår a følgende Anall
Detaljerx(t) = sin(1000t)+cos(1000t). Amplituden til det stasjonære utgangssignalet er da lik:
LM006M- Maemaikk : Ekamen mandag 0.mai, 00 Oppgave Lavpafiler Lavpafilere kal dimenjonere lik a knekkfrekvenen blir 500 rad/ og relaiv dempningkoeffiien kal være lik 0,5. erom moanden er på 4 Ω må kapaianen
DetaljerFYS 105 Fysikk Ordinær eksamen vår 2005
FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon
DetaljerFYS3220 Oppgaver om Fourieranalyse
FYS3220 Oppgaver om Fourieranalyse Innhold Enkle fourieranalyse oppgaver... 1 1) egn frekvensspeker for e sammensa sinus signal... 1 2) Fra a n og b n il c n og θ... 2 Fourier serieanalyse... 2 3) Analyse
DetaljerFAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS5 Fyikk LÆRER: Fyikk : Per Henrik Hogad Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 4 inkl. foride Anall
DetaljerFart. Eksempel: Gjennomsnittsfart
Far ALV EGELAND, NAROM Når vi ilbakelegger 100 km i løpe av 2 imer uavhengig av om vi opper unervei har vi en gjennomnifar på 50 km/h. Vi ville ha bruk like lang i erom vi hae kjør me konan far på 50 km/h.
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider:
DetaljerArbeid og kinetisk energi
Arbei og kineik energi 9..8 YS-MEK 9..8 rikjon empirik lov for aik frikjon: f < f, ma µ N µ : aik frikjonkoeffiien empirik lov for ynamik frikjon: f µ N µ : ynamik frikjonkoeffiien µ < µ kraf virker moa
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall
DetaljerEksamensoppgave i SØK3001 Økonometri I
Insiu for samfunnsøkonomi Eksamensoppgave i SØK3001 Økonomeri I Faglig konak under eksamen: Kåre Johansen Tlf.: 73 59 19 33 Eksamensdao: 1. desember 2017 Eksamensid (fra-il): 5 imer (09.00-14.00) Sensurdao:
DetaljerFAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 6 inkl.
DetaljerFAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVRSITTT I AGDR Griad K S A M N S O P P G A V : FAG: FYS5 Fikk/Kjei LÆRR: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 kaenid, fra-il: 9. 4. kaenoppgaen beår a følgende Anall ider: 6 inkl.
DetaljerEksamen ECON 2200, Våren 2013 ( ) ( ) 2 ( ) 2
enorveiledning Ekamen ECON 00 Våren 03 Oppgave 8 poeng E poeng per derivajon dv poeng i e og. Deriver ølgende unkjoner. Deriver med henn på begge argumener i e og. a ln b ln ln ln c e e d g g g g e F F
DetaljerEksamensoppgave i FIN3006 Anvendt tidsserieøkonometri
Insiu for samfunnsøkonomi Eksamensoppgave i FIN3006 Anvend idsserieøkonomeri Faglig konak under eksamen: Kåre Johansen Tlf.: 73 59 19 36 Eksamensdao: 23. mai 2014 Eksamensid (fra-il): 6 imer (09.00 15.00)
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVERSITETET I AGDER Griad E K S A M E N S O G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : er Henrik Hogad Grehe Lehrann Klaer: Dao:.5.4 Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider: 6
DetaljerHelikopterlab TTK4115 Lineær systemteori
NTNU Norge eknik-naurvienkaelige univerie Fakule for informajoneknologi, maemaikk og elekroeknikk Iniu for eknik kyberneikk Helikoerlab TT4 Lineær yemeori Projekraor 0.0.03 Av: Grue 4 6664 & 669846 Rune
DetaljerForelesning nr.9 INF 1410
Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TRONDHEIM
HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 RONDHEIM ALM005M-A Matematikk 1 Grunnlagfag - 10 tudiepoeng Cae Høt 011 Le dette ført Caen er en "hjemmeoppgave"
DetaljerRepetisjon 20.05.2015
Repeisjon 0.05.015 FYS-MEK 1110 0.05.015 1 Eksamen: Onsdag, 3. Juni, 14:30 18:30 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser
DetaljerKrefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013
Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger
Detaljer1 Laplacetransform TMA4125 våren 2019
Lplcernform TMA45 våren 9 Lplcernform er en eknikk vi kl bruke il løe ordinære differenillikninger. For de føre er de en mye mer elegn eknikk enn den du lære i M3, for de ndre kler den en bredere kle v
DetaljerSensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012
Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Obligaorisk øvelsesoppgave våren 22 Ved sensuren illegges alle oppgavene lik vek For å få godkjen besvarelsen må den i hver fall: gi mins
DetaljerAdvarsel: Dette løsningsforslaget er mer omfattende enn hva som ventes av en god besvarelse.
Senorveiledning il ekamen i ECON 0 9..006 Vikig informajon il enorene: I den engelke overeelen le likning (3) i ogave (c) deverre feilformuler. Senorene e om å a henyn il dee under enureringen derom de
DetaljerLøsningsforslag for regneøving 3
Ulever: 3.mars 7 Løsningsforslag for regneøving 3 Oppgave : a Se opp ligning for spenningen over som funksjon av id, for. R v + - Kres Løsning: Beraker kresen førs: I iden før null vil spenningen over
DetaljerFAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVERITETET I AGDER Griad E K A M E N O G A V E : FAG: FY3 Fikk/Kjei ÆRER: Fikk : er Henrik Hogad Grehe ehrann Klaer: Dao:.5.4 Ekaenid, ra-il: 9. 4. Ekaenoppgaen beår a ølgende Anall ider: 6 inkl. oride
DetaljerLØSNING. Eksamensoppgave i TALM1004 Matematikk 2. Institutt for allmennfag. Faglig kontakt under eksamen: Kåre Bjørvik Tlf.
Intitutt for allmennfag Ekamenoppgave i ALM4 Matematikk LØSNING Faglig kontakt under ekamen: Kåre Bjørvik lf.: 9 77 898 Ekamendato: 5.5.7 Ekamentid (fra-til): 9. 4. Hjelpemiddelkode/illatte hjelpemidler:
Detaljer1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1
. Berak følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < T = 0 + Y, 0 < < Hvor Y er BNP, C er priva konsum, I er privae realinveseringer, G er offenlig kjøp av varer og jeneser, T er
Detaljer( ) ( ) ( ) ( ) 2. Kjell Arne Brekke Vidar Christiansen. Econ 2200 vår 2009 sensorveiledning
Kjell Arne Brekke Vidar Chriianen Econ 00 vår 009 enorveilednin Vi ir poen or hver var. Makimal poenall på hver oppave varer il den vek om er oppi i proen. Makimal oal poenum blir dermed 00. Vi vil enere
DetaljerOppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved
Sensorveiledning: ELE 37191 Maemaikk valgfag Eksamensdao: 13.06.2012 09:00 1:00 Toal anall sider: 5 Anall vedlegg: 0 Tillae hjelpemidler: BI-dener eksamenskalkulaor TEXAS INSTRUMENTS BA II Plus Innføringsark:
Detaljer1 Lavpassfilter Lavpassfilteret påtrykkes en inngangsspenning på 1 V ved t = 0. Spenningen over spolen er vist i figuren under.
ALM5M-A Matematikk Utatt Ekamen, 9 Lavpafilter Lavpafilteret påtrykke en inngangpenning på V ved t =. Spenningen over polen er vit i figuren under. Spenning [V].9.8.7.6.5.4.3.. Tidkontanten til lavpafilteret
DetaljerArbeid og kinetisk energi
Arbei og kineik energi 4..4 Samale mellom uener og lærer i y-mek : orag, 7.eb., kl. 4:, rom Ø443 YS-MEK 4..4 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N :
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-RØNDELAG Aving for eknologi Målform: Bokmål Eksamensdao: 3..4 Varighe/eksamensid: 9-5 Emnekode: Emnenavn: Klasse(r): ELE33 Indusriell auomaisering ELAH Sudiepoeng: Faglærer(e): (navn og
DetaljerKap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje
Kp Poijon / Highe / kelerjon D - Beegele lng en re linje Løning Lufpuebenk Highe: oocellene kn flye Siden ognen hr konn highe ed beegele på lufpuebenken, il beregningen highe ære uhengig foocellene poijon
DetaljerUNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 OpenGL (vekt 1 5 )
UNIVERSITETET I OSLO De maemaisk-naurvienskapelige fakule Eksamen i INF3320/INF4320 Meoder i grask daabehandling og diskre geomeri Eksamensdag: 7. desember 2007 Tid for eksamen: 14:30 17:30 Oppgavesee
DetaljerINF september 2008
INF 4. epember 8 Foreleer: Sein Krogdahl Dagen ema: Kapiel 4: Machinger i (ureede) grafer (maching = pardannele) Fly i neverk (neverk = reede grafer med kapaieer ec.) Dagen ema er krafig forbunde med konvekie,
DetaljerINF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS
INF34 Del Teori og oppgaver Grunnleggende Digial CMOS INF34 Grunnleggende digial CMOS Transisor som bryer CMOS sår for Complemenary Meal On Semiconducor. I CMOS eknologi er de o komplemenære ransisorer,
Detaljert [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet
FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,
DetaljerAliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem
Forelesning 9.februar 24 Delkapilene 4.4-4.6 fra læreboken, 4.3 er il selvsudium. Repeisjon om sampling og aliasing Diskre-il-koninuerlig omforming Inerpolasjon med pulser Oversamling bedrer inerpolasjon
DetaljerINF november Stein Krogdahl (Litt mye tekst, med tanke på lettere repetisjon) Dagens tema: Kapittel 14:
INF 4 5. november 29 Sein Krogdahl (Li mye ek, med anke på leere repeijon) Dagen ema: Kapiel 4: Machinger i (ureede) grafer (maching = pardannele) Fly i neverk (neverk = reede grafer med kapaieer ec.)
DetaljerEksamensoppgave i FIN3006 Anvendt tidsserieøkonometri
Insiu for samfunnsøkonomi Eksamensoppgave i FIN3006 Anvend idsserieøkonomeri Faglig konak under eksamen: Kåre Johansen Tlf.: 73 59 9 36 Eksamensdao: 4. juni 05 Eksamensid (frail): 6 imer (09.005.00) Sensurdao:
DetaljerSpesialisering: Anvendt makro 5. Modul
Spesialisering: Anvend makro 5. Modul 1.B Lineære regresjonsmodeller og minse kvadraers meode (MKM) Drago Berghol Norwegian Business School (BI) 10. november 2011 Oversik I. Inroduksjon il økonomeri II.
DetaljerArbeid og kinetisk energi
Arbeid og kiik energi..3 YS-MEK..3 arbeid-energi eorem:, K K arbeid er ilfør mekanik energi. kiik energi K m arbeid generel:, (,, ) arbeid hi krafen er bare poijonahengig: d, ( ) d ( ) d alernai formulering
DetaljerVåren Ordinær eksamen
Våren - Ordinær ekaen. Vi enker a en parikkel beeger eg lang en re linje (-aken. Parikkelen arer i r i pijn =. ed iden =. Parikkelen haighe funkjn a iden er gi ed: ( hr.. a eregn parikkelen akelerajn a
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 11.1. 014 5 klokketimer TALM1003-A Matematikk
DetaljerDette kapittelet tar for seg krefter som oppstår når en vinding beveges i et magnetisk felt.
5.3 KRETER MAGNETELT 1 5.3 KRETER MAGNETELT Dee kapiee ar for eg krefer om oppår når en vinding bevege i e magneik fe. KRETER SOM VRKER PÅ EN LEDER ET MAGNETELT Når en vinding bir forfye horiona gjennom
DetaljerLøsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter.
TFE4110 Digialeknikk med kreseknikk Løsningsforslag il regneøving 5 vårsemeser 2008 Løsningsforslag il regneøving 5 Ulever: irsdag 29. april 2008 Oppgave 1: a) Tegn egningen for en eksklusiv eller por
DetaljerTeksturanalyse og syntese basert på Markovfelt-metoder. Lars Aurdal,
Tekuranalye og ynee baer på Markovfel-meoder. Lar Aurdal, lau@ffi.no FORSVARETS FORSKNINGSINSTITUTT Overik Hva er en ekur? Ekempler på ekurer. Hvorfor analyere og yneiere ekurer. Tekuranalye, li hiorikk.
DetaljerLøsningsforslag øving 6, ST1301
Løsningsforslag øving 6, ST1301 Oppgave 1 Løse Euler-Loka ligningen ved ruk av Newon's meode. Ana a vi har en organisme med maksimal alder lik n år. Vi ser kun på hunnene i populasjonen. La m i være anall
DetaljerFAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERITETET I AGDER Grimd E K A M E N O G A V E : FAG: FY Fyikk ÆRER: Fyikk : er Henrik Hogd Kle(r: Do: 7..6 Ekmenid, fr-il: 9. 4. Ekmenoppgen beår følgende Anll ider: 6 (inkl. foride Anll oppger: 4 Anll
DetaljerMAT1030 Forelesning 26
MAT030 Forelesning 26 Trær Roger Anonsen - 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) Forelesning 26 Li repeisjon Prims algorime finne de minse uspennende ree i en veke graf en grådig algorime i den forsand
DetaljerINF Oblig 3 ligger ute, frist 22/11. Har oppgave fra dagens stoff. Matchinger i (urettede) grafer (matching = pardannelse)
INF 40. november 00 Sein Krogdahl Oblig ligger ue, fri /. Har oppgave fra dagen off De er mye (og lien) ek på die foilene. Men å være grei for repeijon Dagen ema: Kapiel 4: Machinger i (ureede) grafer
DetaljerForelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen
MAT1030 Diskre Maemaikk Forelesning 26: Trær Roger Anonsen Insiu for informaikk, Universiee i Oslo Forelesning 26 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) MAT1030 Diskre Maemaikk 5. mai 2009 2 Li repeisjon
DetaljerEKSAMENSOPPGAVE I FIN3005 MAKROFINANS ASSET PRICING
NTNU Norges eknisk-naurvienskapelige universie Insiu for samfunnsøkonomi EKSAMENSOPPGAVE I FIN3005 MAKROFINANS ASSET PRICING Faglig konak under eksamen: Hans Jørgen Tranvåg Tlf.: 9 6 66 Eksamensdao: Mandag
DetaljerH Laplacetransformasjon, transientanalyse og Z- transformasjon
FYS30 H013-1 Laplacetranformajon, tranientanalye og Z- tranformajon... 1 801 Paivt Chebyhevfilter (H00-4)... 80 Aktivt Butterworth & Beel filter (H03-1)... 3 807 Fra 1-orden prototype Beel filter til båndpa...
Detaljer, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.
eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m
Detaljer1. Vis hvordan vi finner likevektsløsningen for Y. Hint: Se forelesningsnotat 4 (Økonomisk aktivitet på kort sikt), side 23-24
Oppgave. Vis hvordan vi finner likeveksløsningen for Y. Hin: Se forelesningsnoa 4 Økonomisk akivie på kor sik, side 23-24 2. Gi en begrunnelse for hvorfor de er rimelig å ana a eksporen er eksogen i denne
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi. Torsdag Kalkulator: Type C Alt skriftlig materiale
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Løning Tordag.. 04 5 klokketimer TALM003-A Matematikk
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO De maemaisk-naurvienskapelige fakule Eksamen i INF3320 Meoder i grafisk daabehandling og diskre geomeri Eksamensdag: 2. desember 2009 Tid for eksamen: 14.30 17.30 Oppgavesee er på
DetaljerLøsningsforslag til obligatorisk øvelsesoppgave i ECON 1210 høsten 06
Løsningsforslag il obligaorisk øvelsesoppgave i ECON 0 høsen 06 Oppgave (vek 50%) (a) Definisjon komparaive forrinn: Den ene yrkesgruppen produserer e gode relaiv mer effekiv enn den andre yrkesgruppen.
DetaljerArbeid og kinetisk energi
Arbei og kineik energi 9..6 YS-MEK 9..6 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N : ynamik rikjonkoeiien kra irker moa beegelerening: N YS-MEK 9..6 hp://pingo.upb.e/
DetaljerLøsningsforslag oppgaver FYS3220 uke43 H2009 HBalk
Løningforlag oppgaver FYS3 uke43 H9 HBalk Oppgave Nyquit diagrammer... Oppgave Tilbakekobling... Oppgave 3 Polplaering, Bodeplot, Nyquit... 4 Oppgave Nyquit diagrammer a) Forklar hva et Nyquit diagram
DetaljerVed opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser.
4.4 INNE- OG TKOPLING AV EN KONDENSATO 1 4.4 INN- OG TKOPLING AV EN KONDENSATO Ved opp -og uladning av kondensaorer varierer srøm og spenning. De er vanlig å bruke små boksaver for å angi øyeblikksverdier
DetaljerStyring av romfartøy STE6122
Syring av romfarøy STE6122 3HU -. 1LFNODVVRQ Høgskolen i Narvik Høs 2000 Forelesningsnoa 8 1 6W\ULQJ RJ UHJXOHULQJ DY RULHQWHULQJ,, Nødvendig med nøyakig syring og/eller regulering av orienering i en rekke
DetaljerFAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: FYS8 Fikk LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.4 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall oppgae:
DetaljerArbeid og kinetisk energi
Arbeid og kiisk energi..8 FYS-MEK..8 hp://pingo.upb.de/ access number: 63473 To isbåer, en med masse m og en med masse m, kjører på en friksjonsfri, horisonal, frossen innsjø. Begge båene sarer fra ro,
DetaljerSignalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag
Signalfiltrering Finn Haugen TechTeach. eptember 3 Sammendrag Dette dokumentet gir en kort bekrivele av ignalfiltrering med tidkontinuerlige, ogå kalt analoge, filtere og med tiddikrete, ogå kalt digitale,
DetaljerFAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSIEE I GDER Grid E K S M E N S O G V E : FG: FYS5 Fyikk LÆRER: Fyikk : er Henrik Hogd Kle(r: Do: 5.5. Ekenid, r-il: 9. 4. Ekenoppgven beår v ølgende nll ider: 4 (inkl. oride nll oppgver: 4 nll vedlegg:
Detaljera) Tala i tabellen under skal grunntalskonverterast. Alle rutene i tabellen skal fyllast ut. Vis framgangsmåten. BIN OCT HEX DEC
Datateknikk TELE1004-A 13H HiST-AFT-EDT Delemne digitalteknikk og datakommunikasjon Øving 1; løysing Oppgave 1 Tala i tabellen under skal grunntalskonverterast. Alle rutene i tabellen skal fyllast ut.
DetaljerLØSNINGSFORSLAG Eksamen i emne SIE4006, Digitalteknikk med kretsteknikk, fredag 16. mai 2003
Side av 6 LØSNINGSFORSLAG Ekamen i emne SIE4006, Digitalteknikk med kretteknikk, fredag 6. mai 2003 Oppgave a) Kirchoff trømlov: Den algebraike um av alle grentrømmer i et knutepunkt i en kret er lik null
DetaljerFAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus
UNIVESITETET I AGDE Giad E K S A M E N S O P P G A V E : FAG: FYS Fyikk LÆE: Fyikk : Pe Henik Hogad Toe Vehu Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall
DetaljerTekniske data Nominell strøm In, hovedkontakter
konakorer Beskrivelse modulære konakorer er førs og frems uvikle for lys og varmesyring, men kan også benyes for småmoordrif relaer il varmesyring. Konakorene syres ved hjelp av e fas signal. Rød fane
DetaljerUNIVERSITETET I OSLO
Kandidatnr.: Side UNIVERSITETET I OSLO et matematik-naturvitenkapelige fakultet Ekamen i: Ekamendag: Tid for ekamen: Oppgaveettet er på Vedlegg: Tillatte hjelpemidler: INF4 Ondag 29. november kl. 4:3-8:3
DetaljerTillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler
UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee
DetaljerBevegelse i én dimensjon
Bevegelse i én dimensjon 15.1.214 FYS-MEK 111 15.1.214 1 Malab: mulig å bruke på egen PC med UiO lisens hjelp med insallasjon på daa-verksed eller i forkurs Forsa ledige plasser i forkurs: Fredag kl.1-13
DetaljerNewtons lover i to og tre dimensjoner 09.02.2015
Newons loer i o og re dimensjoner 9..5 FYS-MEK 3..4 Innleering Oblig : på grunn a forsinkelse med deilry er frisen usa il onsdag,.., kl. Innleering Oblig : fris: mandag, 6.., kl. Mideiseksamen: 6. mars
DetaljerObligatorisk oppgave ECON 1310 høsten 2014
Obligaorisk oppgave EON 30 høsen 204 Ved sensuren vil oppgave elle 20 prosen, oppgave 2 elle 50 prosen, og oppgave 3 elle 30 prosen. For å få godkjen må besvarelsen i hver fall: gi mins re nesen rikige
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig konak under eksamen: Jon Andreas Søvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK
DetaljerTillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x
UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee
DetaljerInfoskriv ETØ-1/2016 Om beregning av inntektsrammer og kostnadsnorm for 2015
Infoskriv Til: Fra: Ansvarlig: Omseningskonsesjonærer med inneksramme Seksjon for økonomisk regulering Tore Langse Dao: 1.2.2016 Vår ref.: 201403906 Arkiv: Kopi: Infoskriv ETØ-1/2016 Om beregning av inneksrammer
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: okmål Mandag 7.mai 0 5 timer LM006M Matematikk E 0 Faglærer(e): (navn og
DetaljerFAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I AGDER Grid E K A E N O P P G A V E : FAG: FY05 Fyikk ÆRER: Per enrik ogd Kler: Do: 6.05. Ekenid, fr-il: 09.00 4.00 Ekenoppgen beår følgende Anll ider: 5 inkl. foride Anll oppger: 3 Anll
DetaljerForelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering
Forelesning 25 Trær Dag Normann - 23. april 2008 Beskjeder Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4, blir avleregning, slik a sudenene ikke kan belage seg på
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.1. 01 5 klokketier TALM100-A Mateatikk 1 EL FEN
DetaljerBeskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering
Beskjeder MAT1030 Diskre maemaikk Forelesning 25: Trær Dag Normann Maemaisk Insiu, Universiee i Oslo 23. april 2008 Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4,
DetaljerDato: 15.september Seksjonssjef studier og etter utdanning Arkivnr 375/2008
S TYRES AK Syremøe 07 23.sepember Syresak 53/2008 MÅLTALL framidig uvikling av sudenall og sudieprogrammer KONTAKTINFORMASJON POSTBOKS 6853, ST. OLAVS PLASS NO-0130 OSLO TLF: (+47) 22 99 55 00 FAKS: (+47)
Detaljer8 Vektorer og kurver. Løsning til KONTROLLOPPGAVER OPPGAVE 1. t t ) Vi finner skjæringspunktet med y-aksen ved å sette x = 0.
Løning il KONTROLLOPPGAVER 8 Vekorer og kurver OPPGAVE 1 a) 1) Vi lager abell, velger o enkle -verdier og regner u verdiene for x og y. x 6 y ) Vi finner kjæringpunke med y-aken ved å ee x =. 1 y 1 Linja
DetaljerKap 01 Enheter, fysiske størrelser og vektorer
Kap Enheter, fyike tørreler og vektorer.7 Concorde er det rakete paajerflyet. Det har en hatighet på 45 mi/h (ca ganger lyden hatighet, dv Mach). mi = 69 m. a) Hva er Concorde-flyet hatighet i km/h? b)
DetaljerBoliginvesteringer og boligpriser
Boliginveeringer og boligprier Dag Henning Jacoben, rådgiver i Finanmarkedavdelingen, riin Solberg-Johanen, konulen i Økonomik avdeling, og eri Haugland, konulen i Pengepoliik avdeling. Vi analyerer uviklingen
Detaljer