Eksamensoppgave i TFY4190 Instrumentering

Størrelse: px
Begynne med side:

Download "Eksamensoppgave i TFY4190 Instrumentering"

Transkript

1 Iniu for fyikk Ekamenoppgave i TFY49 Inrumenering Faglig konak under ekamen: Seinar Raaen Tlf.: Ekamendao: 3. juni 23 Ekamenid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv C, Godkjen lommekalkulaor K. Romann: Mahemaical formula (eller ilvarende) Engelk ordbok Annen informajon: Vedlegg - Laplace ranform Målform/pråk: Bokmål Anall ider: 5 Anall ider vedlegg: Konroller av: Dao Sign Merk! Sudener finner enur i Sudenweb. Har du pørmål om din enur må du konake iniue di. Ekamenkonore vil ikke kunne vare på like pørmål.

2 Oppgave Side 2 av 5 a) Finn den binære 2-komplemen repreenajonen av de deimale allene -7 og -27. Urykk vare i e 6 bi ord. b) Konverer deimal 23.8 il binær forma. c) E ingle-preciion binær all er repreener hexadeimal ved B8A. Den me ignifikane bi gir foregne, de nee 8 bi gir ekponenen, men de nee 23 bi gir frakjonen. Ekponenen er uen foregn og en bia på 27 benye. Hva er den deimale verdien av alle? Oppgave 2 a) Ana a Y n er ann verdi og M n er mål verdi av en ørrele. Bruk dee il å definere begrepene nøyakighe og preijon. b) Forklar kor hva okaike og yemaike feil er. Oppgave 3 8R B 4R B 2R B2 R V i R B3 - + Figuren over vier en kre med en operajonforerker og moander med verdier R, 2R, 4R og 8R. I illegg finne fire bryere B, B, B2 og B3. Inngangpenningen er V i og ugangpenningen er. a) Hvilken funkjon har kreen? b) Hvilken verdi får ranferfunkjonen /V i når bryerne B og B3 er lukke (B2 og B åpen)? Hvordan kan dee urykke binær?

3 Oppgave 4 Side 3 av 5 a) En 2bi AD omformer har penningområde fra -2.5 il 2.5 V. Hvor or er oppløningen? Ugangpenningen er gi ved 2-komplemen binær forma. Hvor or er den analoge inngangpenningen når ugangen er? b) Ana a de kal gjøre en digial ampling av e ignal om har makimal frekven f max. Hvordan bør ignale ample for å unngå aliaing? (Hin: beny Nyqui ampling eorem). Oppgave 5 V i + - c(), C() PID g(), G() yem a) E yem er yr ved bruk av en PID-regulaor om vi i figuren over. Gi urykk for ranferfunkjonen il PID regulaoren og bekriv de ulike leddene. Finn den oale ranferfunkjonen ()/V i () for de regulere yeme. b) Beem ugangignale y() når e enheeg (i idromme) kommer inn på e yem med 4 ranferfunkjon F = Plo ugangignale y(). Hva blir makimalverdien il y()? 2 + 2

4 Oppgave 6 Side 4 av 5 Z G Z Z 2 V V G Z L L E penningeg på 4V ende fra en kilde inn på en ranmijonlinje med reell impedan Z og lengde L om vi i figuren over. Denne ranmijonlinjen er å forbunde med en annen ranmijonlinje med reell impedan Z 2. Ved enden av den andre ranmijonlinjen er en la med impedan Z L. I figuren under er vi hvordan penningen eer kilden varierer med iden. V G [V] 2.5V 2.V 4 n [] a) Impedanene Z G = 5 og Z = 5.. Gi urykke for reflekjonkoeffiienen når ignale går fra ranmijonlinje il ranmijonlinje 2. Hva er impedanen Z 2 il den andre ranmijonlinja? b) Hva er haigheen il ignale i ranmijonlinje når L =5m? c) Hva beyr de a ignale går il null eer id?

5 Vedlegg (Appendix): Laplace ranform Side 5 av 5 Y Y() y(), > = exp y d y Y y c + j = expy d j2 c j Y y d y d 2 Y y y' y'' --Y F G f gd, yd convoluion -- u, uni ep -- exp u exp exp in

6 Løningkie - Ekamen 3. juni 23 Oppg.a -7 = - => 2-komp. = (neg. all) -27 = - => 2-komp. = (neg. all) Oppg.b 23.8 : 23 =>,.8*2 =.36 =>.36*2 =.72 =>.72*2 =.44 =>.44*2 =.88 =>.88*2 =.76 =>.76*2 =.52 =>.52*2 =.4 => ec 23.8 (deimal) =... (binær) Oppg.c B8A (hex)=> MSB (mo ignifican bi) gir foregne: = negaive number De nee 8 bi gir ekponenen: = 2 (dec) - bia(27) = -5 De nee 23 bi gir frakjonen: =. = /8+/6+/64 =.23 Dermed: -.23*2**-5 = -.23*3.52* -5 = * -5 Oppg.2a Nøyakighe A n = - Y n -M n / Y n Preijon P n = - M n -<M> / <M>, hvor <M> er middelverdien Oppg.2b Sokaike feil - predning av måledaa omkring korrek verdi. Syemaike feil - middelverdien av målingene gir konan avvik fra korrek verdi. Oppg.3a Kreen er en DAC. Oppg.3b B og B3 er lukke. B og B2 er åpen. /V i = - (/8+) = - (+8)/8= -9/8. Binær er dee proporjonal med (binær 9). Oppg.4a Oppløning: 5V/(2^2-) =.2V (2-kompl. binær) => negaiv all = (dec) Analog inngang er -365*.2 V = V Oppg.4b Nyqui: amplingfrekven f > 2f max. Beny lavpafiler med cu-off frekven f /2 for å fjerne høyfrekvene komponener.

7 Oppg.5a c C = K P e + K I e d + d K D e d E = K P E + K I K D E ledd: K P proporjonal, K I inegral, K D derivaiv konroll V i C G herefore C G = V i + C G = Oppg.5b Ved bruk av appendik få Y --F = = = y = exp y() ime [] Makimum ved = 2. Oppg.6a Z 2 Z Z = = = -- 3Z Z 2 + Z Z = 25 Z 2 = 833 Oppg.6b Signale renger iden =4 n på å ilbakelegge rekningen 2L = m, om gir a v=m/4n = 25km/ = 83% av lyhaigheen. Oppg.6c Signale vil gå mo null hvi den andre ranmijonlinja blir korlue, dv. reflekjonkoeffiien = -.

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Iniu for fyikk Ekamenoppgave i TFY49 Inrumenering Faglig konak under ekamen: Seinar Raaen Tlf.: 482 96 758 Ekamendao: 2. mai 25 Ekamenid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv C,

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao:. juni 26 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Intitutt for fyikk Ekamenoppgave i FY49 Intrumentering Faglig kontakt under ekamen: Steinar Raaen lf.: 48 96 758 Ekamendato: 3. mai 4 Ekamentid (fra-til): 9: 3: Hjelpemiddelkode/illatte hjelpemidler: Alternativ

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao: 6. mai 27 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler:

Detaljer

Nynorsk / Bokmål / Engelsk NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4190 Instrumentering

Nynorsk / Bokmål / Engelsk NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4190 Instrumentering Nynorsk / Bokmål / Engelsk Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Seinar Raaen, el.48296758 Eksamen TFY49 Insrumenering Torsdag 26. mai, 2 Tid: 9.-3. Tilla ved eksamen

Detaljer

Nynorsk / Bokmål / Engelsk NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4190 Instrumentering

Nynorsk / Bokmål / Engelsk NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4190 Instrumentering Nynork / Bokmål / Engelk Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Steinar Raaen, tel. 482 96 758 Ekamen TFY49 Intrumentering Tirdag 29. mai, 22 Tid: 9.-3. Tillatt

Detaljer

FYS3220 Uke 43 Regeneverksted

FYS3220 Uke 43 Regeneverksted FYS Uke Regeneverked Oppvrmingoppgve Finn H() for følgende kreer.... b Signlmodellering: Sgnn... 7 Syring v Ovn. PID (H89-)... 75 Fekifer (ekmen H-)... NB! Oppgve 7 er den vikige oppgven denne uk. Den

Detaljer

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006 øningforlag O346E Dynamike Syemer H 6 ekamen. november 6 Oppgave Gi e yem med ranferfnkjonen H 58 + a Tidkonanen for yeme er T 8 4. Den aike forerkningen er H 5 Saik forerkning for en varmvannank kan handle

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 våren 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 våren 2007 Side av Løningforlag Ekamen i Fy-mek/Fy-mef våren 7 Oppgave a) En pendel beår av en iv, maelø av av lengde L med en kule med mae m fee i enden. Den andre enden er fee i e frikjonfri hengel. Gjør rede for

Detaljer

Retteveileder Eksamen i Fys-mek1110/Fys-mef1110 våren 2007

Retteveileder Eksamen i Fys-mek1110/Fys-mef1110 våren 2007 Side av 3 Reeveileder Ekamen i Fy-mek/Fy-mef våren 7 Oppgave a) En pendel beår av en iv, maelø av av lengde L med en kule med mae m fee i enden. Den andre enden er fee i e frikjonfri hengel. Gjør rede

Detaljer

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS7 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 Ekaenid, fra-il: 9.. Ekaenoppgaen beår a følgende Anall

Detaljer

x(t) = sin(1000t)+cos(1000t). Amplituden til det stasjonære utgangssignalet er da lik:

x(t) = sin(1000t)+cos(1000t). Amplituden til det stasjonære utgangssignalet er da lik: LM006M- Maemaikk : Ekamen mandag 0.mai, 00 Oppgave Lavpafiler Lavpafilere kal dimenjonere lik a knekkfrekvenen blir 500 rad/ og relaiv dempningkoeffiien kal være lik 0,5. erom moanden er på 4 Ω må kapaianen

Detaljer

FYS 105 Fysikk Ordinær eksamen vår 2005

FYS 105 Fysikk Ordinær eksamen vår 2005 FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon

Detaljer

FYS3220 Oppgaver om Fourieranalyse

FYS3220 Oppgaver om Fourieranalyse FYS3220 Oppgaver om Fourieranalyse Innhold Enkle fourieranalyse oppgaver... 1 1) egn frekvensspeker for e sammensa sinus signal... 1 2) Fra a n og b n il c n og θ... 2 Fourier serieanalyse... 2 3) Analyse

Detaljer

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS5 Fyikk LÆRER: Fyikk : Per Henrik Hogad Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 4 inkl. foride Anall

Detaljer

Fart. Eksempel: Gjennomsnittsfart

Fart. Eksempel: Gjennomsnittsfart Far ALV EGELAND, NAROM Når vi ilbakelegger 100 km i løpe av 2 imer uavhengig av om vi opper unervei har vi en gjennomnifar på 50 km/h. Vi ville ha bruk like lang i erom vi hae kjør me konan far på 50 km/h.

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider:

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbei og kineik energi 9..8 YS-MEK 9..8 rikjon empirik lov for aik frikjon: f < f, ma µ N µ : aik frikjonkoeffiien empirik lov for ynamik frikjon: f µ N µ : ynamik frikjonkoeffiien µ < µ kraf virker moa

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall

Detaljer

Eksamensoppgave i SØK3001 Økonometri I

Eksamensoppgave i SØK3001 Økonometri I Insiu for samfunnsøkonomi Eksamensoppgave i SØK3001 Økonomeri I Faglig konak under eksamen: Kåre Johansen Tlf.: 73 59 19 33 Eksamensdao: 1. desember 2017 Eksamensid (fra-il): 5 imer (09.00-14.00) Sensurdao:

Detaljer

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 6 inkl.

Detaljer

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVRSITTT I AGDR Griad K S A M N S O P P G A V : FAG: FYS5 Fikk/Kjei LÆRR: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 kaenid, fra-il: 9. 4. kaenoppgaen beår a følgende Anall ider: 6 inkl.

Detaljer

Eksamen ECON 2200, Våren 2013 ( ) ( ) 2 ( ) 2

Eksamen ECON 2200, Våren 2013 ( ) ( ) 2 ( ) 2 enorveiledning Ekamen ECON 00 Våren 03 Oppgave 8 poeng E poeng per derivajon dv poeng i e og. Deriver ølgende unkjoner. Deriver med henn på begge argumener i e og. a ln b ln ln ln c e e d g g g g e F F

Detaljer

Eksamensoppgave i FIN3006 Anvendt tidsserieøkonometri

Eksamensoppgave i FIN3006 Anvendt tidsserieøkonometri Insiu for samfunnsøkonomi Eksamensoppgave i FIN3006 Anvend idsserieøkonomeri Faglig konak under eksamen: Kåre Johansen Tlf.: 73 59 19 36 Eksamensdao: 23. mai 2014 Eksamensid (fra-il): 6 imer (09.00 15.00)

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVERSITETET I AGDER Griad E K S A M E N S O G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : er Henrik Hogad Grehe Lehrann Klaer: Dao:.5.4 Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider: 6

Detaljer

Helikopterlab TTK4115 Lineær systemteori

Helikopterlab TTK4115 Lineær systemteori NTNU Norge eknik-naurvienkaelige univerie Fakule for informajoneknologi, maemaikk og elekroeknikk Iniu for eknik kyberneikk Helikoerlab TT4 Lineær yemeori Projekraor 0.0.03 Av: Grue 4 6664 & 669846 Rune

Detaljer

Forelesning nr.9 INF 1410

Forelesning nr.9 INF 1410 Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TRONDHEIM

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TRONDHEIM HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 RONDHEIM ALM005M-A Matematikk 1 Grunnlagfag - 10 tudiepoeng Cae Høt 011 Le dette ført Caen er en "hjemmeoppgave"

Detaljer

Repetisjon 20.05.2015

Repetisjon 20.05.2015 Repeisjon 0.05.015 FYS-MEK 1110 0.05.015 1 Eksamen: Onsdag, 3. Juni, 14:30 18:30 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser

Detaljer

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013 Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger

Detaljer

1 Laplacetransform TMA4125 våren 2019

1 Laplacetransform TMA4125 våren 2019 Lplcernform TMA45 våren 9 Lplcernform er en eknikk vi kl bruke il løe ordinære differenillikninger. For de føre er de en mye mer elegn eknikk enn den du lære i M3, for de ndre kler den en bredere kle v

Detaljer

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Obligaorisk øvelsesoppgave våren 22 Ved sensuren illegges alle oppgavene lik vek For å få godkjen besvarelsen må den i hver fall: gi mins

Detaljer

Advarsel: Dette løsningsforslaget er mer omfattende enn hva som ventes av en god besvarelse.

Advarsel: Dette løsningsforslaget er mer omfattende enn hva som ventes av en god besvarelse. Senorveiledning il ekamen i ECON 0 9..006 Vikig informajon il enorene: I den engelke overeelen le likning (3) i ogave (c) deverre feilformuler. Senorene e om å a henyn il dee under enureringen derom de

Detaljer

Løsningsforslag for regneøving 3

Løsningsforslag for regneøving 3 Ulever: 3.mars 7 Løsningsforslag for regneøving 3 Oppgave : a Se opp ligning for spenningen over som funksjon av id, for. R v + - Kres Løsning: Beraker kresen førs: I iden før null vil spenningen over

Detaljer

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVERITETET I AGDER Griad E K A M E N O G A V E : FAG: FY3 Fikk/Kjei ÆRER: Fikk : er Henrik Hogad Grehe ehrann Klaer: Dao:.5.4 Ekaenid, ra-il: 9. 4. Ekaenoppgaen beår a ølgende Anall ider: 6 inkl. oride

Detaljer

LØSNING. Eksamensoppgave i TALM1004 Matematikk 2. Institutt for allmennfag. Faglig kontakt under eksamen: Kåre Bjørvik Tlf.

LØSNING. Eksamensoppgave i TALM1004 Matematikk 2. Institutt for allmennfag. Faglig kontakt under eksamen: Kåre Bjørvik Tlf. Intitutt for allmennfag Ekamenoppgave i ALM4 Matematikk LØSNING Faglig kontakt under ekamen: Kåre Bjørvik lf.: 9 77 898 Ekamendato: 5.5.7 Ekamentid (fra-til): 9. 4. Hjelpemiddelkode/illatte hjelpemidler:

Detaljer

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1 . Berak følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < T = 0 + Y, 0 < < Hvor Y er BNP, C er priva konsum, I er privae realinveseringer, G er offenlig kjøp av varer og jeneser, T er

Detaljer

( ) ( ) ( ) ( ) 2. Kjell Arne Brekke Vidar Christiansen. Econ 2200 vår 2009 sensorveiledning

( ) ( ) ( ) ( ) 2. Kjell Arne Brekke Vidar Christiansen. Econ 2200 vår 2009 sensorveiledning Kjell Arne Brekke Vidar Chriianen Econ 00 vår 009 enorveilednin Vi ir poen or hver var. Makimal poenall på hver oppave varer il den vek om er oppi i proen. Makimal oal poenum blir dermed 00. Vi vil enere

Detaljer

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved Sensorveiledning: ELE 37191 Maemaikk valgfag Eksamensdao: 13.06.2012 09:00 1:00 Toal anall sider: 5 Anall vedlegg: 0 Tillae hjelpemidler: BI-dener eksamenskalkulaor TEXAS INSTRUMENTS BA II Plus Innføringsark:

Detaljer

1 Lavpassfilter Lavpassfilteret påtrykkes en inngangsspenning på 1 V ved t = 0. Spenningen over spolen er vist i figuren under.

1 Lavpassfilter Lavpassfilteret påtrykkes en inngangsspenning på 1 V ved t = 0. Spenningen over spolen er vist i figuren under. ALM5M-A Matematikk Utatt Ekamen, 9 Lavpafilter Lavpafilteret påtrykke en inngangpenning på V ved t =. Spenningen over polen er vit i figuren under. Spenning [V].9.8.7.6.5.4.3.. Tidkontanten til lavpafilteret

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbei og kineik energi 4..4 Samale mellom uener og lærer i y-mek : orag, 7.eb., kl. 4:, rom Ø443 YS-MEK 4..4 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N :

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-RØNDELAG Aving for eknologi Målform: Bokmål Eksamensdao: 3..4 Varighe/eksamensid: 9-5 Emnekode: Emnenavn: Klasse(r): ELE33 Indusriell auomaisering ELAH Sudiepoeng: Faglærer(e): (navn og

Detaljer

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje Kp Poijon / Highe / kelerjon D - Beegele lng en re linje Løning Lufpuebenk Highe: oocellene kn flye Siden ognen hr konn highe ed beegele på lufpuebenken, il beregningen highe ære uhengig foocellene poijon

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 OpenGL (vekt 1 5 )

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 OpenGL (vekt 1 5 ) UNIVERSITETET I OSLO De maemaisk-naurvienskapelige fakule Eksamen i INF3320/INF4320 Meoder i grask daabehandling og diskre geomeri Eksamensdag: 7. desember 2007 Tid for eksamen: 14:30 17:30 Oppgavesee

Detaljer

INF september 2008

INF september 2008 INF 4. epember 8 Foreleer: Sein Krogdahl Dagen ema: Kapiel 4: Machinger i (ureede) grafer (maching = pardannele) Fly i neverk (neverk = reede grafer med kapaieer ec.) Dagen ema er krafig forbunde med konvekie,

Detaljer

INF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS

INF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS INF34 Del Teori og oppgaver Grunnleggende Digial CMOS INF34 Grunnleggende digial CMOS Transisor som bryer CMOS sår for Complemenary Meal On Semiconducor. I CMOS eknologi er de o komplemenære ransisorer,

Detaljer

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,

Detaljer

Aliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem

Aliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem Forelesning 9.februar 24 Delkapilene 4.4-4.6 fra læreboken, 4.3 er il selvsudium. Repeisjon om sampling og aliasing Diskre-il-koninuerlig omforming Inerpolasjon med pulser Oversamling bedrer inerpolasjon

Detaljer

INF november Stein Krogdahl (Litt mye tekst, med tanke på lettere repetisjon) Dagens tema: Kapittel 14:

INF november Stein Krogdahl (Litt mye tekst, med tanke på lettere repetisjon) Dagens tema: Kapittel 14: INF 4 5. november 29 Sein Krogdahl (Li mye ek, med anke på leere repeijon) Dagen ema: Kapiel 4: Machinger i (ureede) grafer (maching = pardannele) Fly i neverk (neverk = reede grafer med kapaieer ec.)

Detaljer

Eksamensoppgave i FIN3006 Anvendt tidsserieøkonometri

Eksamensoppgave i FIN3006 Anvendt tidsserieøkonometri Insiu for samfunnsøkonomi Eksamensoppgave i FIN3006 Anvend idsserieøkonomeri Faglig konak under eksamen: Kåre Johansen Tlf.: 73 59 9 36 Eksamensdao: 4. juni 05 Eksamensid (frail): 6 imer (09.005.00) Sensurdao:

Detaljer

Spesialisering: Anvendt makro 5. Modul

Spesialisering: Anvendt makro 5. Modul Spesialisering: Anvend makro 5. Modul 1.B Lineære regresjonsmodeller og minse kvadraers meode (MKM) Drago Berghol Norwegian Business School (BI) 10. november 2011 Oversik I. Inroduksjon il økonomeri II.

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kiik energi..3 YS-MEK..3 arbeid-energi eorem:, K K arbeid er ilfør mekanik energi. kiik energi K m arbeid generel:, (,, ) arbeid hi krafen er bare poijonahengig: d, ( ) d ( ) d alernai formulering

Detaljer

Våren Ordinær eksamen

Våren Ordinær eksamen Våren - Ordinær ekaen. Vi enker a en parikkel beeger eg lang en re linje (-aken. Parikkelen arer i r i pijn =. ed iden =. Parikkelen haighe funkjn a iden er gi ed: ( hr.. a eregn parikkelen akelerajn a

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 11.1. 014 5 klokketimer TALM1003-A Matematikk

Detaljer

Dette kapittelet tar for seg krefter som oppstår når en vinding beveges i et magnetisk felt.

Dette kapittelet tar for seg krefter som oppstår når en vinding beveges i et magnetisk felt. 5.3 KRETER MAGNETELT 1 5.3 KRETER MAGNETELT Dee kapiee ar for eg krefer om oppår når en vinding bevege i e magneik fe. KRETER SOM VRKER PÅ EN LEDER ET MAGNETELT Når en vinding bir forfye horiona gjennom

Detaljer

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter.

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter. TFE4110 Digialeknikk med kreseknikk Løsningsforslag il regneøving 5 vårsemeser 2008 Løsningsforslag il regneøving 5 Ulever: irsdag 29. april 2008 Oppgave 1: a) Tegn egningen for en eksklusiv eller por

Detaljer

Teksturanalyse og syntese basert på Markovfelt-metoder. Lars Aurdal,

Teksturanalyse og syntese basert på Markovfelt-metoder. Lars Aurdal, Tekuranalye og ynee baer på Markovfel-meoder. Lar Aurdal, lau@ffi.no FORSVARETS FORSKNINGSINSTITUTT Overik Hva er en ekur? Ekempler på ekurer. Hvorfor analyere og yneiere ekurer. Tekuranalye, li hiorikk.

Detaljer

Løsningsforslag øving 6, ST1301

Løsningsforslag øving 6, ST1301 Løsningsforslag øving 6, ST1301 Oppgave 1 Løse Euler-Loka ligningen ved ruk av Newon's meode. Ana a vi har en organisme med maksimal alder lik n år. Vi ser kun på hunnene i populasjonen. La m i være anall

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERITETET I AGDER Grimd E K A M E N O G A V E : FAG: FY Fyikk ÆRER: Fyikk : er Henrik Hogd Kle(r: Do: 7..6 Ekmenid, fr-il: 9. 4. Ekmenoppgen beår følgende Anll ider: 6 (inkl. foride Anll oppger: 4 Anll

Detaljer

MAT1030 Forelesning 26

MAT1030 Forelesning 26 MAT030 Forelesning 26 Trær Roger Anonsen - 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) Forelesning 26 Li repeisjon Prims algorime finne de minse uspennende ree i en veke graf en grådig algorime i den forsand

Detaljer

INF Oblig 3 ligger ute, frist 22/11. Har oppgave fra dagens stoff. Matchinger i (urettede) grafer (matching = pardannelse)

INF Oblig 3 ligger ute, frist 22/11. Har oppgave fra dagens stoff. Matchinger i (urettede) grafer (matching = pardannelse) INF 40. november 00 Sein Krogdahl Oblig ligger ue, fri /. Har oppgave fra dagen off De er mye (og lien) ek på die foilene. Men å være grei for repeijon Dagen ema: Kapiel 4: Machinger i (ureede) grafer

Detaljer

Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen

Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen MAT1030 Diskre Maemaikk Forelesning 26: Trær Roger Anonsen Insiu for informaikk, Universiee i Oslo Forelesning 26 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) MAT1030 Diskre Maemaikk 5. mai 2009 2 Li repeisjon

Detaljer

EKSAMENSOPPGAVE I FIN3005 MAKROFINANS ASSET PRICING

EKSAMENSOPPGAVE I FIN3005 MAKROFINANS ASSET PRICING NTNU Norges eknisk-naurvienskapelige universie Insiu for samfunnsøkonomi EKSAMENSOPPGAVE I FIN3005 MAKROFINANS ASSET PRICING Faglig konak under eksamen: Hans Jørgen Tranvåg Tlf.: 9 6 66 Eksamensdao: Mandag

Detaljer

H Laplacetransformasjon, transientanalyse og Z- transformasjon

H Laplacetransformasjon, transientanalyse og Z- transformasjon FYS30 H013-1 Laplacetranformajon, tranientanalye og Z- tranformajon... 1 801 Paivt Chebyhevfilter (H00-4)... 80 Aktivt Butterworth & Beel filter (H03-1)... 3 807 Fra 1-orden prototype Beel filter til båndpa...

Detaljer

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s. eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m

Detaljer

1. Vis hvordan vi finner likevektsløsningen for Y. Hint: Se forelesningsnotat 4 (Økonomisk aktivitet på kort sikt), side 23-24

1. Vis hvordan vi finner likevektsløsningen for Y. Hint: Se forelesningsnotat 4 (Økonomisk aktivitet på kort sikt), side 23-24 Oppgave. Vis hvordan vi finner likeveksløsningen for Y. Hin: Se forelesningsnoa 4 Økonomisk akivie på kor sik, side 23-24 2. Gi en begrunnelse for hvorfor de er rimelig å ana a eksporen er eksogen i denne

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi. Torsdag Kalkulator: Type C Alt skriftlig materiale

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi. Torsdag Kalkulator: Type C Alt skriftlig materiale HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Løning Tordag.. 04 5 klokketimer TALM003-A Matematikk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO De maemaisk-naurvienskapelige fakule Eksamen i INF3320 Meoder i grafisk daabehandling og diskre geomeri Eksamensdag: 2. desember 2009 Tid for eksamen: 14.30 17.30 Oppgavesee er på

Detaljer

Løsningsforslag til obligatorisk øvelsesoppgave i ECON 1210 høsten 06

Løsningsforslag til obligatorisk øvelsesoppgave i ECON 1210 høsten 06 Løsningsforslag il obligaorisk øvelsesoppgave i ECON 0 høsen 06 Oppgave (vek 50%) (a) Definisjon komparaive forrinn: Den ene yrkesgruppen produserer e gode relaiv mer effekiv enn den andre yrkesgruppen.

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbei og kineik energi 9..6 YS-MEK 9..6 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N : ynamik rikjonkoeiien kra irker moa beegelerening: N YS-MEK 9..6 hp://pingo.upb.e/

Detaljer

Løsningsforslag oppgaver FYS3220 uke43 H2009 HBalk

Løsningsforslag oppgaver FYS3220 uke43 H2009 HBalk Løningforlag oppgaver FYS3 uke43 H9 HBalk Oppgave Nyquit diagrammer... Oppgave Tilbakekobling... Oppgave 3 Polplaering, Bodeplot, Nyquit... 4 Oppgave Nyquit diagrammer a) Forklar hva et Nyquit diagram

Detaljer

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser.

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser. 4.4 INNE- OG TKOPLING AV EN KONDENSATO 1 4.4 INN- OG TKOPLING AV EN KONDENSATO Ved opp -og uladning av kondensaorer varierer srøm og spenning. De er vanlig å bruke små boksaver for å angi øyeblikksverdier

Detaljer

Styring av romfartøy STE6122

Styring av romfartøy STE6122 Syring av romfarøy STE6122 3HU -. 1LFNODVVRQ Høgskolen i Narvik Høs 2000 Forelesningsnoa 8 1 6W\ULQJ RJ UHJXOHULQJ DY RULHQWHULQJ,, Nødvendig med nøyakig syring og/eller regulering av orienering i en rekke

Detaljer

FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: FYS8 Fikk LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.4 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall oppgae:

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kiisk energi..8 FYS-MEK..8 hp://pingo.upb.de/ access number: 63473 To isbåer, en med masse m og en med masse m, kjører på en friksjonsfri, horisonal, frossen innsjø. Begge båene sarer fra ro,

Detaljer

Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag

Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag Signalfiltrering Finn Haugen TechTeach. eptember 3 Sammendrag Dette dokumentet gir en kort bekrivele av ignalfiltrering med tidkontinuerlige, ogå kalt analoge, filtere og med tiddikrete, ogå kalt digitale,

Detaljer

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSIEE I GDER Grid E K S M E N S O G V E : FG: FYS5 Fyikk LÆRER: Fyikk : er Henrik Hogd Kle(r: Do: 5.5. Ekenid, r-il: 9. 4. Ekenoppgven beår v ølgende nll ider: 4 (inkl. oride nll oppgver: 4 nll vedlegg:

Detaljer

a) Tala i tabellen under skal grunntalskonverterast. Alle rutene i tabellen skal fyllast ut. Vis framgangsmåten. BIN OCT HEX DEC

a) Tala i tabellen under skal grunntalskonverterast. Alle rutene i tabellen skal fyllast ut. Vis framgangsmåten. BIN OCT HEX DEC Datateknikk TELE1004-A 13H HiST-AFT-EDT Delemne digitalteknikk og datakommunikasjon Øving 1; løysing Oppgave 1 Tala i tabellen under skal grunntalskonverterast. Alle rutene i tabellen skal fyllast ut.

Detaljer

LØSNINGSFORSLAG Eksamen i emne SIE4006, Digitalteknikk med kretsteknikk, fredag 16. mai 2003

LØSNINGSFORSLAG Eksamen i emne SIE4006, Digitalteknikk med kretsteknikk, fredag 16. mai 2003 Side av 6 LØSNINGSFORSLAG Ekamen i emne SIE4006, Digitalteknikk med kretteknikk, fredag 6. mai 2003 Oppgave a) Kirchoff trømlov: Den algebraike um av alle grentrømmer i et knutepunkt i en kret er lik null

Detaljer

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus UNIVESITETET I AGDE Giad E K S A M E N S O P P G A V E : FAG: FYS Fyikk LÆE: Fyikk : Pe Henik Hogad Toe Vehu Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall

Detaljer

Tekniske data Nominell strøm In, hovedkontakter

Tekniske data Nominell strøm In, hovedkontakter konakorer Beskrivelse modulære konakorer er førs og frems uvikle for lys og varmesyring, men kan også benyes for småmoordrif relaer il varmesyring. Konakorene syres ved hjelp av e fas signal. Rød fane

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Kandidatnr.: Side UNIVERSITETET I OSLO et matematik-naturvitenkapelige fakultet Ekamen i: Ekamendag: Tid for ekamen: Oppgaveettet er på Vedlegg: Tillatte hjelpemidler: INF4 Ondag 29. november kl. 4:3-8:3

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Bevegelse i én dimensjon 15.1.214 FYS-MEK 111 15.1.214 1 Malab: mulig å bruke på egen PC med UiO lisens hjelp med insallasjon på daa-verksed eller i forkurs Forsa ledige plasser i forkurs: Fredag kl.1-13

Detaljer

Newtons lover i to og tre dimensjoner 09.02.2015

Newtons lover i to og tre dimensjoner 09.02.2015 Newons loer i o og re dimensjoner 9..5 FYS-MEK 3..4 Innleering Oblig : på grunn a forsinkelse med deilry er frisen usa il onsdag,.., kl. Innleering Oblig : fris: mandag, 6.., kl. Mideiseksamen: 6. mars

Detaljer

Obligatorisk oppgave ECON 1310 høsten 2014

Obligatorisk oppgave ECON 1310 høsten 2014 Obligaorisk oppgave EON 30 høsen 204 Ved sensuren vil oppgave elle 20 prosen, oppgave 2 elle 50 prosen, og oppgave 3 elle 30 prosen. For å få godkjen må besvarelsen i hver fall: gi mins re nesen rikige

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig konak under eksamen: Jon Andreas Søvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Infoskriv ETØ-1/2016 Om beregning av inntektsrammer og kostnadsnorm for 2015

Infoskriv ETØ-1/2016 Om beregning av inntektsrammer og kostnadsnorm for 2015 Infoskriv Til: Fra: Ansvarlig: Omseningskonsesjonærer med inneksramme Seksjon for økonomisk regulering Tore Langse Dao: 1.2.2016 Vår ref.: 201403906 Arkiv: Kopi: Infoskriv ETØ-1/2016 Om beregning av inneksrammer

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: okmål Mandag 7.mai 0 5 timer LM006M Matematikk E 0 Faglærer(e): (navn og

Detaljer

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Grid E K A E N O P P G A V E : FAG: FY05 Fyikk ÆRER: Per enrik ogd Kler: Do: 6.05. Ekenid, fr-il: 09.00 4.00 Ekenoppgen beår følgende Anll ider: 5 inkl. foride Anll oppger: 3 Anll

Detaljer

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering Forelesning 25 Trær Dag Normann - 23. april 2008 Beskjeder Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4, blir avleregning, slik a sudenene ikke kan belage seg på

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.1. 01 5 klokketier TALM100-A Mateatikk 1 EL FEN

Detaljer

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering Beskjeder MAT1030 Diskre maemaikk Forelesning 25: Trær Dag Normann Maemaisk Insiu, Universiee i Oslo 23. april 2008 Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4,

Detaljer

Dato: 15.september Seksjonssjef studier og etter utdanning Arkivnr 375/2008

Dato: 15.september Seksjonssjef studier og etter utdanning Arkivnr 375/2008 S TYRES AK Syremøe 07 23.sepember Syresak 53/2008 MÅLTALL framidig uvikling av sudenall og sudieprogrammer KONTAKTINFORMASJON POSTBOKS 6853, ST. OLAVS PLASS NO-0130 OSLO TLF: (+47) 22 99 55 00 FAKS: (+47)

Detaljer

8 Vektorer og kurver. Løsning til KONTROLLOPPGAVER OPPGAVE 1. t t ) Vi finner skjæringspunktet med y-aksen ved å sette x = 0.

8 Vektorer og kurver. Løsning til KONTROLLOPPGAVER OPPGAVE 1. t t ) Vi finner skjæringspunktet med y-aksen ved å sette x = 0. Løning il KONTROLLOPPGAVER 8 Vekorer og kurver OPPGAVE 1 a) 1) Vi lager abell, velger o enkle -verdier og regner u verdiene for x og y. x 6 y ) Vi finner kjæringpunke med y-aken ved å ee x =. 1 y 1 Linja

Detaljer

Kap 01 Enheter, fysiske størrelser og vektorer

Kap 01 Enheter, fysiske størrelser og vektorer Kap Enheter, fyike tørreler og vektorer.7 Concorde er det rakete paajerflyet. Det har en hatighet på 45 mi/h (ca ganger lyden hatighet, dv Mach). mi = 69 m. a) Hva er Concorde-flyet hatighet i km/h? b)

Detaljer

Boliginvesteringer og boligpriser

Boliginvesteringer og boligpriser Boliginveeringer og boligprier Dag Henning Jacoben, rådgiver i Finanmarkedavdelingen, riin Solberg-Johanen, konulen i Økonomik avdeling, og eri Haugland, konulen i Pengepoliik avdeling. Vi analyerer uviklingen

Detaljer