x(t) = sin(1000t)+cos(1000t). Amplituden til det stasjonære utgangssignalet er da lik:

Størrelse: px
Begynne med side:

Download "x(t) = sin(1000t)+cos(1000t). Amplituden til det stasjonære utgangssignalet er da lik:"

Transkript

1 LM006M- Maemaikk : Ekamen mandag 0.mai, 00 Oppgave Lavpafiler Lavpafilere kal dimenjonere lik a knekkfrekvenen blir 500 rad/ og relaiv dempningkoeffiien kal være lik 0,5. erom moanden er på 4 Ω må kapaianen il kondenaoren være lik: 0µF B 00µF 50µF Oppgave Lavpafiler Lavpafilere er dimenjoner lik a knekkfrekvenen er 500 rad/ og relaiv dempningkoeffiien er lik 0,5. Forerkningen il lavpafilere i knekkfrekvenen er da lik: 0 db B -3 db -6 db Oppgave 3 Lavpafiler Lavpafilere er dimenjoner med en knekkfrekven på 000 rad/ og en relaiv dempningkoeffiien på. Filere blir påryk følgende inngangignal: x() = in(000)+co(000). mpliuden il de ajonære ugangignale er da lik: B Oppgave 4 Høypafiler Høypafilere kal dimenjonere lik a knekkfrekvenen blir 3000 rad/ og relaiv dempningkoeffiien kal være lik. erom moanden er på 4 Ω må indukanen il polen være lik:,5 mh B 0,5 mh 0,5 mh Oppgave 5 Høypafiler Høypafilere er dimenjoner lik a knekkfrekvenen er 3000 rad/ og relaiv dempningkoeffiien er lik. Forerkningen il høypafilere i knekkfrekvenen er da lik: 0 db B -3 db -6 db Oppgave 6 Høypafiler Høypafilere er dimenjoner med en knekkfrekven på rad/ og en relaiv dempningkoeffiien på. Filere blir påryk følgende inngangignal: x() = +co(40000). Sajonær er de en poiiv faeforkyvning mellom ugangignale og inngangignale, og om er lik: 90 B 45 0

2 LM006M- Maemaikk : Ekamen mandag 0.mai, 00 Oppgave 7 Båndpafiler Båndpafilere dimenjonere lik a knekkfrekvenene blir på 000 rad/ og 0000 rad/. erom moanden er på 4 Ω må kapaianen il kondenaoren være lik: 0µF B 00µF 50µF Oppgave 8 Båndpafiler Båndpafilere er dimenjoner lik a knekkfrekvenene er 000 rad/ og 0000 rad/. Faen il båndpafilere er 0 for vinkelfrekvenen: 000 rad/ B 6000 rad/ 0000 rad/ Oppgave 9 Båndpafiler Båndpafilere er dimenjoner med en knekkfrekven på 000 rad/ og 9000 rad/. Filere blir påryk følgende inngangignal: x() = + co(3000). mpliuden il de ajonære ugangignale er da lik: B Oppgave 0 Båndoppfiler Båndoppfilere dimenjonere lik a knekkfrekvenene blir på 000 rad/ og 8000 rad/. erom moanden er på 4 Ω må indukanen il polen være lik:,5 mh B 0,5 mh 0,5 mh Oppgave Båndoppfiler Båndoppfilere er dimenjoner lik a knekkfrekvenene er 000 rad/ og 8000 rad/. Forerkningen il båndoppfilere er 0 decibel for vinkelfrekvenen: 000 rad/ B 4000 rad/ 8000 rad/ Oppgave Båndoppfiler Båndoppfilere er dimenjoner lik a knekkfrekvenene er på 4000 rad/ og 6000 rad/. Filere blir påryk følgende inngangignal: x() = +in(8000). e ajonære ugangignale er da lik: B in(8000 ) 0

3 LM006M- Maemaikk : Ekamen mandag 0.mai, 00 3 Oppgave 3 Eerarbeid: Høypafiler Høypafilere er dimenjoner lik a knekkfrekvenen er rad/ og relaiv dempningkoeffiien er lik. Filere blir påryk e periodik firkanignal med ampliude V og med en vinkelfrekven om er lik rad/. mpliuden il den føreharmonike komponenen på ugangen il filere er da lik B 4 π π Oppgave 4 Eerarbeid: Båndpafiler Båndpafilere dimenjonere lik a knekkfrekvenene blir på 000 rad/ og 9000 rad/. Filere blir påryk e periodik firkanignal med ampliude V og med en vinkelfrekven om er lik 3000 rad/. mpliuden il den føreharmonike komponenen på ugangen il filere er da lik B 4 π π Oppgave 5 Eerarbeid: Båndoppfiler Båndoppfilere dimenjonere lik a knekkfrekvenene blir på 4000 rad/ og 6000 rad/. Båndoppfiler blir påryk e enheprang. Ugangignale il båndoppfilere er gi ved urykke: e e B e e 3 e e

4 LM006M- Maemaikk : Ekamen mandag 0.mai, 00 4 Oppgave 6 Ordinære differeniallikninger, del II E elemenær blokkkjema for e dynamik yem er egne i Simulink. Se figuren under. 3 onan Gain / In x Scope / In y Gain La ugangignale fra In x beegne med x og ugangignale fra In y beegne med y. e dynamike yeme er bekreve av differeniallikningyeme: dx dx dx = x + y + 3 = x + y + 3 = x + y + 3 d d d B dy dy dy = x y = 3x y = x y d d d Oppgave 7 Ordinære differeniallikninger, del II Samme elemenære blokkkjema om i oppgave 6. e blir kjør en imulering av yeme og reulae er vi i figuren under. Hva er rikig påand?:.8.6 Kurve.4. Kurve Signale y() vie i Kurve B Signale x() vie i Kurve Signale x() vie i Kurve

5 LM006M- Maemaikk : Ekamen mandag 0.mai, 00 5 Oppgave 8 Ordinære differeniallikninger, del II En maemaik modell for e dynamik yem er bekreve av differeniallikningyeme dx = x + y + 3 d dy = 3x y d x og y er ilandene il yeme. Egenverdiene il yeme er Reelle og forkjellige B Kompleke Reelle og like Oppgave 9 Laplaceranformajonen E penningignal x() er vi i figuren under. Laplaceranformajonen il x() er gi ved: e + e B 0 5 e + 5 e Oppgave 0 Laplaceranformajonen Laplaceranformajonen il e penningignal er gi ved urykke X() = Spenningignale x() i idplane er gi ved: x() 5e 5e 4 0 = B x e e ( ) 5 = co(6 ) + 0 in(6 ) x() = 5e co(6)

6 LM006M- Maemaikk : Ekamen mandag 0.mai, 00 6 Oppgave Laplaceranformajonen E dynamik yem blir ilfør e enheprang ved iden = 0. Ugangignale il yeme er vi i figuren under. Overføringfunkjonen mellom ugangignale og inngangignale er: 0 Sep Repone , mpliude 6 5 B + 0, 4 3 0, Time (ec) Oppgave Laplaceranformajonen Frekvenkarakeriikken il e dynamik yem er a opp. Reulae er vi i figuren under. Overføringfunkjonen il de dynamike yeme er: 0 Bode iagram B + + 0, + 0, 0, Magniude (db) Phae (deg) Frequency (rad/ec)

7 LM006M- Maemaikk : Ekamen mandag 0.mai, 00 7 Oppgave 3 Fourierrekker Gi følgende periodike ignal: e periodike ignale x() er: en odde funkjon B en like funkjon verken en odde eller like funkjon ingen av varalernaivene, B eller er rikig Oppgave 4 Fourierrekker Gi amme periodike ignal om i oppgave 3. Gjennomniverdien il ignale er: 0 B,, 5 Oppgave 5 Fourierrekker Gi amme periodike ignal om i oppgave 3. mpliuden il den 5.harmonike komponenen i ignale er lik: 0 B,, 5 Oppgave 6 Følger og rekker erom en regner u ( + x) 5 vil en få e 5.gradpolynom på formen a0 + ax+ a x + a3x + a4x + a5x. Koeffiienen a 3 er lik 8 B Oppgave 7 Taylorpolynomer, Taylorrekker og MacLaurinrekker Funkjonen f( x) = x e x kal Taylor-rekkeuvikle omkring arbeidpunke x = Reulae kan krive på formen f( x) = a0 + ax+ a x + a3x + a4x + a5x +... Koeffiienen a 5 er lik 0 B / /4

8 LM006M- Maemaikk : Ekamen mandag 0.mai, 00 8 Oppgave 8 Taylorpolynomer, Taylorrekker og MacLaurinrekker x Funkjonen f( x) = kal lineariere omkring arbeidpunke x = 0. + x en lineariere funkjonen beegne med L(x). Funkjonurykke il L(x) er gi ved: L( x) = x B Lx ( ) = L( x) = + x Oppgave 9 Funkjoner av flere variabler x Gi funkjonen f ( xy, ) = e in( x y) en pariell derivere av f(x, y) m.h.. x er gi ved f x = y e co( x y) x f x = y e in( x y) x f = x x B e ( in( x y) y co( x y) ) Oppgave 30 Gi funkjonen Funkjoner av flere variabler 4 f ( xy, ) x y 4xy 6y = + +. Punke (0, -3) er: e lokal makimumpunk B e lokal minimumpunk e adelpunk

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Bokmål Ekamendato: ugut 0 Varighet/ekamentid: Emnekode: 5 timer LM006M Emnenavn: Matematikk Klae(r): E Studiepoeng: 0 Faglærer(e): (navn og telefonnr

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi ALM6M-A Matematikk : Kontinuajonekamen augut HØGSKOLEN I SØR-TRØNELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Augut 9-4 ALM6M Emnenavn: Matematikk Klae(r): EL Studiepoeng:

Detaljer

Eksamensoppgave i TALM1004 Matematikk 2

Eksamensoppgave i TALM1004 Matematikk 2 Fakultet for teknologi Ekamenoppgave i TLM4 Matematikk Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato:.5.6 Ekamentid (fra-til): 9.-4. Hjelpemiddelkode/Tillatte hjelpemidler: lt kriftlig

Detaljer

TALM 1004 Matematikk 2-Eksamen mandag 4.mai 2015 LØSNING. 5 klokketimer TALM1004-A. Matematikk 2. Kåre Bjørvik. Kalkulator: Type C

TALM 1004 Matematikk 2-Eksamen mandag 4.mai 2015 LØSNING. 5 klokketimer TALM1004-A. Matematikk 2. Kåre Bjørvik. Kalkulator: Type C HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING 5 5 klokketimer TLM- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELG vdeling for teknologi Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Mandag 5.mai 04 5 timer TLM004 Matematikk Klae(r): EL FEN Studiepoeng: 0 Faglærer(e): (navn og telefonnr

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELG vdeling for teknologi Ekamendato: 0 Varighet/ekamentid: Emnekode: Emnenavn: 5 timer TLM00 Matematikk Klae(r): EL FEN Studiepoeng: 0 Faglærer(e): (navn og telefonnr på ekamendagen)

Detaljer

Oppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 4± fjæra er da lik:

Oppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 4± fjæra er da lik: LM6M- Mateatikk : Ekaen andag.ai, 9 Oppgave Forenklet odell av hjulopphenget Hjulopphenget er dienjonert lik at polene til odellen blir 4± j 3 fjæra er da lik:. Fjærtivheten til 3 75 48 7 N N N N Oppgave

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: okmål Mandag 7.mai 0 5 timer LM006M Matematikk E 0 Faglærer(e): (navn og

Detaljer

Oppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 5±

Oppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 5± LM6M- Mateatikk : Utatt ekaen 9 Oppgave Forenklet odell av hjulopphenget Hjulopphenget er dienjonert lik at polene til odellen blir 5± j 5. Fjærtivheten til fjæra er da lik: 3 5 75 48 Oppgave Forenklet

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING Mandag 4.. klokketimer TLM4- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:

Detaljer

Eksamensoppgave i TALM1004 Matematikk 2

Eksamensoppgave i TALM1004 Matematikk 2 Fakultet for teknologi Ekamenoppgave i TLM Matematikk Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato: 7. ugut 6 Ekamentid (fra-til): 9.-. Hjelpemiddelkode/Tillatte hjelpemidler: lt

Detaljer

Eksamensoppgave i TALM1004 Matematikk 2 LØSNING

Eksamensoppgave i TALM1004 Matematikk 2 LØSNING Fakultet for teknologi Ekamenoppgave i TLM Matematikk LØSNING Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato: ugut 6 Ekamentid (fra-til): 9.-. Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

1 Lavpassfilter Lavpassfilteret påtrykkes en inngangsspenning på 1 V ved t = 0. Spenningen over spolen er vist i figuren under.

1 Lavpassfilter Lavpassfilteret påtrykkes en inngangsspenning på 1 V ved t = 0. Spenningen over spolen er vist i figuren under. ALM5M-A Matematikk Utatt Ekamen, 9 Lavpafilter Lavpafilteret påtrykke en inngangpenning på V ved t =. Spenningen over polen er vit i figuren under. Spenning [V].9.8.7.6.5.4.3.. Tidkontanten til lavpafilteret

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi LM6M- Matematikk -Ekamen 9.mai HØGSKOLEN I SØR-TRØNELG veling for teknologi Kaniatnr: Ekamenato: Varighet/ekamenti: Emnekoe: Manag 9.mai 9-4 LM6M Emnenavn: Matematikk Klae(r): EL Stuiepoeng: Faglærer(e):

Detaljer

Analyse av passive elektriske filtrer

Analyse av passive elektriske filtrer HØGSKOEN I SØ-TØNDEAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TONDHEIM TAM004-A Matematikk 2 (Grunnlagfag, 0 tudiepoeng) ærebok: Anthony roft, obert Davion, Martin Hargreave: Engineering

Detaljer

LØSNING. Eksamensoppgave i TALM1004 Matematikk 2. Institutt for allmennfag. Faglig kontakt under eksamen: Kåre Bjørvik Tlf.

LØSNING. Eksamensoppgave i TALM1004 Matematikk 2. Institutt for allmennfag. Faglig kontakt under eksamen: Kåre Bjørvik Tlf. Intitutt for allmennfag Ekamenoppgave i ALM4 Matematikk LØSNING Faglig kontakt under ekamen: Kåre Bjørvik lf.: 9 77 898 Ekamendato: 5.5.7 Ekamentid (fra-til): 9. 4. Hjelpemiddelkode/illatte hjelpemidler:

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 11.1. 014 5 klokketimer TALM1003-A Matematikk

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi. Torsdag Kalkulator: Type C Alt skriftlig materiale

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi. Torsdag Kalkulator: Type C Alt skriftlig materiale HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Løning Tordag.. 04 5 klokketimer TALM003-A Matematikk

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Iniu for fyikk Ekamenoppgave i TFY49 Inrumenering Faglig konak under ekamen: Seinar Raaen Tlf.: 482 96 758 Ekamendao: 2. mai 25 Ekamenid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv C,

Detaljer

Helikopterlab TTK4115 Lineær systemteori

Helikopterlab TTK4115 Lineær systemteori NTNU Norge eknik-naurvienkaelige univerie Fakule for informajoneknologi, maemaikk og elekroeknikk Iniu for eknik kyberneikk Helikoerlab TT4 Lineær yemeori Projekraor 0.0.03 Av: Grue 4 6664 & 669846 Rune

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 15. november 2011 Kapittel 8.9. Konvergens av Taylorrekker 3 i 3 i Løs likningen x 2 + 1 = 0 3 i Løs likningen

Detaljer

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006 øningforlag O346E Dynamike Syemer H 6 ekamen. november 6 Oppgave Gi e yem med ranferfnkjonen H 58 + a Tidkonanen for yeme er T 8 4. Den aike forerkningen er H 5 Saik forerkning for en varmvannank kan handle

Detaljer

H Laplacetransformasjon, transientanalyse og Z- transformasjon

H Laplacetransformasjon, transientanalyse og Z- transformasjon FYS30 H013-1 Laplacetranformajon, tranientanalye og Z- tranformajon... 1 801 Paivt Chebyhevfilter (H00-4)... 80 Aktivt Butterworth & Beel filter (H03-1)... 3 807 Fra 1-orden prototype Beel filter til båndpa...

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.6. 014 5 klokketier TALM100-A Mateatikk 1 EL FEN

Detaljer

Eksamen i TMA4130 Matematikk 4N

Eksamen i TMA4130 Matematikk 4N Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Yura Lyubarkii: mobil 9647362 Anne Kværnø: mobil 92663824 Ekamen i TMA430 Matematikk 4N Bokmål

Detaljer

ω ω ω ω ω ω Integrator. t-plan: s-plan: y(t) w=1 1.5 u(t) y ( t)

ω ω ω ω ω ω Integrator. t-plan: s-plan: y(t) w=1 1.5 u(t) y ( t) Integratr. t-plan: ut yt u t in t y t in t dt + C c t + C y t c + C + C C y t in t dt + C c t + + in t Fr :.5 yt w.5 ut -.5-3 4 5 6 7 8 9 Fr :.8.6 ut w.4. yt -. -.4 -.6 -.8 -...3.4.5.6.7.8.9 -plan: u y

Detaljer

FYS3220 Uke 43 Regeneverksted

FYS3220 Uke 43 Regeneverksted FYS Uke Regeneverked Oppvrmingoppgve Finn H() for følgende kreer.... b Signlmodellering: Sgnn... 7 Syring v Ovn. PID (H89-)... 75 Fekifer (ekmen H-)... NB! Oppgve 7 er den vikige oppgven denne uk. Den

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.7. Potensrekker (fra konvergens av) 3 Konvergens av potensrekker Eksempel For

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Iniu for fyikk Ekamenoppgave i TFY49 Inrumenering Faglig konak under ekamen: Seinar Raaen Tlf.: 482 96 758 Ekamendao: 3. juni 23 Ekamenid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv

Detaljer

FYS3220 Filteroppave Oppgave og løsningsforslag v. H.Balk

FYS3220 Filteroppave Oppgave og løsningsforslag v. H.Balk FYS0 Filteroppave Oppgave og løningforlag v. H.Balk 0_Paivt -orden hebyhev P til HP konvertering, prototype impedan og frekven kalering. -orden hebychev filter, prototype filter, frekven kalering, impedan

Detaljer

Oppgaver til Dynamiske systemer 1

Oppgaver til Dynamiske systemer 1 Oppgaver til Dynamike ytemer Oppgave 0. Lineariering av ulineær modell Likning (2.28) i læreboka er en dynamik modell av en tank med gjennomtrømning og oppvarming. Modellen gjengi her: cρv T (t) P (t)+cw(t)[t

Detaljer

Eksamen i TMA4135 Matematikk 4D

Eksamen i TMA4135 Matematikk 4D Noreg teknik naturvitkaplege univeritet Intitutt for matematike fag Side av 5 Fagleg kontakt under ekamen: Mariu Thaule telefon 73 59 35 30 Ekamen i TMA35 Matematikk D Nynork Laurdag. deember 0 Tid: 09.00

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 våren 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 våren 2007 Side av Løningforlag Ekamen i Fy-mek/Fy-mef våren 7 Oppgave a) En pendel beår av en iv, maelø av av lengde L med en kule med mae m fee i enden. Den andre enden er fee i e frikjonfri hengel. Gjør rede for

Detaljer

Norges teknisk- naturvitenskapelige universitet. Institutt for teknisk kybernetikk. Lsningsforslag ving 7. a) Ser pa lokomotiv og en vogn.

Norges teknisk- naturvitenskapelige universitet. Institutt for teknisk kybernetikk. Lsningsforslag ving 7. a) Ser pa lokomotiv og en vogn. Norge teknik- naturvitenkapelige univeritet Intitutt for teknik kybernetikk Oktober 992/PJN, September 96 Utlevert: 23..96 4334 SERVOTEKNIKK Lningforlag ving 7 Oppgave a) Ser pa lokomotiv og en vogn. Laplacetranformerer

Detaljer

Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag

Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag Signalfiltrering Finn Haugen TechTeach. eptember 3 Sammendrag Dette dokumentet gir en kort bekrivele av ignalfiltrering med tidkontinuerlige, ogå kalt analoge, filtere og med tiddikrete, ogå kalt digitale,

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.1. 01 5 klokketier TALM100-A Mateatikk 1 EL FEN

Detaljer

Retteveileder Eksamen i Fys-mek1110/Fys-mef1110 våren 2007

Retteveileder Eksamen i Fys-mek1110/Fys-mef1110 våren 2007 Side av 3 Reeveileder Ekamen i Fy-mek/Fy-mef våren 7 Oppgave a) En pendel beår av en iv, maelø av av lengde L med en kule med mae m fee i enden. Den andre enden er fee i e frikjonfri hengel. Gjør rede

Detaljer

Oppgave 1. = 2(1 4) = 6. Vi regner også ut de andre indreproduktene:

Oppgave 1. = 2(1 4) = 6. Vi regner også ut de andre indreproduktene: Løsning Eksamen i ELE 379 Maemaikk Valgfag Dao 7. juni 26 kl 9-4 Dee e e foreløpig løsningsforslag som ikke er komple. De skal ikke publiseres i denne form. Oppgave. (a) Vi ve a kolonnevekorene il A er

Detaljer

Kurs: FYS3220 Lineær kretselektronikk. Oppgave: LABORATORIEØVELSE B

Kurs: FYS3220 Lineær kretselektronikk. Oppgave: LABORATORIEØVELSE B Kur: FYS30 Lineær kretelektronikk Gruppe: Utført dato: Oppgave: LABOATOIEØVELSE B Omhandler: LAPLACE TANSFOMASJON... AC-ESPONS OG BODEPLOT... 7 3 WIENBOFILTE... 5 H.Balk rev 9 04.0.00 Utført av i Sett

Detaljer

EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl

EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl Side av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under ekamen: Førteamanueni Knut Arne Strand Telefon: 73 59 34 6 EKSAMEN I FAG SIF 44 FYSIKK 3 Ondag. deember

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

Eksamen i TMA4122 Matematikk 4M

Eksamen i TMA4122 Matematikk 4M Noreg teknik naturvitkaplege univeritet Intitutt for matematike fag Side av 5 Fagleg kontakt under ekamen: Erik Lindgren Mobil: 454 75 993 Ekamen i TMA422 Matematikk 4M Nynork Måndag 9. deember 20 Tid:

Detaljer

Løsningsforslag til Eksamen i TELE2003 Signalbehandling 6. mai 2015

Løsningsforslag til Eksamen i TELE2003 Signalbehandling 6. mai 2015 Løningorlag til Ekamen i TELE23 Signalbehandling 6. mai 215 Oppgave 1 (2 %) a) x( t) = Aco(2 π t + ϕ) Amplituden A er merket på iguren. Frekvenen 1 = T Faen ϕ kan inne av orholdet mellom T ϕ og T om begge

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TRONDHEIM

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TRONDHEIM HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 RONDHEIM ALM005M-A Matematikk 1 Grunnlagfag - 10 tudiepoeng Cae Høt 011 Le dette ført Caen er en "hjemmeoppgave"

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Fart. Eksempel: Gjennomsnittsfart

Fart. Eksempel: Gjennomsnittsfart Far ALV EGELAND, NAROM Når vi ilbakelegger 100 km i løpe av 2 imer uavhengig av om vi opper unervei har vi en gjennomnifar på 50 km/h. Vi ville ha bruk like lang i erom vi hae kjør me konan far på 50 km/h.

Detaljer

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien

Detaljer

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene: Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:

Detaljer

Løsningsforslag oppgaver FYS3220 uke43 H2009 HBalk

Løsningsforslag oppgaver FYS3220 uke43 H2009 HBalk Løningforlag oppgaver FYS3 uke43 H9 HBalk Oppgave Nyquit diagrammer... Oppgave Tilbakekobling... Oppgave 3 Polplaering, Bodeplot, Nyquit... 4 Oppgave Nyquit diagrammer a) Forklar hva et Nyquit diagram

Detaljer

FYS3220 Forelesningsnotat H.Balk

FYS3220 Forelesningsnotat H.Balk FYS3 Foreleningnotat H.Balk Innhold Forelening filter NOMAISEING, POTOTYPEFITE OG SKAEING... POTOTYPE FITE... Frekvenkalering... IMPEDANSSKAEING...4 Ekempel på kombinert frekven- og impedankalering...6

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): Studiepoeng: Faglærer(e): Kontaktperson(adm.)(fylles ut ved behov kun ved

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise TMA405 Matematikk 2 Vår 205 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

Eksamen i TMA4135 Matematikk 4D

Eksamen i TMA4135 Matematikk 4D Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Harald Krogtad telefon 46 5 87 / 73 59 35 2 Ekamen i TMA435 Matematikk 4D Bokmål Mandag 8.

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved Sensorveiledning: ELE 37191 Maemaikk valgfag Eksamensdao: 13.06.2012 09:00 1:00 Toal anall sider: 5 Anall vedlegg: 0 Tillae hjelpemidler: BI-dener eksamenskalkulaor TEXAS INSTRUMENTS BA II Plus Innføringsark:

Detaljer

Norges teknisk- naturvitenskapelige universitet. Institutt for teknisk kybernetikk. Lsningsforslag ving 4. a) Vi far. K q. K p. D m. dvs.

Norges teknisk- naturvitenskapelige universitet. Institutt for teknisk kybernetikk. Lsningsforslag ving 4. a) Vi far. K q. K p. D m. dvs. Norge teknik- naturvitenkapelige univeritet Intitutt for teknik kybernetikk. eptember 99/PJN,. eptember 996 /MPF Utlevert:..96 4334 SERVOTEKNIKK Lningforlag ving 4 Oppgave a) Vi far og dv. () = D m + +

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir LØNINGFOLAG IL EKAMEN I FAGE 55/7 MAEMAIKK. august Oppgave. (i Ja. (ii Ja. (iii Nei. Alternativt: (i Ja. (ii Ja. (iii Ja. Oppgave. curlf (x, y F i j k (x, y / x / y / z e y + ye x +x xe y + e x + Altså

Detaljer

Svar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet.

Svar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet. I FYS1120-undervininga legg vi meir vekt på matematikk og numerike metoder enn det oppgåvene i læreboka gjer. Det gjeld òg oppgåvene om vert gitt til ekamen. Difor er det viktig at du gjer vekeoppgåvene

Detaljer

Oppgave 1. Oppgave 2

Oppgave 1. Oppgave 2 Midtveiseksamen i MET1180 1 - Matematikk for siviløkonomer 12. desember 2018 Oppgavesettet har 15 flervalgsoppgaver. Rett svar gir poeng, galt svar gir svaralternativ (E) gir 0 poeng. Bare ett svar er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Kandidatnr.: Side UNIVERSITETET I OSLO et matematik-naturvitenkapelige fakultet Ekamen i: Ekamendag: Tid for ekamen: Oppgaveettet er på Vedlegg: Tillatte hjelpemidler: INF4 Ondag 29. november kl. 4:3-8:3

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Løsningsforslag, Ma-2610, 18. februar 2004

Løsningsforslag, Ma-2610, 18. februar 2004 Løsningsforslag, Ma-60, 8. februar 004 For sensor og kandidater.. Lineær uavhengighet Avgjør hvorvidt de følgende funksjonene er lineært uavhengige på den reelle tallinja: f(x) x g(x) 3x h(x) 5x 8x Svaralternativ

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Fredag 7.juni 23 5 klokketimer TLM3- / LM5M- Matematikk Klasse(r): EL FEN Studiepoeng:

Detaljer

TFY4115: Løsningsforslag til oppgaver gitt

TFY4115: Løsningsforslag til oppgaver gitt Institutt for fysikk, NTNU. Høsten. TFY45: Løsningsforslag til oppgaver gitt 6.8.9. OPPGAVER 6.8. Vi skal estemme Taylorrekkene til noen kjente funksjoner: a c d sin x sin + x cos x sin 3 x3 cos +... x

Detaljer

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/ Løsningsforslag Eksamen i MA0/MA60 Grunnkurs i analyse II 7/ 008 Oppgave y = y +, y(0) = 0 a) n n y n y = n y n + y = y y n+ 0 0 0 / / / / / 5/4 / 5/8 9/8 9/8 så Eulers metode med steglengde / gir oss

Detaljer

Forelesning nr.9 INF 1410

Forelesning nr.9 INF 1410 Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for

Detaljer

x 3 x x3 x 0 3! x2 + O(x 7 ) = lim 1 = lim Denne oppgaven kan også løses ved hjelp av l Hôpitals regel, men denne må da anvendes tre ganger.

x 3 x x3 x 0 3! x2 + O(x 7 ) = lim 1 = lim Denne oppgaven kan også løses ved hjelp av l Hôpitals regel, men denne må da anvendes tre ganger. TMA400 Høst 0 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 4..4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet Maclaurinpolynomet til sin x om x =

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

PD-regulator med faseforbedrende egenskaper. Denne ma dessuten klare

PD-regulator med faseforbedrende egenskaper. Denne ma dessuten klare Norge teknik naturvitenkapelige univeritet Intitutt for teknik kybernetikk Oktober 99/PJN, September 9 /MPF Utlevert:..9 0 SERVOTENI Lningforlag ving 0 a) Oppgave Vi kriver h() pa formen ( +0:)( ; 0:)

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

Løsningsforslag Dataøving 2

Løsningsforslag Dataøving 2 TTK45 Reguleringsteknikk, Vår 6 Løsningsforslag Dataøving Oppgave a) Modellen er gitt ved: Setter de deriverte lik : ẋ = a x c x x () ẋ = a x + c x x x (a c x ) = () x ( a + c x ) = Det gir oss likevektspunktene

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 14. februar 2012 Funksjonsrekker En rekke på formen fn(x) der fn er en funksjon, kalles en n=1 funksjonsrekke. For alle

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

EKSAMEN I TMA4130 MATEMATIKK 4N Bokmål Fredag 17. desember 2004 kl. 9 13

EKSAMEN I TMA4130 MATEMATIKK 4N Bokmål Fredag 17. desember 2004 kl. 9 13 Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Inkluive formelark og Laplacetabell Faglig kontakt under ekamen: Finn Faye Knuden tlf. 73 59 35 23 Sigmund Selberg tlf.

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

SLUTTPRØVE. Løsningsforslag. Antall oppgaver: 4 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

SLUTTPRØVE. Løsningsforslag. Antall oppgaver: 4 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG Høgkolen i elemark Avdeling for teknologike fag SLUPRØVE Løningforlag EMNE: EE49 Modellbaert regulering LÆRERE jell-erik Wolden og Han-Petter Halvoren LASSE(R): IA DAO: 9.5. PRØVEID, fra-til (kl.): 9..

Detaljer

MA0003-8. forelesning

MA0003-8. forelesning Implisitt derivasjon og 31. august 2009 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag Anbefalte oppgaver - Løsningsforslag Uke 6 12.6.4: Vi finner først lineariseringen i punktet (2, 2). Vi har at Lineariseringen er derfor 2x + y f x (x, y) = 24 (x 2 + xy + y 2 ) 2 2y + x f y (x, y) = 24

Detaljer

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser.

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser. 4.4 INNE- OG TKOPLING AV EN KONDENSATO 1 4.4 INN- OG TKOPLING AV EN KONDENSATO Ved opp -og uladning av kondensaorer varierer srøm og spenning. De er vanlig å bruke små boksaver for å angi øyeblikksverdier

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100 Areal mellom kurver Volum Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 27. september 20 Kapittel 5.6. Substitusjon og arealet mellom kurver 3 Areal mellom kurver Problem

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 5. juni 3 EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene

Detaljer

1 Trigonometriske Funksjoner Vekt: 1. 2 Trigonometriske Funksjoner Vekt: 1

1 Trigonometriske Funksjoner Vekt: 1. 2 Trigonometriske Funksjoner Vekt: 1 OPPGAVER TIL FORELESNINGSUKE NUMMER Ukeoppgavene skal leveres som selvsendige arbeider. De forvenes a alle har sa seg inn i insiues krav il innlevere oppgaver: Norsk versjon: hp://www.ifi.uio.no/sudinf/skjemaer/erklaring.pdf

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene til funksjonen

Detaljer

Løsningsforslag eksamen 18/ MA1102

Løsningsforslag eksamen 18/ MA1102 Løsningsforslag eksamen 8/5 009 MA0. Dette er en alternerende rekke, der leddene i størrelse går monotont mot null, så alternerenderekketesten gir oss konvergens. (Vi kan også vise konvergens ved å vise

Detaljer

Flervariable funksjoner: Linearisering

Flervariable funksjoner: Linearisering Flervariable funksjoner: Linearisering Forelest: 10. Nov, 2004 Vi har nå kommet til høyepunktet i pensumet for flervariable funksjoner, der vi lærer å regne omtrentlig på en nøyaktig måte. Metoden heter

Detaljer

Løsningsforslag Analyseøving 4

Løsningsforslag Analyseøving 4 TTT465 Elektronik ytemdeign og -analye II Løningforlag Analyeøving 4 Oppgave a Vi tarter med å finne ytemfunkjonen: H( = /C R + L + /C = RC + LC + = /LC + R L + /LC = ω0 + R L +. ω 0 Videre må vi finne

Detaljer