Hvor mye er 1341 kr delt på 2?
|
|
- Susanne Christensen
- 9 år siden
- Visninger:
Transkript
1 Hvor mye er 1341 kr delt på 2?
2 = 1 : 4 Divisjon 2 MÅL I dette kapitlet skal du lære om divisjon som gir rest divisjon der svaret er et desimaltall avrunding av desimaler divisjon av desimaltall med et helt tall KOPIERINGSORIGINALER 10.1 Felles problemløsing Divisjon 2 75
3 Divisjon som gir rest Her er det ikke like mange hele boller til hver! Nei, men vi kan dele likt likevel! «Det blir ikksnakkeboble Simen: Hvor mye får hvert av barna hvis de deler likt? 2 2 : 4 = : 4 = 5, Hvis en divisjon ikke går opp, sier vi at vi får en rest. Rest 2 Hvis vi vil fordele resten også, gjør vi først om de to enerne til tideler. Det blir 20 tideler. Sett desimaltegnet etter enerne i svaret før du fordeler tidelene. Det betyr at hver av de fire får 5 boller + 0,5 bolle = 5,5 boller. 76
4 1 Regn ut. 9 : 2 = 6 : 4 = 2 Regn ut. 1 7 : 5 = 1 2 : 8 = 3 Regn ut. 4 8 : 5 = 5 8 : 4 = Divisjon 2 77
5 4 Patrik og familien hans har motorbåt. På en tur som tok 5 timer, brukte båten 24 liter bensin. Hvor mange liter bensin brukte båten i gjennomsnitt per time? liter Regn her: 2 4 : 5 = 5 Hvor langt sykler Simen per uke hvis han sykler 148 km på åtte uker? km Regn her: : 8 = 78
6 Hvis et divisjonsstykke ikke går opp når vi deler ut resten, må vi vurdere hvor mange desimaler det er hensiktsmessig å ha i svaret. 1 3 : 7 = 1, Eksempel I dette regnestykket har vi regnet så langt at vi har fått fire desimaler i svaret, uten at stykket har gått opp. Nedenfor ser du hvordan vi kan runde av svaret til tre desimaler, to desimaler eller én desimal: Avrunding til tre desimaler: 1,8571 1,857 Den fjerde desimalen er mindre enn 5. Da runder vi av nedover. Når vi skal ha desimaler i svaret, må vi alltid regne ut én «for mye»! Avrunding til to desimaler: 1,8571 1,86 Den tredje desimalen er større enn 5. Da runder vi av oppover. Avrunding til én desimal: 1,8571 1,9 Den andre desimalen er lik 5. Da runder vi av oppover. Divisjon 2 79
7 6 Rund av til tre desimaler. a) 8,5342 b) 4, Regn ut. Rund av til én desimal i svaret. 1 3 : 3 = 1 9 : 7 = 8 Regn ut. Rund av til to desimaler i svaret. 2 0 : 3 = 1 6 : 7 = 80
8 Hvordan kan vi dele tre sjokolader på fire? Noen ganger blir svaret i en divisjon mindre enn én Det blir mindre enn én på hver! Hvor mye sjokolade får hver? Når vi skal dividere et tall med et tall som er større, blir svaret et desimaltall som er mindre enn 1. 3 : 4 = 0, Vi får først null hele i svaret. Så veksler vi tallet vi skal dele, om til 30 tideler. Da må vi sette desimaltegn etter null i svaret og regne ut hvor mange tideler svaret skal ha. Det blir sju tideler og to tideler til rest. De to tidelene gjør vi om til 20 hundredeler for å finne ut hvor mange hundredeler svaret skal ha. Det blir fem hundredeler. 3 sjokolader : 4 = 0,75 sjokolade Divisjon 2 81
9 9 Regn ut. 1 : 4 = 2 : 5 = c) d) 7 : 6 = 3 : 6 = Det er ikke plass til et rutenett til 82
10 0,246 0,25 Når vi runder av til to desimaler, må vi se på den tredje desimalen 10 Regn ut. Rund av til to desimaler i svaret. 1 : 3 = 1 : 6 = c) d) 1 : 7 = 2 : 3 = Divisjon 2 83
11 0,42 0,4 Når vi runder av til én desimal, må vi se på den andre desimalen 11 Regn ut. Rund av til én desimal i svaret. 3 : 4 = 7 : 9 = c) d) 7 : 8 = 3 : 8 = 84
12 12 Fire elever skal bake boller. De har 3 kg mel som de skal dele likt. Hvor mye mel får hver av dem til deigen sin? Gi svaret med én desimal. kg Regn her: 2 : 5 = Regn her: 1 : 3 = Mia koker 1 liter suppe til seg selv, Julie og Kaja. Hvor mye suppe får de hver? Gi svaret med to desimaler. liter 2 liter saft skal fordeles likt på 3 like store flasker. Hvor mye blir det per flaske? Gi svaret med to desimaler. liter Regn her: 2 : 3 = Divisjon 2 85
13 Vi skal kappe planken i tre like lange deler! Divisjon av desimaltall med et helt tall Hm, planken er 4,8 m lang Hvor lang blir hver del? Når vi skal dividere et desimaltall med et helt tall, må vi sette desimaltegnet etter enerne før vi deler ut tidelene. I dette regnestykket er det resten på 1 hel som gjøres om til tideler. Siden vi har 8 tideler fra før, blir det 18 tideler som skal deles med 3. Det blir 6 tideler. 4, 8 : 3 = 1, Hver del av planken blir 1,6 m lang. Desimaltegnet plasseres alltid mellom enerne og tidelene. 86
14 15 Regn ut. 3, 6 : 2 = 7, 2 : 4 = 16 Regn ut. 2, 5 5 : 5 = 3, 3 6 : 4 = Når jeg deler et tall med et som er større, vet jeg at svaret blir mindre enn 1! Divisjon 2 87
15 Kan jeg? Oppgave 1 Regn ut. 1 1 : 2 = 9 : 5 = Oppgave 2 Regn ut. Rund av til én desimal i svaret. 1 7 : 4 = 2 2 : 8 = 88
16 Oppgave 3 Kaja sparte 150 kr på 7 uker. Hvor mye sparte hun per uke i gjennomsnitt? Rund av svaret til to desimaler. Regn her: : 7 = kr Oppgave 4 Regn ut. 3 : 5 = 3 : 8 = Oppgave 5 Regn ut. Rund av til to desimaler i svaret. 4 : 7 = 5 : 8 = Divisjon 2 89
17 Oppgave 6 Simen har delt en planke på 6,8 m i like lange deler. Hvor lang er hver del? m Regn her: 4, 8 : 4 = Oppgave 7 Sant eller usant? Påstand Sant Usant Enkelte divisjoner går ikke opp. Når en divisjon går opp, får vi 0 til rest. 8 : 9 gir et tall som er større enn 1. 1,35 1,3 med én desimal 1,358 1,4 med én desimal 5,6 : 1,32 > 10 1,575 : 0,75 = 157,5 : 75 1,575 : 0,75 = 1575 : 75 90
18 Jeg regner mer 1 Regn i hodet. a) = c) = b) = d) = 2 Rund av til nærmeste tier og regn i hodet. a) = b) = c) = d) = 3 Regn i hodet. a) 2 4 = b) 5 7 = c) = d) = Det er lurt å tegne en tallinje til hjelp! Divisjon 2 91
19 4 Julie skal lage middag. Hun trenger 2 liter melk til desserten. 4 3 liter melk til lasagnen og 4 a) Hvor mye melk trenger Julie i alt? liter 1 I kjøleskapet står en boks med liter melk. 4 b) Hvor mye melk må Julie å kjøpe for å få nok? liter 5 Regn ut. 2 5 a) c) = = b) + 4 d) = = 2 6 Regn ut. 2 a) c) 4 2= 3 2 = 7 1 b) d) 5 3= 1 4 = 4 7 Utvid brøkene med a) = = c) = = b) = = d) = = 7 92
20 8 Utvid begge brøkene slik at de får samme nevner. a) = = = = = b) = = = = = c) = = = = = 9 Gjør de uekte brøkene om til blandede tall. 15 a) c) 4 = 18 4 = 16 b) d) 3 = = 10 Regn i hodet. a) 40 : 8 = d) 48 : 8 = b) 56 : 7 = e) 63 : 7 = c) 54 : 9 = f) 64 : 8 = 11 Regn i hodet og finn ut hvor mye det blir i rest. a) 7 : 2 = og i rest. b) 9 : 2 = og i rest. c) 8 : 3 = og i rest. d) 10 : 3 = og i rest. Divisjon 2 93
21 12 Simen får 50 kr for å passe søsteren sin, tre timer. a) Hvor mange kroner blir det pr time? kr Regn her: 5 0 : 3 = b) Hvor mye ble det i rest? kr 13 Regn ut. 1 3 : 2 = 1 1 : 2 = 14 Rund av til én desimal. a) 4,53 c) 8,124 b) 6,25 d) 0,459 94
22 : 2 = 2 1 : 2 = 16 Mia skal kjøpe en kasse med 5 kg klementiner til Bestemor. Kassen koster 77 kr. a) Hvor mye koster klementinene per kilogram? kr Regn her: 7 7 : 5 = 17 Regn i hodet. a) 12, = d) 7,8 : 10 = b) 0,45 10 = e) 1, = c) 64 : 100 = f) : 1000 = Divisjon 2 95
23 Oppsummering Divisjon som gir rest Hvis en divisjon ikke går opp, sier vi at vi får en rest. 3 4 : 4 = Rest : 4 = 8, Hvis vi vil dele ut resten også, gjør vi først om enerne til tideler ved å sette til sifferet null. Pass også på å sette desimaltegn etter enerne i svaret. 2 : 8 = 0, Når svaret i en divisjon blir mindre enn 1 Når vi skal dividere et tall med et som er større, blir svaret et desimaltall mindre enn 1. Vi får 0 hele og veksler om tallet til tideler. Det gir 20 tideler. 96
24 Divisjon av desimaltall med et helt tall Når vi skal dividere et desimaltall med et helt tall, må vi passe på å sette desimaltegn etter enerne før vi deler ut tidelene. 5 6 : 4 = 1, , Desimaltegnet plasseres alltid etter enerne! Divisjon 2 97
Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr?
Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr? 4 356 : 10 = Jeg vet om en lur måte å regne på MÅL I dette kapitlet skal du lære om divisjon med 10
DetaljerHvor mye må jeg betale for 2 kg appelsiner?
Hvor mye må jeg betale for 2 kg appelsiner? 5 Jeg har omtrent 380 kr 400 kr! Avrunding og overslag MÅL I dette kapitlet skal du lære om avrunding av hele tall avrunding av desimaltall overslag i addisjon
DetaljerTall og enheter. Mål. for opplæringen er at eleven skal kunne
8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen
DetaljerHvor mye koster 10 kurver plommer?
Hvor mye koster 10 kurver plommer? 13 Jeg runder av tallene til 50 kr, 200 kr og 350 kr for å se om jeg har nok! Smart, ikke sant!? Kr 48,- Kr 199,- Kr 353,- Hoderegning og avrunding MÅL I dette kapittelet
Detaljer90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall?
90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 3 Hm, hva må jeg betale da? Prosent og desimaltall MÅL I dette kapitlet skal du lære om prosentbegrepet brøk og prosent prosentvis
DetaljerHva er det største tallet du kan lage med disse sifrene?
Hva er det største tallet du kan lage med disse sifrene? Hvor mange tall tror du det er mellom 0 og? Tall og tallforståelse MÅL I dette kapitlet skal du lære om ulike typer tall plassverdisystemet og tall
DetaljerHusker du hele multiplikasjonstabellen?
Husker du hele multiplikasjonstabellen? 3 3 + 3 + 3 + 3 = 4 3 Multiplikasjon MÅL I dette kapitlet skal du lære om multiplikasjon med tall som ender på null multiplikasjon av flersifrede tall multiplikasjon
DetaljerKAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.
KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom
DetaljerBrøker med samme verdi
Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere
DetaljerHvordan kan du skrive det som desimaltall?
7 0 av jordoverflaten er vann. Hvordan kan du skrive det som desimaltall? 9 Alle disse tre har samme verdi! Brøk og desimaltall MÅL I dette kapitlet skal du lære om likeverdige brøker multiplikasjon av
DetaljerALTERNATIV GRUNNBOK BOKMÅL
Anne Rasch-Halvorsen Oddvar Aasen Illustratører: Bjørn Eidsvik og Gunnar Bøen 7A NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 200 Materialet i denne publikasjonen er omfattet av åndsverklovens
DetaljerPosisjonsystemet FRA A TIL Å
Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet
DetaljerKAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.
KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom
Detaljera) 5 5 b) 7 9 c) 1 0 d) 5 10 2,6 3,8 5 5,9 5,6 0,1 3,8 Tegn tallinjer og merk av brøkene. Skriv tallene på utvidet form.
1 Skriv av og sett inn < eller >. a) 5 5 b) 7 9 c) 1 0 d) 5 10 2 Tegn en tallinje fra 6 til 6. Merk av tallene så nøyaktig som mulig. 2,6 3,8 5 5,9 5,6 0,1 3,8 3 Tegn tallinjer og merk av brøkene. 1 3
DetaljerPlassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.
KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0
Detaljer1 Tall og enheter KATEGORI 1. 1.1 Regnerekkefølge. 1.2 Hoderegning og overslagsregning. 198 Sinus 1YP > Tall og enheter
1 Tall og enheter KATEGORI 1 1.1 Regnerekkefølge Oppgave 1.110 7 8 9 6 ( ) 6 7 ( 9) Oppgave 1.111 2 3 8 3 2 ( 2) 3 + 8 ( 3) ( 4) + 2 Oppgave 1.112 3 6 + 2 3 6 + 2 4 7 8 6 e) 4 3 + 3 f) 3 6 4 Oppgave 1.113
DetaljerVet du hva vi kan bruke et regneark på pc-en til?
Vet du hva vi kan bruke et regneark på pc-en til? 14 Vi starter med blanke regneark! Regneark MÅL I dette kapitlet skal du lære om hva et regneark er budsjett og regnskap hvordan du kan gjøre enkle utregninger
DetaljerMålark 1. Kapittel 1 God start. Navn: Delmål Kan Må arbeide mer med. TUSEN MILLIONER 6A Målark. Kunne forskjellen på siffer og tall
Målark 1 Kapittel 1 God start Kunne forskjellen på siffer og tall Kunne plassverdiene for hele tall i titallsystemet Kunne plassverdiene for desimaltall Vite hva desimaltegnet betyr Kunne stille opp og
DetaljerLDB. Flere oppgaver Løsningsforslag Kapittelprøve Verktøyopplæring Twig-arbeidsark Kopioriginaler
LÆRERENS D IGITALBOK LDB Flere oppgaver Løsningsforslag Kapittelprøve Verktøyopplæring Twig-arbeidsark Kopioriginaler Et mål for arbeidet med de to første kapitlene er at elevene skal kunne sammenlikne
DetaljerPresentasjon av Multi
Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige
DetaljerAnne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: John Thoresen. Tusen millioner. Bokmål
Anne-Lise Gjerdrum Elisabet W. Kristiansen Illustrasjoner: John Thoresen Tusen millioner 4 Oppgavebok Bokmål Oppgaveboka inneholder øvings- og repetisjonsoppgaver til alle kapitlene i grunnbøkene. Øvingsoppgavene
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
DetaljerHastigheten til bob-en er 120 km/t. Hva vil det si?
Hastigheten til bob-en er 120 km/t. Hva vil det si? 12 Hm, ett britisk pund koster 11,45 kr! Sammensatte enheter MÅL I dette kapitlet skal du lære om fart priser lønn valuta KOPIERINGSORIGINALER 12.1 Felles
DetaljerBrøk Vi på vindusrekka
Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
DetaljerEr hvitveisen speilsymmetrisk?
Er hvitveisen speilsymmetrisk? 11 Geometri 2 MÅL I dette kapitlet skal du lære om flytting av figurer ved speiling, parallellforskyving og dreining speilingssymmetri KOPIERINGSORIGINALER 11.1 Speiling
DetaljerTallregning Vi på vindusrekka
Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...
DetaljerDesimaltall FRA A TIL Å
Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne
DetaljerADDISJON FRA A TIL Å
ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger
DetaljerAddisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149
Addisjon og subtraksjon Oppstilling Ved addisjon og subtraksjon av fleirsifra tal skal einarar stå under einarar, tiarar under tiarar osb. Addisjon utan mentetal Addisjon med mentetal 1 212 357 + 32 +
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere
DetaljerRegn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.
Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale
DetaljerAlle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen
Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor
DetaljerHjemmelekse i uke44, A
Hjemmelekse i uke44, A 1. Klarer du å løse oppgaven 6 8 på to måter? Vis ved å tegne og/eller forklare. Trinn 3: skal kunne multiplisere et ensifret med et tosifret tall. 2. Still opp og regn ut a) 4 34
DetaljerNASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter.
Bokmål Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutter 15. april 2004 Gutt Jente Oppgaver som kan løses ved hjelp av lommeregner. Tillatte hjelpemidler: lommeregner,
DetaljerGange. Hverdagsmatte Del 1 side 34
Hverdagsmatte Del 1 side 34 Gange Når vi ganger to tall med hverandre, bruker vi gange mellom tallene. Gange skriver vi. Det er også vanlig å bruke x. Miriam er i butikken. Hun kjøper 3 is. En is koster
DetaljerSpill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet.
Spillevarianter Basis spillevarianter er presentert i elevboka, Tema B tall side 54. Her finner du også spillebrettet. I elevboka er spillet knyttet til desimaltall, men ved bruk av spillekortene kan man
DetaljerGODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012
Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke
Detaljera) 5 5 b) 7 9 c) 1 0 d) 5 10 Teikn ei tallinje frå 6 til 6. Merk av tala så nøyaktig som mogleg. 2,6 3,8 5 5,9 5,6 0,1 3,8
1 Skriv av og set inn < eller >. a) 5 5 b) 7 9 c) 1 0 d) 5 10 2 Teikn ei tallinje frå 6 til 6. Merk av tala så nøyaktig som mogleg. 2,6 3,8 5 5,9 5,6 0,1 3,8 3 Teikn tallinjer og merk av brøkane. 1 3 6
DetaljerTall og formler MÅL. for opplæringen er at eleven skal kunne
8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere
DetaljerMattelekse uke 42 A Tema: Addisjon av positive tall, subtraksjon og multiplikasjon + matematikk i dagliglivet.
Mattelekse uke 42 A Tema: Addisjon av positive tall, subtraksjon og multiplikasjon + matematikk i dagliglivet. Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning. 1.
DetaljerTre sett med oppgaver for mattebingo for 5. trinn Tips Lett 3,5 12,5 180 1/2 1/4 4/5 250 44,4 40,4
Tre sett med oppgaver for mattebingo for 5. trinn Det er laget 3 sett med oppgaver som skal løses uten penn og papir. Ett sett med oppgaver består av lette spørsmål, ett med middels og det siste settet
DetaljerSpill "Til topps" - transkripsjon av samtalen
Spill "Til topps" - transkripsjon av samtalen Elevene på 6. trinn sitter to og to ved pultene. Thomas er læreren og sier at de skal ha et spill i dag. 1 Thomas Det er slik at dere skal være på lag med
DetaljerØvingshefte. Multiplikasjon og divisjon
Øvingshefte Matematikk Mellomtrinn Multiplikasjon og divisjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk M.trinn Multiplikasjon og divisjon 1 Multiplikasjon og divisjon
DetaljerInneholder ett oppslag fra hvert hefte:
Sett inn støtet er en serie hefter som gir systematisk opplæring og trening i utvalgte tema innenfor matematikk. Heftene har enkle instruksjoner og god progresjon i vanskelighetsgrad. Oppgavene er laget
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.
DetaljerOverslag FRA A TIL Å
Overslag FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overslag 2 2 Grunnleggende om overslag 2 3 Å gjøre overslag 6 4 Forsiktighetsregler 7 4.1 Når overslaget ikke
Detaljerfor opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor
46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger
DetaljerINNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver...
Black plate (4,) INNHOLD Emne Brøk, prosent og promille... 6 Brøk... 8 Navn på brøker... 8 Likeverdige brøker... Utvide og forkorte brøker... 4 Addisjon og subtraksjon av brøker med like nevnere... 8 Å
DetaljerRegning med tall og bokstaver
Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger
DetaljerMultiplikation och division av bråk
Geir Martinussen & Bjørn Smestad Multiplikation och division av bråk Räkneoperationer med bråk kan visualiseras för att ge stöd åt resonemang som annars kan upplevas som abstrakta. I denna artikel visar
Detaljer42 elever sykler til skolen hver dag, mens 30 tar bussen. 26 går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt.
elever sykler til skolen hver dag, mens 0 tar bussen. går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt. 7 Hm, er det så mange satellitter over år?! Statistikk MÅL I dette kapitlet
DetaljerØvingshefte. Brøk og prosent
Øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.
DetaljerTelle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen
Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen Elevene på 7. trinn sitter i lyttekroken. Olaug er lærer. 1 Olaug I dag skal vi telle i kor med 0, 3 i gangen. Før vi begynner å telle så har jeg
DetaljerMattelekse uke 46 A Tema: Addisjon av positive tall, subtraksjon og multiplikasjon + matematikk i dagliglivet.
Mattelekse uke 46 A Tema: Addisjon av positive tall, subtraksjon og multiplikasjon + matematikk i dagliglivet. Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning. 1.
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Multiplikasjon og divisjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U/VGS Multiplikasjon og divisjon 1 Multiplikasjon
DetaljerTallinjen FRA A TIL Å
Tallinjen FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til tallinjen T - 2 2 Grunnleggende om tallinjen T - 2 3 Hvordan vi kan bruke en tallinje T - 4 3.1 Tallinjen
DetaljerTall Vi på vindusrekka
Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Mellomtrinn Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1
DetaljerMatematikk med familien. Lofsrud skole 20.01.2016
Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen
DetaljerTre sett med oppgaver for mattebingo, småskolen Sett 1
Tre sett med oppgaver for mattebingo, småskolen Sett 1 Spørsmål Svar 1. Hvor mange hjørner har et kvadrat? 4 2. Hvor mange 50-ører får du for 10 kroner? 20 3. Hva er halvparten av 4? 2 4. Hva er det dobbelte
Detaljer1P Tall og algebra. Tall og algebra Vg1P (utdrag)
1P Tall og algebra Modul 1: Regnerekkefølgen... 2 Modul 3: Brøkregning... 4 Modul 10: Prosentregning... 9 Bildeliste... 28 1 Modul 1: Regnerekkefølgen Du går i butikken og handler ett brød og to liter
DetaljerUkemål (Konkretiserte mål fra Fagplan) Prøver (Hentet fra prøveplan). Småprøver kan legges inn av teamene. og organisering
Uke Fagemne (Hentet fra Fagplan) 34 Rutenett og koordinatsystem Ukemål (Konkretiserte mål fra Fagplan) Jeg kan plassere punkter i et koordinatsystem og beregne avstander langs aksene. Læringsstrategier,
DetaljerEmnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig
Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og
DetaljerTerminprøve i matematikk for 8. trinn
Terminprøve i matematikk for 8. trinn Høsten 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:
DetaljerMatematisk julekalender for 5.-7. trinn, 2012
Matematisk julekalender for 5.-7. trinn, 2012 Årets julekalender for 5.-7. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Oppgavene 2, 4, 5, 6, 7 og 8 er delt i to nivåer
DetaljerÅrsplan i matematikk 6.trinn 2015/2016
Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet
DetaljerAlgebra Vi på vindusrekka
Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...
DetaljerRegn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =
10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med
DetaljerKapittel 1. Tallregning
Kapittel. Tallregning Mål for Kapittel, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere
DetaljerØvingshefte. Multiplikasjon og divisjon
Øvingshefte Matematikk Ungdomstrinn/VGS Multiplikasjon og divisjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Multiplikasjon og divisjon 1 Multiplikasjon og
DetaljerØvingshefte. Velge regneart
Øvingshefte Matematikk Mellomtrinn Velge regneart Copyright Grieg Multimedia AS Kartleggeren øvingshefte Matematikk Mellomtrinn Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1 Sett inn riktig regnetegn
DetaljerHalvårsplan i matematikk Vår 5. trinn 2011-2012
Halvårsplan i matematikk Vår 5. trinn 2011-2012 UKE 1 EMNE / PÅ SKOLEN Varmt og kaldt Tallinjen SIDE TALL RØD 12 13 SIDE TALL Gul 22 23 HJEMMELEKSE GRØNN RØD SVART Du skal vite hvordan man setter opp en
DetaljerTallregning og algebra
30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer
Detaljeroppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 45 dag 1 1. På et bord står to beholdere som begge inneholder litt vann. Uansett hvilken beholder du velger, og så heller halvparten av innholdet over i den andre
DetaljerAddisjon og subtraksjon i fire kategorier
Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 7-Feb-07 Addisjon og subtraksjon i fire kategorier Problemstillinger som inkluderer addisjon og subtraksjon kan ha svært varierende strukturer.
Detaljerwww.skoletorget.no Tall og algebra Matematikk Side 1 av 6
Side 1 av 6 Hva = en ligning? Sist oppdatert: 15. november 2003 I dette kapittelet skal vi se på noen grunnregler for løsning av ligninger med én ukjent. Det viser seg at balanse er et helt sentralt prinsipp
DetaljerEr du i mål? Legg til hundre på 347. Hvilket tall får dere da? Hva er halvparten av 62 minus 1? Hvilket multiplikasjonsstykke er dette?
På www.gan.aschehoug.no/ressurser kan du laste ned oppgaver til spillet. Spill sammen tre og tre på lag. Hvert lag trenger et kladdepapir og en blyant. For å komme til topps, må dere bruke alt dere har
DetaljerFAKTA. Likeverdige bröker: BrÖker som har samme verdi. 1 2 = 2 4 = 3 6 = 4 8 = 5
FAKTA Likeverdige bröker: BrÖker som har samme verdi. 2 = 2 = 6 = 8 = 0 0 utvide en brök: utvide en brök betyr Ô multiplisere teller og nevner med det samme tallet. BrÖken forandrer da ikke verdi. = 2
DetaljerTema: Addisjon av positive tall + repetisjon Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning.
Mattelekse uke 39 A Tema: Addisjon av positive tall + repetisjon Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning. 1. Lovise kjøpte sykkel til 2798kr, hjelm til 389kr
DetaljerÅrsplan i Matematikk
Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon
DetaljerKapittel 2. Tall på standardform
Kapittel 2. Tall på standardform Standardform er en metode som er nyttig for raskt å kunne skrive tall som er mye større enn 1 eller mye mindre enn 1. Du må kunne potensregning for å forstå regning med
DetaljerKjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall
MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.
Detaljer(K06) TEMA INNHOLD ARBEIDSFORM VURDERING
HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN 2016-2017 Læreverk: Multi 6a Lærer: Anita Nordland Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-39 - Finne verdien av et siffer avhengig av hvor i tallet det
DetaljerNTNU Fakultet for lærer- og tolkeutdanning
NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): Emnenavn: LGU11100-A Matematikk 1 (1-7) emne 1A Studiepoeng: 15 Eksamensdato: 10.mai 2016 Varighet/Timer: 6 Målform: Kontaktperson/faglærer: (navn
DetaljerSensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013
Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Oppgave 1 a) =2 = 5 2 =5 2 = = 25 4 = 25 8 Full uttelling gis for arealet uttrykt over. Avrundinger gis noe uttelling. b) DC blir 5 cm og bruk av
DetaljerALTERNATIV GRUNNBOK BOKMÅL
Anne Rasch-Halvorsen Oddvar Aasen Illustratører: Bjørn Eidsvik Gunnar Bøen 7A NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 00 Materialet i denne publikasjonen er omfattet av åndsverklovens bestemmelser.
DetaljerExcel. Excel. Legge inn tall eller tekst i en celle. Merke enkeltceller
Excel Hva er et regneark? Vi bruker regneark til å sortere data, gjøre beregninger og lage diagrammer. I denne manualen finner du veiledning til hvordan du kan bruke regneark. Et regneark består av celler
DetaljerÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013
ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene
DetaljerTiervenner erteposegjemsel
Telle til 10 Mål: Elevene skal kunne rekketelle til 10, i stigende og synkende rekkefølge. Antall elever: minst 10 elever. Kjegler med tallene 1 til 10. (Bruk kjegleovertrekk på 0-kjeglen og skriv lapp
DetaljerTall, forholdstall og % regning med fokus på DHbegrepslæring
Tall, forholdstall og % regning med fokus på DHbegrepslæring i praksis Susanne Stengrundet Matematikksenteret 17.november 2014 1 kyndighet 2 3 Oppgave i en programfagbok: tallet tre Bruk rutepapir og skap
DetaljerÅRSPLAN MATEMATIKK 7. TRINN 2016/17
ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut
DetaljerÅrsplan matematikk 6. trinn 2019/2020
Årsplan matematikk 6. trinn 2019/2020 Årsplanen tar utgangspunkt i kunnskapsløftet. I planen tar vi utgangspunkt i kompetansemåla for 7.klasse. I matematikk lærer en litt av et tema på 5.trinn, litt mer
DetaljerOrdliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.
Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor
DetaljerTIP Tallforståelse prosent, desimaltall, brøk, forholdstall
TIP Tallforståelse prosent, desimaltall, brøk, forholdstall Susanne Stengrundet 1 kyndighet 2 Skyt bort siffrene Desimaltall Slå inn siffrene 1 8 på kalkulatoren, valgfri rekkefølge Velg en plass for komma
DetaljerLag et bilde av geometriske figurer, du også!
Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing
DetaljerFaktor terminprøve i matematikk for 8. trinn
Faktor terminprøve i matematikk for 8. trinn Høst 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1
Detaljer