Brøk Vi på vindusrekka
|
|
- Alfhild Markussen
- 9 år siden
- Visninger:
Transkript
1 Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon Likeverdige brøker Utviding Forkorting Felles nevner Prosent Finn prosent Læringssenteret Oslo 2001 Utskrift fra
2 Brøk side 2 Brøken Vi bruker tallrekka når vi skal angi antall pizzaer. Hvis vi skal ha bare en del av pizzaen må vi bruke en brøk. Du kan ta flere biter Nå har du to firedeler av pizzaen. Her er tre firedeler. Bare en firedel av pizzaen ligger igjen. Nå har du fått fire firedeler. Du har tatt hele pizzaen.
3 Brøk side 3 Teller og nevner Telleren forteller hvor mange av de like delene som er blå. Nevneren forteller hvor mange like deler sirkelen er delt i. I denne gjengen er det 6 medlemmer. Tallet 6 nevner hvor mange de er i alt. Ett medlem i gjengen er en seksdel av gjengen: Jeg kan telle 3 medlemmer med rød dress. Tre av seks har rød dress. Tre seksdeler av gjengen har rød dress. Tallet 6 er nevner i brøken. Tallet 3 er teller i brøken
4 Brøk side 4 Denne sjokoladen kan deles i 12 biter. En brøk som skal vise sjokoladebiter må ha nevneren 12. En bit er en tolvdel av sjokoladen. Slikkemunnen har nettopp spist 4 biter. av sjokoladen er spist opp.
5 Brøk side 5 Uekte brøk En sjokolade som består av 12 biter er en hel sjokolade. Som brøk skriver vi dette slik: Men hvordan skal vi skrive 15 sjokoladebiter som brøk? Dette er tydeligvis litt mer enn én hel sjokolade. En brøk som er større enn en hel kalles en uekte brøk. I uekte brøker er telleren større enn nevneren.
6 Brøk side 6 Blanda tall Se på denne figuren: Vi har en enklere måte å skrive dette talluttrykket på. Vi sløyfer + mellom heltallet og brøken og får et blanda tall: Blanda tall er summen av et heltall og en ekte brøk. Men for å få en enkel skrivemåte, utelater vi plusstegnet. Skriv som blanda tall:
7 Brøk side 7 Eksempel: Skriv den uekte brøken som et blanda tall. Løsning: Brøkstreken kan vi bruke som divisjonstegn. Vi kan derfor omforme brøken til en divisjon med heltall-svar og rest. Divisjonen gir 2 hele. Resten skriver vi som seksdeler. Er du enda ikke overbevist, kan du telle på denne figuren:
8 Brøk side 8 Desimalbrøk Fra desimaler til brøk Alle desimaltall kan skrives som en brøk eller som et blanda tall. Når det er ett desimal etter komma, skriver vi desimaldelen som tideler. Når det er to desimaler etter komma, skriver vi desimaldelen som hundredeler. Når tallet har en heltallsdel, får vi et blanda tall. Fra brøk til desimaler Brøker med nevner 10, 100, 1000 og så videre, kan vi lett omforme til desimaltall. Tideler plasserer vi på første plassen etter komma - tidelsplassen. Hundredelsplassen er den andre plassen etter komma. Legg merke til at den tosifrede telleren skrives på de to første plassene etter komma. Et blanda tall omformes ved at vi plasserer de hele til venstre for komma og brøkdelen på desimalplassene.
9 Brøk side 9 Pluss/minus Vi starter med det viktigste: Skal du addere eller subtrahere brøker, må de være av samme slag. Altså ha samme nevner. Du får 5 sjokoladebiter av Liv og 3 av Ivar. Hvor stor del av en hel sjokolade har du da? Det er 12 biter i hele sjokoladen. Hver bit er en tolvdel.
10 Brøk side 10 Tolvdelene kan skrives som brøk, og vi kan legge sammen brøkene. De 8 sjokoladebitene du nå har, er fremdeles 12-deler. Men vi har summert tellerne for å finne telleren 8 i svaret. Og her er regelen: Brøker med lik nevner kan adderes og subtraheres ved å addere og subtrahere tellerne. Nevneren blir den samme som før.
11 Brøk side 11 Multiplikasjon Les først om fredagsklubbens pizza party! Fredagsklubbens 5 medlemmer skal ha festmøte med pizza. De regner med at hver av dem klarer 3 stykker av en pizza som deles i 4. Liv, som er kasserer, setter opp dette regnestykket. Men hvordan skal hun regne ut dette? Liv tegner pizzabitene og finner ut at hun kan tenke slik: Liv vet hvordan hun gjør om fra uekte brøk til blanda tall Liv bestiller 4 pizzaer og er da sikker på å få nok. Fredagsklubbens kasserer fant ut at hun kunne multiplisere en brøk når 5 personer skulle ha 3 firedeler hver. Av tegningen ovenfor ser vi at det blir 3 5 pizzastykker. Det er altså telleren som blir ganget med 5. Nevneren forteller hva slags stykker det er. Og det er fremdeles snakk om firedeler! En brøk kan multipliseres med et helt tall ved at telleren multipliseres med tallet. Nevneren blir den samme som før.
12 Brøk side 12 Likeverdige brøker Disse tre brøkene har ulike nevnere og ulike tellere. Likevel representerer de like stor del av sirkelen. Brøkene har samme størrelse. På tallinja ligger de på samme sted. Brøker som representerer samme tallstørrelse, men har ulik nevner, kaller vi for likeverdige brøker. Av figuren over ser vi at:
13 Brøk side 13 Utviding I forrige kapittel så du at brøker kan være likeverdige, selv om nevnerne og tellerne er ulike. Problem: Hvordan kan jeg lage brøker som er likeverdige med? Vi ser på sirkelen der delt i 3 like sektorer. har gul farge. Sirkelen er Deler vi hver av disse sektorene i to, blir det i alt 2 3, altså 6 sektorer. Hver av disse er da. For å dekke like stor del av sirkelen med gul farge, må vi nå farge dobbelt så mange sektorer: 2 2, eller 4 sektorer. Legg merke til at når vi multipliserte nevneren med 2, måtte vi også multiplisere telleren med 2 for å få like stor gul flate. Og her er regelen: En brøk kan omgjøres til en likeverdig brøk ved å multiplisere med det samme tallet både i telleren og i nevneren. Dette kalles å utvide brøken.
14 Brøk side 14 Forkorting Ved å utvide en brøk (se forrige kapittel) lagde vi likeverdige brøker. Forkorting av brøk skaper også likeverdige brøker. Hva er forkorting? Forkorting er "utviding i revers". Derfor er det viktig at du først er helt overbevist om hva som skjer når du utvider en brøk! Sirkelen er delt i 6 sektorer. Fire av disse er gule. La oss slå sammen to og to sektorer. Nå er det bare halvparten så mange sektorer i sirkelen. Ny nevner for brøkene er 6:2 = 3. For å dekke det samme området med gul farge som i den første tegningen, må vi nå fargelegge bare halvparten så mange sektorer. Ny teller blir 4:2 = 2. Og her er regelen: Legg merke til at når vi dividerte nevneren med 2, måtte vi også dividere telleren med 2 for å få like stor gul flate. En brøk kan omgjøres til en likeverdig brøk ved å dividere med det samme tallet både i telleren og i nevneren. Dette kalles å forkorte brøken. Både teller og nevner må være delelige på tallet. Forkorting i praksis Det kan være vanskelig å finne ut hvilket tall som kan deles på både teller og nevner. Kanskje finnes det ikke et slikt tall, og da er det ikke mulig å forkorte.
15 Brøk side 15 For å finne ut av dette, er det lurt å faktorisere både teller og nevner for å finne faktorer som er felles. Hvordan? Vi skal nå faktorisere, telleren og nevneren i den brøken vi vil forkorte. Er du usikker på faktorisering, så les kapittelet om faktorisering i emneheftet Tall. Eksempel: Vi skal forkorte brøken Vi kan faktorisere telleren slik: 6 = Vi kan faktorisere nevneren slik: 15 = Vi får da: Ser du at 3 er faktor både i telleren og i nevneren? Da kan vi også dele på 3 i både telleren og i nevneren. Å dele på 3 er det same som å fjerne faktoren 3. Det viser vi ved å sette en strek over den: Og vi får to femdeler som resultat.
16 Brøk side 16 Eksempel Vi skal forkorte brøken Vi kan faktorisere telleren slik: 6 = Vi kan faktorisere nevneren slik: 18 = Vi får da: Du ser at 2 er faktor både i telleren og i nevneren. Men 3 er også felles faktor. Da kan vi forkorte med både 2 og 3. Å forkorte med 2 er det same som å fjerne faktoren 2. Det kan vi vise ved å sette en strek over den: Og vi får en tredel som resultat.
17 Brøk side 17 Felles nevner Husker du det viktigste om addisjon og subtraksjon av brøk? Her er det: Skal du addere eller subtrahere brøker, må de være av samme slag - altså ha samme nevner. Problem: Hva gjør vi hvis vi må addere (eller subtrahere) to brøker som ikke har samme nevner? Løsning: Du utvider den ene eller begge brøkene, slik at de får samme nevner - felles nevner. Eksempel: Vi kan ikke addere med en gang, for nevnerne er ikke like. Kan den største nevneren brukes som fellesnevner? Ja, 6 kan brukes som fellesnevner. Den andre nevneren, 3, kan multipliseres med 2 og resultatet blir 6. Vi utvider første brøken med 2. Utviding lager jo en likeverdig brøk! Nå har brøkene fellesnevneren 6. Nå kan de adderes ved at vi adderer tellerne. Eksempel: Vi kan ikke addere med en gang, for nevnerne er ikke like. Kan den største nevneren brukes som fellesnevner? Nei! Det er ikke mulig å gange 3 med et heltall og få 5 som svar. Vi utvider da begge brøkene. 15 er en mulig felles nevner. Begge brøkene får nevner 15 hvis de utvides med den andre brøkens nevner. Nå har brøkene fellesnevneren 15. Nå kan de adderes ved at vi adderer tellerne. Når brøker som skal adderes eller subtraheres har ulike nevnere, må du først utvide brøkene slik at de får felles nevner. Noen ganger kan du bruke den største nevneren som fellesnevner. Andre ganger kan du bruke produktet av nevnerne.
18 Brøk side 18 Prosent Prosentregning er en spesiell form for brøkregning, der alle brøkene er hundredeler. Prosent betyr "for hver hundre". Vi har et eget symbol for ordet prosent. 50% 75% 25% 10%
19 Brøk side 19 Finn prosent Typisk problem: Dennis har 800 kroner. 5% av pengene skal han gi til Kristine. Hvor mange kroner får Kristine? Slik tenker du: Slik fører du:
Hvordan kan du skrive det som desimaltall?
7 0 av jordoverflaten er vann. Hvordan kan du skrive det som desimaltall? 9 Alle disse tre har samme verdi! Brøk og desimaltall MÅL I dette kapitlet skal du lære om likeverdige brøker multiplikasjon av
DetaljerBrøker med samme verdi
Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere
DetaljerBrøk-, desimalog prosentplater 1 = 1:7 = 0,143 0,143 100 = 14,3% = 1:24 = 0,042 0,042 100 = 4,2%
Brøk-, desimalog prosentplater = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0,0 0,0 00 =,% = : = 0,0 0,0 00
Detaljer1.1 Tall- og bokstavregning, parenteser
MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.
DetaljerINNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver...
Black plate (4,) INNHOLD Emne Brøk, prosent og promille... 6 Brøk... 8 Navn på brøker... 8 Likeverdige brøker... Utvide og forkorte brøker... 4 Addisjon og subtraksjon av brøker med like nevnere... 8 Å
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
DetaljerFAKTA. Likeverdige bröker: BrÖker som har samme verdi. 1 2 = 2 4 = 3 6 = 4 8 = 5
FAKTA Likeverdige bröker: BrÖker som har samme verdi. 2 = 2 = 6 = 8 = 0 0 utvide en brök: utvide en brök betyr Ô multiplisere teller og nevner med det samme tallet. BrÖken forandrer da ikke verdi. = 2
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
DetaljerDesimaltall FRA A TIL Å
Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne
DetaljerTallregning Vi på vindusrekka
Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere
DetaljerMisoppfatninger knyttet til brøk
Misoppfatninger knyttet til brøk 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 NEVNER REPRESENTERER ANTALL DELER - UAVHENGIG
DetaljerEt slikt pizzastykke utgjør en firedel av hele pizzaen. En firedel skriver vi slik:
Kapittel Brøk Det er en god egenskap å være villig til å dele med andre, for eksempel hvis du deler den pizzaen du hadde gledet deg til å spise, med tre venner som uventet stikker innom. Dersom alle skal
DetaljerMultiplikasjon og divisjon av brøk
Geir Martinussen, Bjørn Smestad Multiplikasjon og divisjon av brøk I denne artikkelen vil vi behandle multiplikasjon og divisjon av brøk, med særlig vekt på hvilke kontekster vi kan bruke og hvordan vi
DetaljerTallregning og algebra
30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer
DetaljerTIP Tallforståelse prosent, desimaltall, brøk, forholdstall
TIP Tallforståelse prosent, desimaltall, brøk, forholdstall Susanne Stengrundet 1 kyndighet 2 Skyt bort siffrene Desimaltall Slå inn siffrene 1 8 på kalkulatoren, valgfri rekkefølge Velg en plass for komma
Detaljer: og betyr det samme. Begge er divisjonstegn. 1 pizza eller 1 : 4 = 4. 1 pizza : 4 = 1 teller brøkstrek 4 nevner
Kapittel BRØK pizza : pizza eller : teller brøkstrek nevner : og betyr det samme. Begge er divisjonstegn. Ofte bruker vi divisjonstegnet : når mange eller mye skal fordeles på et visst antall, og brøkstrek
DetaljerPosisjonsystemet FRA A TIL Å
Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet
DetaljerAddisjon og subtraksjon av brøker finne fellesnevner
side 1 Detaljert eksempel om Addisjon og subtraksjon av brøker finne fellesnevner Dette er et forslag til undervisningsopplegg der elevene skal finne fellesnevner ved hjelp av addisjon og subtraksjon av
DetaljerOrdliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.
Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor
DetaljerÅRSPLAN MATEMATIKK 7. TRINN 2016/17
ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut
DetaljerRonny Kjelsberg. Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk
Ronny Kjelsberg Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk Contents Hvordan bli en BRØKREGNER på en, to, tre:. EN: Basics................................ Hva er
DetaljerÅRSPLAN MATEMATIKK 7. TRINN 2017/18
ÅRSPLAN MATEMATIKK 7. TRINN 2017/18 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten. Kunne avgjøre hvilken brøk som er størst
DetaljerGod morgen! Alle Teller dag 4
God morgen Alle Teller dag 4 Gerd Åsta Bones & Mike Naylor www.matematikkbølgen.com Røde Gule Regning 5 5 5 + 5 = 10 3 7 3 + 7 = 10 4 6 4 + 6 = 10. Alle Teller Dag 4 Algoritme med base 10 Divisjon Brøk
DetaljerEksempel på læringsstrategi i fag: Loop fra øving til læring
Eksempel på læringsstrategi i fag: Loop fra øving til læring Når man jobber inn nytt stoff gjennom å gjøre oppgaver i arbeidsboken, kan man introdusere lek-aktige spill, som for eksempel loop. Loopen blir
DetaljerTall og enheter. Mål. for opplæringen er at eleven skal kunne
8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen
DetaljerLDB. Flere oppgaver Løsningsforslag Kapittelprøve Verktøyopplæring Twig-arbeidsark Kopioriginaler
LÆRERENS D IGITALBOK LDB Flere oppgaver Løsningsforslag Kapittelprøve Verktøyopplæring Twig-arbeidsark Kopioriginaler Et mål for arbeidet med de to første kapitlene er at elevene skal kunne sammenlikne
DetaljerMultiplikation och division av bråk
Geir Martinussen & Bjørn Smestad Multiplikation och division av bråk Räkneoperationer med bråk kan visualiseras för att ge stöd åt resonemang som annars kan upplevas som abstrakta. I denna artikel visar
DetaljerSpill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet.
Spillevarianter Basis spillevarianter er presentert i elevboka, Tema B tall side 54. Her finner du også spillebrettet. I elevboka er spillet knyttet til desimaltall, men ved bruk av spillekortene kan man
DetaljerVerktøyopplæring i kalkulator
Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet
DetaljerHva er det største tallet du kan lage med disse sifrene?
Hva er det største tallet du kan lage med disse sifrene? Hvor mange tall tror du det er mellom 0 og? Tall og tallforståelse MÅL I dette kapitlet skal du lære om ulike typer tall plassverdisystemet og tall
DetaljerSAMMENDRAG OG FORMLER
SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen
DetaljerDet finnes mange måter og mange hjelpemidler til å illustrere brøk. Ofte brukes sirkelen som symbol på en hel.
Brøk Hvis vi spør voksne mennesker som ikke har spesiell interesse for matematikk om hva de syntes var vanskelig i matematikk på skolen, får vi ofte svaret: Brøk. Vår påstand er at hvis innføring av brøk
DetaljerTall og algebra 7. årstrinn
side 1 Tall og algebra 7. årstrinn Veiledningen fordeler kompetansemålene i hovedområdet tall og algebra på tre gjennomgående emner: tallforståelse, de fire regneartene og algebra. Veiledningen tar også
DetaljerDette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10.
SAMMENDRAG Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. Hvis du trenger mer trening utover oppgavene i Nummer 10, finner du ekstra oppgaver
DetaljerEmnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig
Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og
DetaljerVerktøyopplæring i kalkulator for elever
Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator
DetaljerHvor mye er 1341 kr delt på 2?
Hvor mye er 1341 kr delt på 2? 10 1 4 = 1 : 4 Divisjon 2 MÅL I dette kapitlet skal du lære om divisjon som gir rest divisjon der svaret er et desimaltall avrunding av desimaler divisjon av desimaltall
DetaljerPresentasjon av Multi
Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige
DetaljerForberedelseskurs i matematikk
Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger
Detaljer1P Tall og algebra. Tall og algebra Vg1P (utdrag)
1P Tall og algebra Modul 1: Regnerekkefølgen... 2 Modul 3: Brøkregning... 4 Modul 10: Prosentregning... 9 Bildeliste... 28 1 Modul 1: Regnerekkefølgen Du går i butikken og handler ett brød og to liter
DetaljerMATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017
UKE MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 TEMA KAPITTEL 1 «TALL» 33 Arbeidsrutiner Tall 34 Titallsystemet / Desimaltall/Tekstoppgaver 35 Addisjon og subtraksjon / BLÅ: LÆRINGSSTØTTENDE PRØVE 36 Negative
DetaljerINNHOLD SAMMENDRAG TALL OG TALLREGNING
SAMMENDRAG TALL OG TALLREGNING INNHOLD TALL OG TALLREGNING... 2 PLASSVERDISYSTEMET... 2 PLASSERING PÅ TALLINJE... 2 UTVIDET FORM... 3 REGNESTRATEGIER... 3 DELELIGHETSREGLER... 3 SKRIFTLIG REGNING... 4
DetaljerALTERNATIV GRUNNBOK BOKMÅL
Anne Rasch-Halvorsen Oddvar Aasen Illustratører: Bjørn Eidsvik Gunnar Bøen 7A NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 00 Materialet i denne publikasjonen er omfattet av åndsverklovens bestemmelser.
DetaljerFaktorisering og multiplisering med konjugatsetningen
Faktorisering og multiplisering med konjugatsetningen De følgende oppgavene er øvinger i faktorisering og multiplisering ved hjelp av konjugatsetningen /3. kvadratsetning. Gjennom oppgavene gir vi elevene
Detaljer7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11
1 7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 KOMPETANSEMÅL Måling Mål for opplæringa er at eleven skal kunne: gjere overslag over og måle storleikar for lengd, areal, masse, volum, vinkel og tid, og bruke
DetaljerKAPITTEL 1 - ALGEBRA. 1. Regnerekkefølger og regneregler. Legg først merke til at: Legg spesielt merke til at :
KAPITTEL - ALGEBRA. Regnerekkefølger og regneregler Legg først merke til at: 2( ) = 2 ( ) = 6, ab = a b = b a = ba og a a = a 2 Legg spesielt merke til at : a 2 = a a, ( a) 2 = ( a) ( a) = a 2 og ( a)
DetaljerSAMMENDRAG OG FORMLER. Nye Mega 9A og 9B
SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi
DetaljerAlle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen
Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor
DetaljerADDISJON FRA A TIL Å
ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger
DetaljerBrukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup
Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4
DetaljerEn divisor til et heltall N er et heltall som går opp i N. Både 1 og N regnes blant divisorene til N.
Oppgave 1 Hvilket av disse tallene er ikke heltall? 11! 12345678910 11 11! 11! 11! 11! 11! A B C D E 20 21 22 23 24 Hva må være oppfylt for at brøkene i løsningsalternativene skal bli hele tall? Hvilke
DetaljerKapittel 10 LIGNING AV FØRSTE GRAD MED EN UKJENT. Hvor mange lodd må vi flytte for å balansere vekta?
Hvor mange lodd må vi flytte for å balansere vekta? Vekta balanserer når vi flytter lodd. 4 16 4 16 Vi adderer tallet til begge sidene. Vi legger nye lodd i hver skål. 4 16 4 4 16 4 Vi subtraherer 4 fra
DetaljerAddisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149
Addisjon og subtraksjon Oppstilling Ved addisjon og subtraksjon av fleirsifra tal skal einarar stå under einarar, tiarar under tiarar osb. Addisjon utan mentetal Addisjon med mentetal 1 212 357 + 32 +
DetaljerUKE Tema Læringsmål Kunnskapsløftet Metoder
ÅRSPLAN MATEMATIKK 6. TRINN 2019-2020 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på
DetaljerARBEIDSHEFTE I MATEMATIKK
ARBEIDSHEFTE I MATEMATIKK Temahefte nr Hvordan du regner med brøk Detaljerte forklaringer Av Matthias Lorentzen mattegrisenforlag.com Opplysning: Et helt tall er delelig på et annet helt tall hvis svaret
Detaljer99 matematikkspørsma l
99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet
DetaljerMålark 1. Kapittel 1 God start. Navn: Delmål Kan Må arbeide mer med. TUSEN MILLIONER 6A Målark. Kunne forskjellen på siffer og tall
Målark 1 Kapittel 1 God start Kunne forskjellen på siffer og tall Kunne plassverdiene for hele tall i titallsystemet Kunne plassverdiene for desimaltall Vite hva desimaltegnet betyr Kunne stille opp og
DetaljerTall, forholdstall og % regning med fokus på DHbegrepslæring
Tall, forholdstall og % regning med fokus på DHbegrepslæring i praksis Susanne Stengrundet Matematikksenteret 17.november 2014 1 kyndighet 2 3 Oppgave i en programfagbok: tallet tre Bruk rutepapir og skap
DetaljerProblemområder knyttet til brøk
Problemområder knyttet til brøk 17.0.18 Astrid Bondø og Olav Dalsegg Tokle MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 GENERALISERING AV HELTALLSTENKING... 3 ULIKE ASPEKTER VED BRØK...
Detaljer3 Største felles faktor og minste felles multiplum
3 Største felles faktor og minste felles multiplum 3.1 Største felles faktor og minste felles multiplum. Metodiske aspekter Største felles faktor og minste felles multiplum er kjente matematiske uttrykk
DetaljerKapittel 1 Koordinatsystemet. godt Kommentarer. Kan. ganske godt. Kan. Kan litt. Kompetanseoversikt i matematikk, 4. trinn for: Klasse/gruppe:
Kapittel 1 Koordinatsystemet Kommentarer finne rutehenvisningen til en rute i et rutenett, og finne ruta til en oppgitt rutehenvisning finne koordinatene til et punkt i et koordinatsystem i første kvadrant,
DetaljerUkemål (Konkretiserte mål fra Fagplan) Prøver (Hentet fra prøveplan). Småprøver kan legges inn av teamene. og organisering
Uke Fagemne (Hentet fra Fagplan) 34 Rutenett og koordinatsystem Ukemål (Konkretiserte mål fra Fagplan) Jeg kan plassere punkter i et koordinatsystem og beregne avstander langs aksene. Læringsstrategier,
DetaljerTall Vi på vindusrekka
Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative
DetaljerPlassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.
KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0
DetaljerÅRSPLAN. Grunnleggende ferdigheter
ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for
DetaljerStudentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform
1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller
DetaljerHvor mye må jeg betale for 2 kg appelsiner?
Hvor mye må jeg betale for 2 kg appelsiner? 5 Jeg har omtrent 380 kr 400 kr! Avrunding og overslag MÅL I dette kapitlet skal du lære om avrunding av hele tall avrunding av desimaltall overslag i addisjon
DetaljerÅRSPLAN. Skoleåret: 16/17 Trinn: 6.trinn Fag: Matematikk
ÅRSPLAN Skoleåret: 16/17 Trinn: 6.trinn Fag: Matematikk Periode med tema Uke 33 35 Tall og regning Titallsystemet, avrunding uke 36 Hoderegning, Addisjon og subtraksjon Uke 37 Negative tall, Kompetansemål
DetaljerUKE Tema Læringsmål Kunnskapsløftet Metoder
ÅRSPLAN MATEMATIKK 6. TRINN 2018-19 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på
DetaljerUKE Tema Læringsmål Kunnskapsløftet Metoder
ÅRSPLAN MATEMATIKK 6. TRINN 2017/2018 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på
Detaljer2 Likninger. 2.1 Førstegradslikninger med én ukjent
MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel
DetaljerAlgebra Vi på vindusrekka
Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...
DetaljerVerktøyopplæring i kalkulator
Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator... 1 Enkel kalkulator... 2 Regneuttrykk uten parenteser... 2 Bruker kalkulatoren riktig regnerekkefølge?... 2 Negative tall... 3 Regneuttrykk
DetaljerTall og formler MÅL. for opplæringen er at eleven skal kunne
8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere
Detaljerplassere negative hele tall på tallinje
Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne
DetaljerREGEL 1: Addisjon av identitetselementer
REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med
DetaljerAddisjon og. subtraksjon. Muntlig tilbake- - Bruke metoder for hoderegning, overslagsregning, skriftlig regning - Addisjon. enn
ÅRSPLAN I MATEMATIKK FOR 5. TRINN 2016/2017 Læreverk: Multi 5a og b Lærer: Ruben Elias Austnes Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING - Finne verdien av et siffer HELE TALL Titallsystemet Tallinjer
DetaljerVet du hva vi kan bruke et regneark på pc-en til?
Vet du hva vi kan bruke et regneark på pc-en til? 14 Vi starter med blanke regneark! Regneark MÅL I dette kapitlet skal du lære om hva et regneark er budsjett og regnskap hvordan du kan gjøre enkle utregninger
DetaljerUtfordringer med tall
Utfordringer med tall e følgende oppgavene er øvinger for å utdype tallforståelse. e første fem oppgavene handler om faktorer og faktorisering. I de to siste handler det om å vurdere størrelsen av tall
DetaljerTest, Algebra (1P) 1.1 Tallregning. 1) Addere betyr x legge sammen trekke fra gange dele. 2) Subtrahere betyr legge sammen x trekke fra gange dele
Test, Algebra (1P) 1.1 Tallregning 1) Addere betyr x legge sammen trekke fra gange dele 2) Subtrahere betyr legge sammen x trekke fra gange dele 3) Multiplisere betyr legge sammen trekke fra x gange dele
Detaljer1 Tall og algebra i praksis
1 Tall og algebra i praksis Innhold Kompetansemål Tall og algebra i praksis, VgP... 1 Modul 1: Potenser... Modul : Tall på standardform... 6 Modul : Prosentregning... 10 Modul 4: Vekstfaktor... 15 Modul
Detaljera) 5 5 b) 7 9 c) 1 0 d) 5 10 2,6 3,8 5 5,9 5,6 0,1 3,8 Tegn tallinjer og merk av brøkene. Skriv tallene på utvidet form.
1 Skriv av og sett inn < eller >. a) 5 5 b) 7 9 c) 1 0 d) 5 10 2 Tegn en tallinje fra 6 til 6. Merk av tallene så nøyaktig som mulig. 2,6 3,8 5 5,9 5,6 0,1 3,8 3 Tegn tallinjer og merk av brøkene. 1 3
DetaljerVi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr?
Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr? 4 356 : 10 = Jeg vet om en lur måte å regne på MÅL I dette kapitlet skal du lære om divisjon med 10
Detaljer(K06) TEMA INNHOLD ARBEIDSFORM VURDERING
HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN 2016-2017 Læreverk: Multi 6a Lærer: Anita Nordland Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-39 - Finne verdien av et siffer avhengig av hvor i tallet det
DetaljerKapittel 1. Tallregning
Kapittel. Tallregning Mål for Kapittel, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere
DetaljerLOKAL LÆREPLAN Matte Trinn 5
LOKAL LÆREPLAN Matte Trinn 5 Gol kommune side 1 Kjennetegn på måloppnåelse Læringsmål Mestringsnivå 1 Mestringsnivå 2 Mestringsnivå 3 Eleven skal kunne: Eleven skal kunne: Eleven skal kunne: Eleven skal
DetaljerØvingshefte. Brøk og prosent
Øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.
DetaljerLæringsstøttende prøver. September 2013. Matematikk 5. 10. årstrinn Ressurshefte. Tall og Tallregning. Bokmål
Læringsstøttende prøver September 2013 Matematikk 5. 10. årstrinn Ressurshefte Tall og Tallregning Bokmål Innledning...3 Innhold del 1: Analyse av oppgavene i læringsstøttende prøver...4 Tall og tallregning...4
DetaljerPeriode Tema Kompetansemål Læringsaktiviteter Vurdering Uke 34-38
ÅRSPLAN MATEMATIKK FOR 7. TRINN 2018-2019 Periode Tema Kompetansemål Læringsaktiviteter Vurdering 34-38 Hele tall Titallsystemet Addisjon og subtraksjon Multiplikasjon og divisjon Regning med parenteser
DetaljerÅrsplan i matematikk for 7. trinn 2017/2018 Læreverk: Multi 7a og 7b Lærer: Irene J. Skaret
Årsplan i matematikk for 7. trinn 2017/2018 Læreverk: Multi 7a og 7b Lærer: Irene J. Skaret Uke Kompetansemål (K06) Tema Arbeidsform Vurdering 34 39 - Kjenne verdien av sifrene i heltall og i desimaltall.
DetaljerÅrsplan i matematikk 6.trinn 2015/2016
Uke nr. Kap. Emne/Tema: Kompetansemål etter 7. årstrinn: 34-39 Kap. 1 Hele tall. Beskrive og bruke Titallsystemet. plassverdisystemet for Tall og Avrunding. desimaltal, rekne med regning Addisjon og positive
DetaljerÅRSPLAN for skoleåret 2015 /-2016 i Matematikk
ÅRSPLAN for skoleåret 2015 /-2016 i Matematikk Faglærer: Nina Gausdal Fagbøker/lærestoff: Grunntall 6a og 6b Uke 35-36 Læreplanmål (kunnskapsløftet) Delmål Tema/emne Addere tall med addere to tall ved
DetaljerÅrsplan matematikk 6. trinn 2019/2020
Årsplan matematikk 6. trinn 2019/2020 Årsplanen tar utgangspunkt i kunnskapsløftet. I planen tar vi utgangspunkt i kompetansemåla for 7.klasse. I matematikk lærer en litt av et tema på 5.trinn, litt mer
DetaljerALTERNATIV GRUNNBOK BOKMÅL
Anne Rasch-Halvorsen Oddvar Aasen Illustratører: Bjørn Eidsvik og Gunnar Bøen 7A NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 200 Materialet i denne publikasjonen er omfattet av åndsverklovens
DetaljerDybdelæring begrepene brøk og desimaltall
Dybdelæring begrepene brøk og desimaltall APRIL 2019 Susanne Stengrundet, Anne-Mari Jensen og Ingunn Valbekmo NTNU Innholdsfortegnelse INNLEDNING... BRØK... HVOR LIGGER PROBLEMET?... Brøk som del av en
DetaljerHALVÅRSPLAN I MATEMATIKK. VÅREN 2019 TRINN: 5
UKE TEMA KUNNSKAPSLØFTET LÆRINGSMÅL METODER VURDERING 3 Geometri Todimensjonale figurer Egenskaper ved trekanter 4 Egenskaper ved firkanter Sammensatte figurer 5 Måle og tegne vinkler 6 Regne ut størrelse
Detaljer