MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co.

Størrelse: px
Begynne med side:

Download "MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co."

Transkript

1 MATEMATIKK Yrkesfag TALL I ARBEID P Odd Heir / John Engeseth / Håvard Moe Bokmål

2 Del 2 av 4 Dette er en elektronisk versjon av læreboka til bruk på skoler som har undertegnet en avtale med Aschehoug forlag for skoleåret 2011/2012. Filene må behandles i henhold til åndsverksloven, og må ikke kopieres og/eller distribueres til personer som ikke er omfattet av avtalen. Alle filer skal være slettet innen 1. juli 2012 dersom ikke annen avtale er gjort med Aschehoug.

3 2 Økonomi AKTIVITET: Hva stiger mest i pris? Vi tenker oss at en bestemt mopedtype kostet kr i 2003 og kr i I den samme tidsperioden steg prisen på en bestemt sykkeltype fra 4000 kr til 6000 kr. Var det prisen på sykkelen eller prisen på mopeden som økte mest? Tenk over dette og diskuter gjerne med andre før du leser videre.

4 Økonomi I økonomi er det viktig å kunne regne med forhold og prosent. Vi starter derfor kapitlet med disse emnene. I 2.1 skal du lære å regne med forhold. 2.1 FORHOLD I en matematikkgruppe er det 8 jenter og 12 gutter. Hva er forholdet mellom antall jenter og antall elever i gruppa? Hva er forholdet mellom antall gutter og antall jenter? Før vi svarer på disse spørsmålene, definerer vi begrepet «forhold»: Å finne forholdet mellom to tall a og b er det samme som å dividere a med b. a Forholdet mellom a og b er, eller a : b. b NB! 8 Forholdet mellom 8 og 10 er altså = 08, Forholdet mellom 10 og 8 er = 125,. 8 Legg merke til at forholdet mellom 8 og 10 ikke er det samme som forholdet mellom 10 og 8. Når du regner oppgaver med forhold, er det derfor viktig at du leser teksten nøye. Det gjelder generelt når du løser oppgaver. Les alltid teksten nøye før du oversetter en vanlig tekst til matematisk tekst. Eksempel 1 Forhold i oppskrifter I en kakeoppskrift er det oppgitt at det skal brukes 150 g sukker og 400 g mel. Forholdet mellom sukker og mel er da = 3 = = , 375 Forholdet mellom sukker og mel er 0,375. Vi kan også si at forholdet mellom sukker og mel er 3 til 8. 8 Legg merke til at forholdet mellom mel og sukker er. 3

5 54 Økonomi 2.1 Eksempel 2 Forhold i gruppe I matematikkgruppa på forrige side med 8 jenter og 12 gutter er forholdet mellom antall jenter og antall elever = = = , 5 Forholdet mellom antall jenter og antall elever er 0,4. Vi sier også at forholdet mellom antall jenter og antall elever er 2 til 5. Forhold blir også kalt forholdstall. Vi kan altså si at forholdstallet mellom antall jenter og antall elever er 0, Forholdet mellom antall gutter og antall jenter er = = , 2 Oppgave 2.1 I en dansegruppe er det 12 gutter og 16 jenter. Hva er forholdet mellom a antall gutter og antall jenter b antall jenter og antall gutter c antall jenter og antall dansere Eksempel 3 Forhold i drikke Når vi blander 1 del saft med 5 deler vann, er det vanlig å si at vi blander saft og vann i forholdet én til fem, og det kan vi skrive 1 : 5. Vi tar utgangspunkt i at blandingen består av (1 + 5) deler = 6 deler (se figuren). 1 5 Da er av blandingen rein saft, og av blandingen er reint vann. 6 6 Eksempel 4 Forhold i økonomi Hanna har leid ei hytte i 5 uker for kr. Det viser seg at hun ikke rekker å bruke hytta i mer enn 3 uker. Hun vil derfor la Alma bruke hytta de to siste ukene. De blir enige om å dele leien i forhold til den tiden de bruker hytta. Hvor mye skal hver av dem betale? Vi kan «gå veien om 1» (se kapittel 1, side 39). Først finner vi leien for én uke Leie for én uke: kr = 5500 kr 5 For tre uker skal altså Hanna betale kr = kr. For to uker skal Alma betale kr = kr.

6 Økonomi Alternativ løsningsmåte Siden Hanna skal bruke hytta i tre av de fem ukene, skal hun betale 2 betale. 5 3 Hanna skal altså betale kr = kr. 5 2 Alma skal betale kr = kr. Eller: Alma skal betale resten, som er kr kr = kr. 3 5 av leien. Alma skal Oppgave 2.2 En dag plukket Pjotr og Kari til sammen 50 kasser med jordbær. For det fikk de 2200 kr. a b Hvor mye fikk de for hver kasse? Hvor mye fikk hver av dem utbetalt når Pjotr hadde plukket 30 av kassene? Lokus REGNEARK Oppgave 2.3 Til en indonesisk pastarett for 4 personer går det med 250 g kinakål og 300 g kinesisk spagetti. a Hva er forholdet mellom mengden av kinakål og mengden av spagetti? b Retten skal tilberedes for 6 personer. Hvor mye kinakål og spagetti trengs det da? (Tips: «Gå veien om 1», som i eksempel 4.) På nettstedet på Lokus finner du et regneark du kan bruke for å lære mer om forholdet mellom to tall.

7 56 Økonomi 2.1 Like store forhold Det at to forhold skal være like, bruker vi ofte når vi skal sette opp en likning. Eksempel 5 Forhold mellom farger Connie og Halvor skal beise den nye hytta si. De har funnet en perfekt farge ved å blande en hvit beis og en seterbrun beis i forholdet 2 : 7. Hvor mange liter hvit beis må de blande med 10 liter seterbrun beis for å få det riktige forholdet? De trenger x liter hvit beis. Når x liter hvit beis blandes med 10 liter seterbrun beis, blir forholdet mellom hvit og seterbrun beis lik x : 10. Dette forholdet skal være 2 : 7. Altså får vi x : 10 = 2 : 7 Vi bytter ut divisjonstegnene med brøkstreker og løser likningen. x 2 = 10 7 Vi multipliserer på begge sider med 10. x = 10 7 Vi forkorter med 10 på venstre side. 2 = 10 x 7 20 x = = 2,86 7 Connie og Halvor må altså tilsette i underkant av 3 liter hvit beis. Kommentar x 2 En likning av typen =, som sier at to forhold skal være like 10 7 store, kaller vi en proporsjon. I stedet for først å multiplisere med 10 på begge sider, for så å forkorte med 10 på venstre side, kunne vi ha flyttet 10 som faktor opp i telleren på høyre side med én gang. x 2 = x = 7 NB! Denne framgangsmåten kan vi bruke for alle proporsjoner. (Slike likninger kan også løses ved kryssmultiplikasjon, se side )

8 Økonomi Lokus NETTINNHOLD Stifinner: side 181 Oppgave 2.4 Løs likningene. x 2 a = 6 3 b 2 = x 5 3 Oppgave 2.5 En sommer drev Ida og Mads utleie av seilbrett, kajakker og småbåter. De hadde investert henholdsvis kr og kr for å skaffe utstyret. Forholdet mellom fortjenestene skulle være det samme som forholdet mellom investeringene. Etter at utleiesesongen var over, hadde Ida en fortjeneste på kr. Hvor stor var fortjenesten til Mads? (Tips: Sett fortjenesten til Mads lik x kr.) I 2.2 skal du lære å regne med prosent, prosentpoeng og vekstfaktor. 2.2 PROSENTREGNING Hvor mange prosent er 0,23? Hvis du klarer å svare på dette spørsmålet, vet du kanskje hva prosent er. Prosent Prosent betyr per hundre, men det er ofte enklest å «oversette» prosent med hundredeler. 20 hundredeler er lik 20 %. 3,5 hundredeler er lik 3,5 %. Vi må ofte gjøre om desimaltall til prosent. 23 0,23 betyr. Det vil si at 0,23 = 23 % ,2 betyr, som kan skrives. Det vil si at 0,2 = 20 % , 5 0,245 = = = 24,5 % Vi skriver noen desimaltall som prosent: 0,80 = 80 % 0,08 = 8 % 0,083 = 8,3 % På tilsvarende måte får vi at 70 % = 0,70 5,4 % = 0,054 0,4 % = 0,004

9 58 Økonomi 2.2 Vi finner p % av et tall Eksempel 1 Prosent og prisendring Mari fikk beskjed om å øke prisen på en buksetype med 20 % fra 800 kr. Hun regnet ut 20 % av = 160 Etter dette ble prisen ( ) kr = 960 kr. Siden 20 % = 0,20, kunne Mari også ha regnet slik: 800 0, 20 = 160 Du kan bruke begge regnemåtene. Men det er den siste regnemåten som stort sett blir brukt i denne boka. Oppgave 2.6 Skriv som desimaltall. a 14,5 % b 1,45 % c 0,145 % Oppgave 2.7 Du får oppgitt at det koster 2,2 % av verdien å forsikre fotoutstyret ditt. Hvor mye må du betale for forsikringen hvis verdien av utstyret er kr? Oppgave 2.8 En skipakke til 5500 kr ble satt ned med 35 %. Hva var tilbudsprisen? Vi finner prosenttallet I eksempel 4, side 54, er hytteleien kr. Av det skal Alma betale kr. Hvor mange prosent av leien må hun betale? For å finne hvor mange prosent kr er av kr, regner vi slik: =, = % Alma betalte altså 40 % av leien. Lokus REGNEARK På nettstedet på Lokus finner du regnearket Prosentkalkulator, som du kan bruke for å finne p % av et tall eller for å finne prosenttallet.

10 Økonomi Vi finner endring i prosent Når vi skal regne ut endring i prosent, dividerer vi endringen med det opprinnelige tallet. Eksempel 2 Prosent og lønnsøkning Arbeidsgiveren til Agnete var så fornøyd med den jobben hun utførte, at hun satte opp timelønna fra 115 kr til 125 kr. Hvor mange prosent økte timelønna? Den opprinnelige lønna var 115 kr. Lønnsøkningen var 10 kr. Vi må derfor regne ut hvor mange prosent 10 kr er av 115 kr = 0, 087 = 8, 7 % Timelønna gikk opp 8,7 %. (Det kan lønne seg å gjøre en god jobb!) Oppgave 2.9 a I 2007 omkom 233 personer i veitrafikkulykker i Norge. 45 av dem var i alderen år. Hvor mange prosent var i alderen år? b Av de 233 personene var 33 førere eller passasjerer på motorsykler. Hvor mange prosent var det? c Av alle de 233 omkomne i trafikkulykker omkom 25 på sykkel. Hvor mange prosent var det? Oppgave 2.10 I en annonse fant vi følgende sommertilbud på et digitalt speilreflekskamera: Spar 3000 kr. Sommertilbud 6999 kr. Hvor stort var nedslaget i prosent? (Tips: Finn først hva kameraet kostet før tilbudet.)

11 60 Økonomi 2.2 NB! Prosentpoeng Når en størrelse blir oppgitt som et prosenttall, f.eks. prosent arbeidsløse, prosent frammøtte eller oppslutning i prosent i meningsmålinger, blir endringen i prosenttallet ofte oppgitt som antall prosentenheter eller antall prosentpoeng. Ved en meningsmåling går parti A fram fra 4 % til 6 %. Parti B går fram fra 20 % til 22 %. For begge partier sier vi at oppslutningen har økt med 2 prosentpoeng. For parti A betyr det en økning på 50 %. For parti B betyr det en økning på 10 %. Legg merke til at økningen i prosentpoeng ikke er det samme som økningen i prosent. Eksempel 3 Prosentpoeng og prosentregning I en meningsmåling høsten 2008 gikk AP fram fra 29,8 % til 35,5 %. Vi sier at AP gikk fram 5,7 prosentpoeng. Men hvor mange prosent økte oppslutningen? 57, = ,, 191 Oppslutningen økte med 19,1 %.

12 Økonomi Oppgave 2.11 I den samme meningsmålingen som i eksempel 3 gikk FrP ned fra 30,7 % til 24,9 %. Hvor stor var nedgangen a i prosentpoeng b i prosent Vekstfaktor Vi skal nå se hvordan du på en rask måte kan legge til eller trekke fra en bestemt prosent av et tall. Denne måten vil du også få bruk for når du seinere skal regne ut flere prosentvise endringer etter hverandre. NB! Vi legger p % til et tall Verdien av en akvarell som kostet 5000 kr, steg med 15 %. Vi finner den nye verdien slik: Gammel verdi + økning = ny verdi , 15 = 5000 ( 1 + 0, 15) = , 15 Å legge til 15 % er det samme som å multiplisere med 1,15. Faktoren 1,15 kaller vi vekstfaktor. Når vi skal legge til p %, blir vekstfaktoren 1 + p. 100 Et tillegg på 25 % gir vekstfaktoren = 1 + 0, 25 = 1, 25 Et tillegg på 8,5 % gir vekstfaktoren , = +, =, Eksempel 4 Prisen blir satt opp En bukse ble satt opp med 20 % fra 800 kr. Et tillegg på 20 % gir vekstfaktoren Vi multipliserer 800 kr med vekstfaktoren 1,20 og får 100 = 120,. 800 kr 1, 20 = 960 kr (Se eksempel 1.) Oppgave 2.12 Hva er vekstfaktoren når prisen på en vare går opp med a 0,5 % b 5% c 15 % d 15,5 % Oppgave 2.13 Prisen på et skjørt blir satt opp med 15 % fra 600 kr. a Hva er vekstfaktoren? b Hva blir den nye prisen på skjørtet?

13 62 Økonomi 2.2 Oppgave 2.14 En ansatt i en bedrift får vite at årslønna vil øke med 6,5 %. Hva vil den nye lønna bli når lønna nå er kr? Vi trekker p % fra et tall Et surfebrett som kostet 8000 kr, ble satt ned med 15 %. Den nye prisen ble , 15 = 8000 ( 1 0, 15) = , 85 Å trekke fra 15 % er det samme som å multiplisere med 0,85. Vekstfaktoren er da 0,85. Alltid halv pris Eksempel 5 Når vi skal trekke fra p %, blir vekstfaktoren 1 p. 100 Et fradrag på 25 % gir vekstfaktoren = 1 0, 25 = 0, 75 Et fradrag på 8,5 % gir vekstfaktoren 1 85,. 100 = 1 0, 085 = 0, 915 Prisen blir satt ned Prisen på en bukse ble satt ned med 20 % fra 1000 kr. Vekstfaktoren var = 1 0, 20 = 0, 80. Den nye prisen ble derfor 1000 kr 0, 80 = 800 kr. Oppgave 2.15 Hva er vekstfaktoren når prisen på en vare går ned med a 0,5 % b 5% c 15 % d 15,5 % Oppgave 2.16 Prisen på en flybillett er 3500 kr. I en kampanje blir prisen satt ned med 35 %. a Hva er vekstfaktoren? b Hva er kampanjeprisen? Oppsummering Når vi skal legge til eller trekke fra en bestemt prosent, får vi svaret ved å multiplisere med vekstfaktoren. Ny verdi = gammel verdi vekstfaktoren NB! Når noe øker med p %, er vekstfaktoren større enn 1. Når noe minker med p %, er vekstfaktoren mindre enn 1.

14 Økonomi Vi bruker vekstfaktoren til å finne gammel verdi Raja fikk 5 % lønnsøkning for en timebetalt jobb. Den nye timelønna ble 120 kr. Hva var den gamle lønna? Vi bruker vekstfaktor: En økning på 5 % gir vekstfaktoren = 105,. Gammel lønn 1,05 = ny lønn Gammel lønn 1,05 = 120 Vi dividerer med 1,05 på begge sider. Gammel lønn 1, = 1,05 1, Gammel lønn = = 114,29 1,05 Vi forkorter med 1,05 på venstre side. Gammel lønn var 114 kr. Denne metoden kan du alltid bruke når du kjenner vekstfaktoren og den nye verdien. Gammel verdi ny verdi = vekstfaktoren Eksempel 6 Opprinnelig pris I eksempel 5 på forrige side ble prisen på buksa satt ned med 20 % til 800 kr. Vi vil bruke vekstfaktor til å finne den opprinnelige prisen. Vekstfaktoren var her = 080,. ny pris 800 Gammel pris = = = vekstfaktoren 080, 1000 Den opprinnelige prisen var 1000 kr. Oppgave 2.17 Et digitalt kamera ble satt ned med 25 % til 3000 kr. a Hva var vekstfaktoren? b Hva var den opprinnelige prisen? Oppgave 2.18 I september 2008 var totalproduksjonen av elektrisk energi i Norge GWh, en nedgang på 12 % i forhold til september året før. Hvor stor var energiproduksjonen i september 2007?

15 64 Økonomi 2.2 Vi bruker vekstfaktoren til å bestemme prosenttallet p Av vekstfaktoren framgår det hvor mange prosent vi legger til eller trekker fra. Vekstfaktoren 1,15 forteller at vi legger til 15 %. Vekstfaktoren 0,85 forteller at vi trekker fra 15 %. Dette kan vi bruke til å finne prosenttallet når vi kjenner ny og gammel verdi. Vi vet at Gammel verdi vekstfaktoren = ny verdi Vi dividerer med gammel verdi på begge sider. Da får vi Vekstfaktoren ny verdi = gammel verdi Eksempel 7 Endring i prosent Et tre vokste fra 2,1 m til 2,4 m i løpet av sommeren. Hvor mange prosent var veksten? ny verdi 24, Vekstfaktoren = = = gammel verdi 21 1,, 143 Vekstfaktoren var 1,143. Det svarer til en økning på 14,3 % 14 %. Treet hadde vokst ca. 14 % i høyden. Eksempel 8 Endring av månedslønn i prosent I mai tjente Marie 1600 kr på jobben hun hadde ved siden av skolen. I juni jobbet hun mer, og tjente 6400 kr. Hvor mange prosent mer tjente Marie i juni enn i mai? ny lønn Vekstfaktoren = gammel lønn = = 4 Her er det kanskje ikke så lett å se økningen i prosent. Vekstfaktoren er uvanlig stor, men vi kan løse problemet slik: Vekstfaktoren = 4 p 1 + = p = 400 p = 300 Vi multipliserer med 100. Lønnsøkningen var 300 %. Vekstfaktoren 4 svarer altså til en økning på 300 %.

16 Økonomi Eksempel 9 Endring av bilverdi i prosent Verdien av en bil sank fra kr til kr i løpet av ett år. Hvor mange prosent sank verdien? ny verdi Vekstfaktoren = gammel verdi Vekstfaktoren = p 1 = 085, p = 85 p = 15 p = 15 Vi multipliserer med 100. Bilens verdi sank med 15 %. Lokus NETTINNHOLD Stifinner: side 182 Oppgave 2.19 På grunn av uventede veikostnader gikk prisen på en hyttetomt opp fra kr til kr. Hva var prisøkningen i prosent? Oppgave 2.20 I løpet av ett år sank verdien av en bil fra kr til kr. Hvor mange prosent sank verdien? Oversikt Når vi legger til p %: Vekstfaktoren = 1 + p 100 Når vi trekker fra p %: Vekstfaktoren = 1 p 100 Ny verdi = gammel verdi vekstfaktoren Gammel verdi = Vekstfaktoren = ny verdi vekstfaktoren ny verdi gammel verdi

17 66 Økonomi PRISINDEKS I 2.3 skal du lære å regne med prisindeks. For å gjøre det lettere å sammenlikne prisutviklingen for ulike typer varer, regner vi ut prisindekser for disse varene. Når vi skal regne ut prisindeksen for en bestemt vare, sammenlikner vi prisen på denne varen med det den kostet i det såkalte basisåret. I basisåret er prisindeksen 100 for alle varer. Prisindeksen for en vare viser hva vi må gi for en varemengde som kostet 100 kr i basisåret. I stedet for prisindeks sier vi ofte bare indeks. I Norge er det nå vanlig å bruke 1998 som basisår. Vi tenker oss at en bestemt vare kostet 96 kr i 1995, 100 kr i 1998 og 120 kr i Indeksen for denne varen vil da være 96 i 1995, 100 i 1998 og 120 i Oppgave 2.21 Varen ovenfor kostet 128 kr i Hva var indeksen for varen i 2008? Eksempel 1 Priser og indekser Tabellen viser prisene og indeksene for to varer A og B i basisåret 1998 og i År Pris vare A Pris vare B Indeks vare A Indeks vare B ,00 kr 750 kr ,00 kr 885 kr Indeksen for vare A steg fra 100 til 120. Indeksen for vare B steg fra 100 til 118. Indeksene viser derfor at A har hatt størst prisstigning fra 1998 til Indeksen for en vare øker eller minker i takt med prisen på varen. Hvis prisen øker fra 300 kr til 600 kr, øker altså indeksen til det dobbelte. Hvis prisen avtar fra 300 kr til 150 kr, blir også indeksen halvert. Forholdet mellom indeksene er lik forholdet mellom prisene.

18 Økonomi Eksempel 2 Forholdet mellom priser og forholdet mellom indekser Vi tar igjen for oss varene A og B i eksempel 1. Pris i , 00 kr Forholdet mellom prisene for vare A: = = 120, Pris i , 00 kr Indeks i 2008 Forholdet mellom indeksene for vare A: Indeks i 1998 = = 120, Vi ser at forholdet mellom indeksene er lik forholdet mellom prisene. Oppgave 2.22 Ta for deg vare B i eksempel 1. a Regn ut forholdet mellom prisene i 2008 og b Regn ut forholdet mellom indeksene i 2008 og c Sammenlikn svaret i oppgave a med svaret i oppgave b. Forholdet mellom indeksen et år og indeksen et annet år er altså lik forholdet mellom prisene de samme to årene. Dette gir oss «indeksformelen»: indeks 1 pris 1 = indeks 2 pris 2 Når vi snakker om prisen på en vare et bestemt år, er det gjennomsnittsprisen for hele året vi mener. Formelen ovenfor kan vi bruke til å finne indeksen når prisen er gitt, og til å finne prisen når indeksen er gitt. Det er ikke nødvendig at det ene året er basisåret. En indeks er egentlig et ubenevnt tall, men ofte bruker vi poeng som en slags benevning. Hvis indeksen for en vare går opp fra 105 til 115, sier vi at indeksen har gått opp med 10 poeng.

19 68 Økonomi 2.3 Hvordan tror du indeksen for bærbare PC-er har utviklet seg de siste årene? Eksempel 3 Indeksen for en vare Prisen på en vare var 350 kr i I 2004 kostet den samme varen 390 kr. Hva var indeksen for denne varen i 2004 med 1998 som basisår? Vi lar x være indeksen i For å få oversikt lønner det seg å sette opp en tabell. Indeks Pris x 390 Det er en fordel å sette opp indeksformelen slik at den ukjente kommer i telleren. Derfor velger vi 2004 som år 1 og 1998 som år 2. Vi får da indeks i 2004 indeks i 1998 = x 390 = pris i 2004 pris i 1998 x = x = = 111, Husk at indeksen er 100 i basisåret! I 2004 var indeksen for denne varen 111,4 poeng. Vi multipliserer med 100 på begge sider.

20 Økonomi Eksempel 4 Indeksen for kaffebrød Prisen på et kaffebrød var 7,95 kr i Indeksen var da 110,7 poeng. I 2007 kostet et kaffebrød av samme type 8,75 kr. Vi vil bestemme indeksen i Vi setter opp en tabell. Indeks Pris ,7 7, x 8,75 indeks i 2007 indeks i 2005 = pris i 2007 pris i 2005 x 8, 75 = 110,7 7,95 Vi multipliserer med 110,7 på begge sider. x 110,7 8,75 110,7 = 110,7 7,95 8,75 110,7 x = = 121,8 7,95 I 2007 var indeksen for kaffebrød 121,8 poeng. Eksempel 5 Indekser og prosent Vi vil bestemme hvor mange prosent indeksen i forrige eksempel steg med fra 2005 til Økning i indeks: (121,8 110,7) poeng = 11,1 poeng 11, 1 Økning i prosent: = 10,03 % , 1003 =, Indeksen økte med 10,0 %. Det forteller også at kaffebrødprisen steg med 10,0 % fra 2005 til NB! Når vi skal finne en endring i prosent, dividerer vi endringen med det tallet endringen skal sammenliknes med, som er tallet før endringen skjedde. Det er vanlig å oppgi indekstallene med én desimal.

21 70 Økonomi 2.3 Oppgave 2.23 En vare kostet 100 kr i basisåret I 2008 kostet varen 122 kr. Hva var indeksen for varen i 2008? Oppgave 2.24 Prisen på nøkkelost var 78,36 kr i I 2007 var prisen 92,12 kr. Indeksen i 2001 var 98,9 poeng. a Hva var indeksen i 2007? b Hvor mye steg indeksen i poeng og i prosent fra 2001 til 2007? Oppgave 2.25 Prisen på farin var 14,79 kr i basisåret I 2007 var prisen 13,97 kr. a Hva var indeksen i 2007? b Hvor mye sank indeksen i poeng og i prosent fra 1998 til 2007? Vi finner prisen ut fra prisindeksen Når vi skal bruke prisindeksen til å finne prisen, kan det være lurt å bytte om sidene i formelen på side 67. Formelen blir da pris 1 indeks 1 = pris 2 indeks 2 Eksempel 6 Prisen når indeksen er kjent Prisen på et grovbrød var 14,43 kr i Indeksen for denne type grovbrød var 117,4 poeng i 2003 og 134,8 poeng i Hva var prisen i 2007? Vi lar x kr være prisen i 2007 og setter opp en tabell. Indeks Pris ,4 14, ,8 x pris i 2007 indeks i 2007 = pris i 2003 indeks i 2003 x 1348, = 14, , 4 x 14, , 8 14, 43 = 14, , 4 134, 8 14, 43 x = = 1657, 117, 4

22 Økonomi I 2007 var prisen på grovbrødet 16,57 kr. Vi kunne ha løst oppgaven slik: Vi finner vekstfaktoren for indeksen. ny verdi Vekstfaktoren = gammel verdi = 134, = 1,, 148 Da var også vekstfaktoren for prisen 1,148. Ny pris = gammel pris vekstfaktoren = 14,43 1,148 = 16,57 Oppgave 2.26 Indeksen for 1 kg nøkkelost var 106,0 poeng i 2004 og 116,2 poeng i I 2004 kostet osten 84,07 kr. Hva kostet den i 2007? Oppgave 2.27 Indeksen for en type kjeks var 122,6 poeng i 2003 og 126,8 poeng i I 2003 var prisen på en pakke kjeks 7,86 kr. a Hva var prisen i 2007? b Hvor mye steg prisen fra 2003 til 2007? c Hvor mange prosent steg prisen fra 2003 til 2007? d Hvor mange poeng steg indeksen fra 2003 til 2007? e Hvor mange prosent steg indeksen fra 2003 til 2007? Sammenlikn svaret med oppgave c. Kommenter. Vi finner prisendring i prosent ut fra indekstall Prisen på en vare øker eller minker i takt med indeksen. Vet vi for eksempel at indeksen for en vare har gått opp med 5 %, må også prisen ha gått opp med 5 %. Vi kan derfor regne ut endringen av prisen i prosent ut fra indekstallene. Eksempel 7 Hvor mange prosent sank prisen? Prisindeksen for kakao gikk ned fra 101,7 poeng i 2001 til 61,5 poeng i Indeksen sank altså med ( 101, 7 61, 5) poeng = 40, 2 poeng. Denne nedgangen skal sammenliknes med indekstallet for , 2 Nedgang i prosent for indeksen: = 0, 3953 = 39, 5 %. 101, 7 Da sank også prisen med 39,5 %.

23 72 Økonomi Lokus NETTINNHOLD Stifinner: side 185 Oppgave 2.28 Indeksen for en vare steg med 15 poeng fra 115 poeng. Hvor mange prosent steg prisen? Oppgave 2.29 a Hvor mange prosent stiger prisen når indeksen stiger fra 110 poeng til 120 poeng? b Hvor mange prosent synker prisen når indeksen synker fra 120 poeng til 110 poeng? I 2.4 skal du lære å regne med konsumprisindeks, kroneverdi, reallønn og nominell lønn. 2.4 KONSUMPRISINDEKS. REALLØNN Til nå har vi holdt oss til priser for de enkelte varer. Men det folk flest er mest interessert i, er prisutviklingen for varer og tjenester generelt. Statistisk sentralbyrå (SSB) setter opp indekser for dette også. I tillegg til at Statistisk sentralbyrå finner gjennomsnittsprisen for den enkelte vare for hver måned, foretar byrået undersøkelser som viser hvordan forbruket fordeler seg på ulike varer og tjenester. Ut fra dette lager de en indeks som viser hvor dyrt det er å leve i forhold til basisåret. Denne indeksen heter konsumprisindeksen, kpi. Kpi er et mål for det generelle prisnivået i Norge. Konsumprisindekser (kpi) År Kpi , , , , , , , , , , , , ,1 For tiden er 1998 basisår for konsumprisindeksen. I 1998 var altså kpi lik 100. På SSBs nettsider, ssb.no, kan du finne konsumprisindekser og annet interessant stoff. I margen har vi gjengitt indekser for årene Ellers kan du finne mye om indekser i Statistisk årbok på ssb.no/aarbok. I oppgavene i resten av dette kapitlet bruker du konsumprisindeksene i tabellen. Vi kan tenke oss en handlevogn med alle slags varer og tjenester en gjennomsnittshusholdning bruker: litt brød, litt klær, litt av en mobiltelefon, litt av en flybillett, osv. I basisåret kostet denne vogna 100 kr. Hvis vogna koster 120 kr i dag, er konsumprisindeksen 120 poeng. Levekostnadene har da økt med 20 % i forhold til basisåret.

24 Økonomi Oppgave 2.30 a Hvor mange poeng og hvor mange prosent steg konsumprisindeksen fra 1998 til 2008? b Hvor mange prosent steg levekostnadene fra 1998 til 2008? Oppgave 2.31 a Hvor mange poeng og hvor mange prosent steg konsumprisindeksen fra 2000 til 2008? b Hvor mange prosent steg levekostnadene fra 2000 til 2008? Oppgave 2.32 Idrettslaget Sprint har en avtale med kommunen om at den leien som laget betaler for idrettsanlegget, skal følge konsumprisindeksen. a Hvor mange prosent steg konsumprisindeksen fra 2000 til 2004? b I 2000 var leien kr. Hvor stor var leien i 2004? Kroneverdi Når prisene stiger, får vi mindre for hver krone når vi handler. Vi sier at kroneverdien synker. Kroneverdien henger nøye sammen med konsumprisindeksen. For å få et tall for kroneverdien sammenlikner vi med kronas verdi i basisåret. Vi setter kroneverdien i basisåret lik 1.

25 74 Økonomi 2.4 Ta for deg den tenkte handlevogna. I basisåret 1998 kostet denne vogna 100 kr. I 2004 var konsumprisindeksen 113,3 poeng. Da hadde den tenkte handlevogna kostet 113,30 kr. Varene som kostet 100 kr i 1998, kostet altså 113,30 kr i Det betyr at 113, 30 kr = 100 kr Vi deler med 113,30 på begge sider: 113, 30 kr 100 kr = 113,30 113, kr = kr = 0, 8826 kr 113, Det vil si at én «2004-krone» er lik 0,8826 «1998-kroner» (basiskroner). Vi sier at kroneverdien i 2004 er lik 0,8826. Kroneverdien har blitt mindre. Vi får altså kroneverdien et bestemt år ved å dividere 100 med konsumprisindeksen for det samme året: 100 Kroneverdien = konsumprisindeksen = 100 kpi Eksempel 1 Vi finner kroneverdien I 2006 var konsumprisindeksen 117,7 poeng. Vi finner kroneverdien dette året. Kroneverdien 100 = =0, ,7 I 2006 var kroneverdien 0,8496 kr. Det vil si at 1 kr = 0, 8496 kr. I 2006 tjente Ibrahim kr. Vi vil finne hvor mye dette svarte til i kr = , 8496 kr = kr En lønn på kr i 2006 svarte til kr i Oppgave 2.33 a Finn kroneverdien i 2007 og b Hvorfor er kroneverdien i årene før 1998 større enn 1 og i årene etter 1998 mindre enn 1? Oppgave 2.34 En bil kostet kr i Hva svarte denne prisen til i 1998-kroner?

26 Økonomi Reallønn Fra 1998 til 2002 gikk Nannas årslønn opp fra kr til kr. Økningen i lønna var altså kr Økningen i prosent var = , = 8 %. Nanna var fornøyd med lønnsøkningen. Men hadde hun grunn til det? Konsumprisindeksen i 2002 var 110,1 poeng. Det vil si at prisstigningen på varer og tjenester fra 1998 til 2002 var 10,1 %. I prosent steg altså Nannas lønn mindre enn prisene. Det betyr at Nanna fikk mindre igjen for en årslønn i 2002 enn det hun fikk i Nanna hadde mindre å rutte med i 2002 enn i Vi sier da at Nanna hadde gått ned i reallønn. Når lønna i prosent stiger mindre enn konsumprisindeksen, sier vi at reallønna går ned. Når lønna i prosent stiger mer enn konsumprisindeksen, sier vi at reallønna går opp. Men vi spør ikke bare om reallønna går opp eller ned. Vi kan også regne ut hvor stor reallønna er på et bestemt tidspunkt. Vi må da regne ut hva lønna svarer til i basisåret. Det vil si at vi må regne om lønna til basiskroner. Vi finner altså reallønna ved å multiplisere lønna med kroneverdien. Siden kroneverdi = 100, får vi kpi Reallønn Reallønn = lønn kroneverdi = lønn 100 kpi I basisåret er kpi = 100. Da er reallønn alltid det samme som lønn. Nannas reallønn i 1998 var derfor kr. I 2002 var lønna kr og kpi 110,1. Reallønna var derfor kr kr 110,1 = Reallønna i 2002 var basiskroner. Reallønna hadde altså gått ned, fra kr til kr.

27 76 Økonomi 2.4 Nominell lønn = lønn Det vi kaller lønn, blir ofte kalt nominell lønn. Det er for å understreke forskjellen på lønn og reallønn. Når vi sammenlikner lønn uten å bry oss om prisendringer, er det nominell lønn vi har i tankene. Når vi sammenlikner lønn med tanke på hvor mye varer og tjenester vi kan få kjøpt, er det reallønn vi har i tankene. Ved lønnsforhandlinger er det nominell lønn partene forhandler om, men det er reallønna de har i tankene. Eksempel 2 Lønn og kjøpekraft Sjur tjente kr i 2002 og kr i Han vil undersøke om den nominelle lønna holdt tritt med prisstigningen. Han valgte da å sammenlikne reallønnene i de to årene. Konsumprisindeksen var 110,1 poeng i 2002 og 113,3 poeng i Reallønn i 2002: Reallønn i 2004: kr = kr kr 110, kr = kr kr 113, 3 Reallønna i 2004 var større enn reallønna i Lønnsøkningen var altså større enn prisstigningen. Sjur hadde derfor fått økt kjøpekraften sin. Det vil si at han fikk kjøpt mer for lønna i 2004 enn i Endring av reallønn i prosent Vi skal nå vise hvordan vi finner endringen av reallønna i prosent. Eksempel 3 Vi finner reallønnsendringen i prosent Elin tjente kr i 1998 og kr i Hun vil finne hvor mange prosent reallønna endret seg fra 1998 til Konsumprisindeksen i 2007 var 118,6 poeng. I 1998 var reallønna den samme som den nominelle lønna. Hvorfor? Reallønna i 2007: kr = kr 118, 6 Reallønna i 1998: kr Nedgang i reallønn: ( ) kr = 1265 kr Nedgangen i prosent av reallønna i 1998: 1265 = 0, 0051 = 0, 51 % Reallønna gikk ned med ca. 0,5 % fra 1998 til 2007.

1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene

1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene 1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene 2.1 a Det er 12 gutter og 16 jenter i dansegruppen. Forholdet mellom antall gutter og antall jenter er derfor 12 12 : 4 3 16 16 : 4 4 Forholdet mellom

Detaljer

1P kapittel 7 Økonomi

1P kapittel 7 Økonomi 1P kapittel 7 Økonomi Løsninger til oppgavene i boka 7.1 a % + 5 % 105 % 1,05. Vekstfaktoren er1, 05. b % + 15 % 115 % 1,15 Vekstfaktoren er 1,15. c % + 15,5 % 115,5 % 1,155 Vekstfaktoren er 1,155. d %

Detaljer

YF kapittel 5 Lønn Løsninger til oppgavene i læreboka

YF kapittel 5 Lønn Løsninger til oppgavene i læreboka YF kapittel 5 Lønn Løsninger til oppgavene i læreoka Oppgave 501 a Hun joet tre timer mandag, fem timer onsdag og seks timer fredag. 3 + 5 + 6 14 Lisa joet 14 timer denne uka. 112 14 1568 Lisa tjente 1568

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir Håvard Moe fo re nk BOKMÅL l t e Matematikk for yrkesfag BOKMÅL John Engeseth Odd Heir Håvard Moe BOKMÅL Matematikk for yrkesfag forenklet Innhold 1 Tall Vi øver på å legge sammen

Detaljer

Sti 1 Sti 2 Sti 3 506, 507, 509, 510 508, 510, 511, 512

Sti 1 Sti 2 Sti 3 506, 507, 509, 510 508, 510, 511, 512 5 Økonomi Kompetansemål: Mål for opplæringen er at eleven skal kunne regne med prisindeks, kroneverdi, reallønn og nominell lønn utføre lønnsberegninger, budsjettering og regnskap ved hjelp av ulike verktøy

Detaljer

Kapittel 7. Økonomi. Dette kapitlet handler om å:

Kapittel 7. Økonomi. Dette kapitlet handler om å: Kapittel 7. Økonomi Dette kapitlet handler om å: Beregne inntekt, feriepenger, skatt og avgifter. Vurdere forbruk og bruk av kredittkort. Sette opp budsjett og regnskap ved hjelp av regneark. Undersøke

Detaljer

Kapittel 6. Økonomi. Dette kapitlet handler om å:

Kapittel 6. Økonomi. Dette kapitlet handler om å: Kapittel 6. Økonomi Dette kapitlet handler om å: Beregne inntekt, skatt og avgifter. Vurdere forbruk og bruk av kredittkort. Sette opp budsjett og regnskap ved hjelp av regneark. Undersøke og vurdere ulike

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning I dette kapitlet skal vi repetere prosentregningen fra Matematikk 1P. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

4 Prisindeks. Nominell lønn. Reallønn

4 Prisindeks. Nominell lønn. Reallønn 4 Prisindeks. Nominell lønn. Reallønn 4.1 Prisindeks Prisindekser blir brukt til å måle prisutviklingen på utvalgte varer og tjenester. Vi har indekser som bl.a. måler utviklingen på eksport-/importpriser,

Detaljer

NyGIV Regning som grunnleggende ferdighet Akershus

NyGIV Regning som grunnleggende ferdighet Akershus NyGIV Regning som grunnleggende ferdighet Akershus Hefte med utdelt materiell Tone Elisabeth Bakken Dag 2 6.februar 2014 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no

Detaljer

4 Prisindeks. Nominell lønn. Reallønn

4 Prisindeks. Nominell lønn. Reallønn 4 Prisindeks. Nominell lønn. Reallønn 1 Gjennomsnittsprisen for en vare har utviklet seg slik: År Pris Indeks 1989 125,00 1990 134,00 1991 135,00 1992 132,50 a) Lag en indeks over prisutviklingen med 1989

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

3 Prosentregning vekstfaktor og eksponentiell vekst

3 Prosentregning vekstfaktor og eksponentiell vekst 3 Prosentregning vekstfaktor og eksponentiell vekst Prosent (pro cent) betyr «av hundre» eller «hundredeler». I mange sammenhenger står prosentregning svært sentralt. Prisstigning (inflasjon) måles i prosent.

Detaljer

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Personlig økonomi - Skatt. Karl Erik Roland Skatt sør

Personlig økonomi - Skatt. Karl Erik Roland Skatt sør Personlig økonomi - Skatt Karl Erik Roland Skatt sør Hva skal vi gjennom i dag? Hvorfor betaler vi skatt? Begrep definisjoner Skattekort Typer skattekort Enkelt eksempel på bergning av prosentkort Skattesatser

Detaljer

GRUPPEOPPGAVE II - LØSNING DEL

GRUPPEOPPGAVE II - LØSNING DEL 1 GOL02.doc (h15) GRUPPEOPPGAVE II - LØSNING DEL 1 Alminnelig inntekt Olav Hansen, skatteklasse 1 (sktl. 15-4) Inntektsåret 2015 (Henvisningene er til skatteloven av 1999. Sjekk de aktuelle lovstedene.)

Detaljer

GOL02.doc (v13) GRUPPEOPPGAVE II - LØSNING (oppgavesamling utgave 2012)

GOL02.doc (v13) GRUPPEOPPGAVE II - LØSNING (oppgavesamling utgave 2012) GOL02.doc (v13) GRUPPEOPPGAVE II - LØSNING (oppgavesamling utgave 2012) Alminnelig inntekt Olav Hansen, skatteklasse 1 (sktl. 15-4) Inntektsåret 2013 (Henvisningene er til skatteloven av 1999. Sjekk de

Detaljer

GOL02.doc (v15) GRUPPEOPPGAVE II - LØSNING (oppgavesamling utgave 2012)

GOL02.doc (v15) GRUPPEOPPGAVE II - LØSNING (oppgavesamling utgave 2012) GOL02.doc (v15) GRUPPEOPPGAVE II - LØSNING (oppgavesamling utgave 2012) Alminnelig inntekt Olav Hansen, skatteklasse 1 (sktl. 15-4) Inntektsåret 2015 (Henvisningene er til skatteloven av 1999. Sjekk de

Detaljer

Informasjon til utenlandske arbeidstakere Om skatt, skattekort og selvangivelse

Informasjon til utenlandske arbeidstakere Om skatt, skattekort og selvangivelse Informasjon til utenlandske arbeidstakere Om skatt, skattekort og selvangivelse skatteetaten.no Denne brosjyren er ment for deg som arbeider i Norge for norsk arbeidsgiver. Her finner du opplysninger som

Detaljer

Hva blir skatten for inntektsåret

Hva blir skatten for inntektsåret 012 012 012 012 12 Hva blir skatten for inntektsåret Om beregning av skatten 2 Netto formue Enslige og enslige forsørgere skal ha fribeløp på kr 750 000 ved beregning av formuesskatt kommune og stat. Ektefeller

Detaljer

Selvangivelse 2011 0001 for lønnstakere og pensjonister mv.

Selvangivelse 2011 0001 for lønnstakere og pensjonister mv. Skatteetaten Postboks 4305, 8608 Mo i Rana Opprinnelig SA Selvangivelse 2011 0001 for lønnstakere og pensjonister mv. Ved den foreløpige skatteberegningen legges automatisk den gunstigste ligningsmåten

Detaljer

Eksamen 1P, Høsten 2011

Eksamen 1P, Høsten 2011 Eksamen 1P, Høsten 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Bjørn skal lage havregrøt. Han har 6 dl

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Informasjon til utenlandske arbeidstakere: Om skatt, skattekort og selvangivelse

Informasjon til utenlandske arbeidstakere: Om skatt, skattekort og selvangivelse Informasjon til utenlandske arbeidstakere: Om skatt, skattekort og selvangivelse 2 Denne brosjyren er ment for deg som arbeider i Norge for norsk arbeidsgiver. Her finner du opplysninger som du trenger

Detaljer

Hva blir skatten for 2015

Hva blir skatten for 2015 Hva blir skatten for 2015 OM BEREGNING AV SKATTEN Netto formue Enslige og enslige forsørgere skal ha fribeløp på kr 1 200 000 ved beregning av formuesskatt kommune og stat. Ektefeller og registrerte partnere

Detaljer

Informasjon til utenlandske arbeidstakere: Om skatt, skattekort og selvangivelse

Informasjon til utenlandske arbeidstakere: Om skatt, skattekort og selvangivelse Informasjon til utenlandske arbeidstakere: Om skatt, skattekort og selvangivelse Denne brosjyren er ment for deg som arbeider i Norge for norsk arbeidsgiver. Her finner du opplysninger som du trenger når

Detaljer

Kapittel 5. Regning med forhold

Kapittel 5. Regning med forhold Kapittel 5. Regning med forhold Forholdet mellom to tall betyr det ene tallet delt med det andre. Regning med forhold er mye brukt i praktisk matematikk. I dette kapitlet skal vi bruke forhold i blant

Detaljer

Informasjon til utenlandske arbeidstakere: Om skatt, skattekort og selvangivelse

Informasjon til utenlandske arbeidstakere: Om skatt, skattekort og selvangivelse Informasjon til utenlandske arbeidstakere: Om skatt, skattekort og selvangivelse Denne brosjyren er ment for deg som arbeider i Norge for norsk arbeidsgiver. Her finner du opplysninger som du trenger når

Detaljer

Om skatt, skattekort og selvangivelse

Om skatt, skattekort og selvangivelse Informasjon til utenlandske arbeidstakere Om skatt, skattekort og selvangivelse skatteetaten.no Denne brosjyren er ment for deg som arbeider i Norge for norsk arbeidsgiver. Her finner du opplysninger som

Detaljer

Hva blir skatten for inntektsåret

Hva blir skatten for inntektsåret Hva blir skatten for inntektsåret 2013 Om beregning av skatten 2 Netto formue Enslige og enslige forsørgere skal ha fribeløp på kr 870 000 ved beregning av formuesskatt kommune og stat. Ektefeller og registrerte

Detaljer

Skatteetaten. Hva blir skatten for inntektsåret

Skatteetaten. Hva blir skatten for inntektsåret Skatteetaten Hva blir skatten for inntektsåret 2014 Om beregning av skatten 2 Netto formue Enslige og enslige forsørgere skal ha fribeløp på kr 1 000 000 ved beregning av formuesskatt kommune og stat.

Detaljer

Informasjon til utenlandske arbeidstakere: Selvangivelsen 2010

Informasjon til utenlandske arbeidstakere: Selvangivelsen 2010 Informasjon til utenlandske arbeidstakere: Selvangivelsen 2010 2 I denne brosjyren finner du en svært forenklet omtale av de postene i selvangivelsen som er mest aktuelle for utenlandske arbeidstakere

Detaljer

2 Prosent og eksponentiell vekst

2 Prosent og eksponentiell vekst 2 Prosent og eksponentiell vekst 196 KATEGORI 1 2.1 Prosentfaktorer Oppgave 2.110 Finn prosentfaktoren til a) 18 % b) 60 % c) 11 % d) 99 % e) 49 % f) 1 % Oppgave 2.111 Finn prosenten når prosentfaktoren

Detaljer

Skatt og arbeidsliv Velferdsstaten er skattefinansiert. Skatt og arbeidsliv. Hvordan ble Skatt og arbeidsliv til?

Skatt og arbeidsliv Velferdsstaten er skattefinansiert. Skatt og arbeidsliv. Hvordan ble Skatt og arbeidsliv til? Skatt og arbeidsliv Velferdsstaten er skattefinansiert Skatt og arbeidsliv Oslo kemnerkontor har i samarbeid med Oslo voksenopplæring servicesenter og Vox utarbeidet et undervisningsopplegg til bruk både

Detaljer

skatteetaten.no Informasjon til utenlandske arbeidstakere Selvangivelsen 2014

skatteetaten.no Informasjon til utenlandske arbeidstakere Selvangivelsen 2014 skatteetaten.no Informasjon til utenlandske arbeidstakere Selvangivelsen 2014 I denne brosjyren finner du en svært forenklet omtale av de postene i selvangivelsen som er mest aktuelle for utenlandske arbeidstakere

Detaljer

RF Hva blir skatten for 2016

RF Hva blir skatten for 2016 RF 2014 Hva blir skatten for 2016 OM BEREGNING AV SKATTEN Netto formue Enslige og enslige forsørgere skal ha fribeløp på kr 1 400 000 ved beregning av formuesskatt kommune og stat. Ektefeller og registrerte

Detaljer

Hva blir skatten for inntektsåret 2011?

Hva blir skatten for inntektsåret 2011? Hva blir skatten for inntektsåret 2011? Heftet gir informasjon om skatteberegningen med eksempel, skjema og tabeller for beregning av skatt og trygdeavgift Om beregning av skatten Netto for mue Enslige,

Detaljer

Skatteetaten. Skatt nord Gerd Lockertsen

Skatteetaten. Skatt nord Gerd Lockertsen Skatteetaten Skatt nord Gerd Lockertsen Hvorfor betaler vi skatt Du betaler skatt til staten Du mottar goder Staten betaler for goder 2 Skattesystemet i Norge Vi velger Stortinget stortingsvalg hvert 4.

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir BOKMÅL fo re nk Håvard Moe l t e Særtrykk Matematikk for yrkesfag Innhold 1 Tall Vi øver på å legge sammen og trekke fra 4 Regning med positive og negative tall 5 Vi øver på å gange

Detaljer

Vet du hva vi kan bruke et regneark på pc-en til?

Vet du hva vi kan bruke et regneark på pc-en til? Vet du hva vi kan bruke et regneark på pc-en til? 14 Vi starter med blanke regneark! Regneark MÅL I dette kapitlet skal du lære om hva et regneark er budsjett og regnskap hvordan du kan gjøre enkle utregninger

Detaljer

7 Økonomi KATEGORI 1. 7.1 Lønn og feriepenger. 7.2 Skatt

7 Økonomi KATEGORI 1. 7.1 Lønn og feriepenger. 7.2 Skatt 7 Økonomi KATEGORI 1 7.1 Lønn og feriepenger Oppgave 7.110 Ivar har 24 000 kr i fast månedslønn. Det svarer til 150 kr per time. En måned arbeider han 6 timer overtid med 20 % tillegg. a) Hvor mye tjener

Detaljer

Selvangivelse 2012 0400

Selvangivelse 2012 0400 Skatteetaten, Postboks 4305, 8608 Mo i Rana Pensjon Per Stredet 15 3333 Skattevig SA levert med endring Selvangivelse 2012 0400 for lønnstakere og pensjonister mv. Fødselsnummer 10 10 23 003 00 Skatteklasse

Detaljer

2 Likninger. 2.1 Førstegradslikninger med én ukjent

2 Likninger. 2.1 Førstegradslikninger med én ukjent MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel

Detaljer

Selvangivelse 2011 for lønnstakere og pensjonister mv.

Selvangivelse 2011 for lønnstakere og pensjonister mv. Skatteetaten, Postboks 4305, 8608 Mo i Rana Selvangivelse 2011 for lønnstakere og pensjonister mv 0301 Christiansen Tor Hermod Kløfterhagen 44 1067 Oslo Fødselsnummer Skatteklasse 1 Guidelines to the tax

Detaljer

Skatt og arbeidsliv Velferdsstaten er skattefinansiert

Skatt og arbeidsliv Velferdsstaten er skattefinansiert Skatt og arbeidsliv Velferdsstaten er skattefinansiert Skatt og arbeidsliv Oslo kemnerkontor har i samarbeid med Oslo Voksenopplæring servicesenter og Vox utarbeidet et undervisningsopplegg til bruk både

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) En hustegning har målestokk 1 : 50 På tegningen er en dør plassert 6 mm feil. Hvor stor vil denne feilen bli i virkeligheten når huset bygges? Oppgave 2 (1 poeng)

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 1.1 Utvide området kopiere celler....................... 4 1.2 Vise formler i regnearket...........................

Detaljer

DEL 1 Uten hjelpemidler 2 timer

DEL 1 Uten hjelpemidler 2 timer DEL 1 Uten hjelpemidler timer Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Regn ut tallet som mangler. 1 450 cm m 0,50 m L b Else løp 400 meter på 50 sekunder.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden fra et punkt A til

Detaljer

3 Prosentregning vekstfaktor og eksponentiell vekst

3 Prosentregning vekstfaktor og eksponentiell vekst 3 Prosentregning vekstfaktor og eksponentiell vekst 1 Hvis 64 % av elevene på en skole får gjennomsnittskarakteren 4 på avgangsvitnemålet, og det totalt er 200 elever på skolen, hvor mange elever får da

Detaljer

Sinus 1P Y > Prosentregning

Sinus 1P Y > Prosentregning 2 30 Book Sinus 1P-Y.indb 30 Sinus 1P Y > Prosentregning 2014-07-22 13:32:53 Prosentregning MÅL for opp læ rin gen er at ele ven skal kun ne regne med forholdstall, prosent, prosentpoeng og vekstfaktor

Detaljer

2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå?

2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå? 2 Prosentregning + ØV MER 2.1 PROSENT Oppgave 2.110 Hvor mange ruter må være fargelagt for at a) 25 % b) 40 % c) 80 % d) 100 % av figuren skal være fargelagt? Oppgave 2.112 a) Omtrent hvor mange prosent

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Delprøve 1. 2) Per kjøper 17 skruer à kr 11,70 og 17 muttere à kr 8,20. Hvor mye betaler han?

Delprøve 1. 2) Per kjøper 17 skruer à kr 11,70 og 17 muttere à kr 8,20. Hvor mye betaler han? Delprøve 1 OPPGAVE 1 a) 1) Hvor mye er 3 delt på 1 2? 2) Per kjøper 17 skruer à kr 11,70 og 17 muttere à kr 8,20. Hvor mye betaler han? b) Når temperaturen i Rjukan er 16 o C, kan temperaturen x meter

Detaljer

I Norge er arbeidslivet regulert av mange ulike lover og regler som både arbeidsgivere og arbeidstakere må følge.

I Norge er arbeidslivet regulert av mange ulike lover og regler som både arbeidsgivere og arbeidstakere må følge. I Norge er arbeidslivet regulert av mange ulike lover og regler som både arbeidsgivere og arbeidstakere må følge. Hva er skatt, og hvordan fungerer arbeidslivet i Norge? Hva tenker dere når dere ser dette

Detaljer

Generelt om lønnsslippen

Generelt om lønnsslippen ANY1 Generelt om lønnsslippen Navn og adresse på firma Navn og adresse på lønnsmottaker Opplysninger om utbetaling, periode og arbeidsgiver.. Koststed som lønnsutbetaling blir belastet på. Skatteopplysninger,

Detaljer

Selvangivelse 2015 0400

Selvangivelse 2015 0400 Pensjon Per Stredet 15 3333 Skattevig Postboks 4305, 8608 Mo i Rana Opprinnelig SA Selvangivelse 2015 0400 for lønnstakere og pensjonister mv. Fødselsnummer 10 10 23 003 00 Skatteklasse 1E Ektefelles fødselsnummer

Detaljer

MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co.

MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co. MATEMATIKK Yrkesfag TALL I ARBEID P Odd Heir / John Engeseth / Håvard Moe Bokmål Del 4 av 4 Dette er en elektronisk versjon av læreboka til bruk på skoler som har undertegnet en avtale med Aschehoug forlag

Detaljer

Oslo kommune Kemnerkontoret. Nyttig informasjon til deg som benytter deg av eller som er praktikant/dagmamma. Det handler om skatten din...

Oslo kommune Kemnerkontoret. Nyttig informasjon til deg som benytter deg av eller som er praktikant/dagmamma. Det handler om skatten din... Oslo kommune Kemnerkontoret Nyttig informasjon til deg som benytter deg av eller som er praktikant/dagmamma Det handler om skatten din... Slik leser du brosjyren Brosjyren gjelder for pass av barn under

Detaljer

506, 507, 509, 510 508, 510, 511, 512

506, 507, 509, 510 508, 510, 511, 512 5 Økonomi Kompetansemål: Mål for opplæringa er at eleven skal kunne rekne med prisindeks, kroneverdi, reallønn og nominell lønn gjere lønnsberekningar, budsjettering og rekneskap ved hjelp av ulike verktøy

Detaljer

YF kapittel 4 Prosent Løsninger til oppgavene i læreboka

YF kapittel 4 Prosent Løsninger til oppgavene i læreboka YF kapittel 4 Prosent Løsninger til oppgavene i læreoka Oppgave 401 8 a 8 % = d 35 35 % = 75 75 % = 3,5 3,5 % = Oppgave 402 3 a 0,03 = 12 0,12 = d 135 1, 35 = 3,5 0,035 = Oppgave 403 6 a 0,06 = = 6 % d

Detaljer

Generelt om lønnsslippen

Generelt om lønnsslippen ANY1 Generelt om lønnsslippen Navn og adresse på firma Navn og adresse på lønnsmottaker Opplysninger om utbetaling, periode og arbeidsgiver. Opplysninger om arbeidstaker i organisasjonen. Koststed som

Detaljer

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger

Detaljer

Økonomi MÅL. for opplæringen er at eleven skal kunne. utføre lønnsberegninger, budsjettering og regnskap ved hjelp av ulike verktøy

Økonomi MÅL. for opplæringen er at eleven skal kunne. utføre lønnsberegninger, budsjettering og regnskap ved hjelp av ulike verktøy 152 7 Økonomi MÅL for opplæringen er at eleven skal kunne utføre lønnsberegninger, budsjettering og regnskap ved hjelp av ulike verktøy beregne skatt og avgifter undersøke og vurdere ulike forbruks-, låne-

Detaljer

GRUPPEOPPGAVE IV - LØSNING DEL 1 OPPGAVE A: ANNE OG KNUT HANSEN

GRUPPEOPPGAVE IV - LØSNING DEL 1 OPPGAVE A: ANNE OG KNUT HANSEN 1 GOL04.doc (h15) GRUPPEOPPGAVE IV - LØSNING DEL 1 OPPGAVE A: ANNE OG KNUT HANSEN Per er 12 år og hans lønn er skattefri så lenge den ikke overstiger kr 10 000, jf. sktl. 5-15 første ledd, bokstav o. Foreldrefradraget

Detaljer

GRUPPEOPPGAVE IV - LØSNING

GRUPPEOPPGAVE IV - LØSNING 1 GOL04.doc (h12) GRUPPEOPPGAVE IV - LØSNING OPPGAVE 4 A: ANNE OG KNUT HANSEN Per er 12 år og hans lønn er skattefri så lenge den ikke overstiger kr 10 000, jf. sktl. 5-15 første ledd, bokstav o (ny regel

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra et år til det neste

Detaljer

Veiledning for melding om lønnet arbeid i hjemmet (A04)

Veiledning for melding om lønnet arbeid i hjemmet (A04) Veiledning for melding om lønnet arbeid i hjemmet (A04) Du kan søke på ord, fraser eller deler av ord ved å trykke Ctrl+F (Ctrl-tasten og F-tasten nede samtidig). Skriv inn søketeksten i den lille boksen

Detaljer

SIFOs Referansebudsjett

SIFOs Referansebudsjett SIFOs Referansebudsjett Lenker > SIFOs Referansebudsjett > Om budsjettet Om budsjettet Referansebudsjett for forbruksutgifter Nynorsk Referansebudsjettet 2014 SIFOs Standardbudsjett for forbruksutgifter

Detaljer

Selvangivelse 2012 for lønnstakere og pensjonister mv.

Selvangivelse 2012 for lønnstakere og pensjonister mv. Skatteetaten, Postboks 4305, 8608 Mo i Rana Selvangivelse 2012 for lønnstakere og pensjonister mv 0219 Fødselsnummer 19 03 62 392 23 Skatteklasse 1E Ektefelles fødselsnummer 25 09 61 479 05 Beston Aud

Detaljer

GRUPPEOPPGAVE IV - LØSNING

GRUPPEOPPGAVE IV - LØSNING 1 GOL04.doc (v14) GRUPPEOPPGAVE IV - LØSNING OPPGAVE 4 A: ANNE OG KNUT HANSEN Per er 12 år og hans lønn er skattefri så lenge den ikke overstiger kr 10 000, jf. sktl. 5-15 første ledd, bokstav o (ny regel

Detaljer

Tall og algebra Vg1P MATEMATIKK

Tall og algebra Vg1P MATEMATIKK Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale

Detaljer

Veiledning for forenklet a-melding for veldedig eller allmennyttig organisasjon (A05)

Veiledning for forenklet a-melding for veldedig eller allmennyttig organisasjon (A05) Veiledning for forenklet a-melding for veldedig eller allmennyttig organisasjon (A05) Du kan søke på ord, fraser eller deler av ord ved å trykke Ctrl+F (Ctrl-tasten og F-tasten nede samtidig). Skriv inn

Detaljer

Vi er glade for at du velger Avantas som din arbeidsgiver, og håper du vil trives hos oss.

Vi er glade for at du velger Avantas som din arbeidsgiver, og håper du vil trives hos oss. PERSONALHÅNDBOK Velkommen som medarbeider i Avantas. Vi er glade for at du velger Avantas som din arbeidsgiver, og håper du vil trives hos oss. I dette heftet vil du blant annet finne praktiske opplysninger

Detaljer

Tariffestet pensjonsordning som gir arbeidstakere rett til å fratre med tjenestepensjon fra tidligst fylte 62 år.

Tariffestet pensjonsordning som gir arbeidstakere rett til å fratre med tjenestepensjon fra tidligst fylte 62 år. Tariffordboken Avtalefestet pensjon (AFP) Tariffestet pensjonsordning som gir arbeidstakere rett til å fratre med tjenestepensjon fra tidligst fylte 62 år. Datotillegg Brukes for å markere at et lønnstillegg

Detaljer

1,055 kg 1,5 kg 1,505 kg. Hverdagsmatte. Praktisk regning for voksne Del 6 Personlig økonomi

1,055 kg 1,5 kg 1,505 kg. Hverdagsmatte. Praktisk regning for voksne Del 6 Personlig økonomi 1,055 kg 1,5 kg 1,505 kg Hverdagsmatte Praktisk regning for voksne Del 6 Personlig økonomi Innhold Del 6, Personlig økonomi Budsjett 1 Regninger 5 Inkasso 7 Lønn og skatt 8 Sparing 9 Sarah skal kjøpe leilighet

Detaljer

Vi er glade for at du velger Bemanningshuset som din arbeidsgiver, og håper du vil trives hos oss.

Vi er glade for at du velger Bemanningshuset som din arbeidsgiver, og håper du vil trives hos oss. PERSONALHÅNDBOK Velkommen som medarbeider i Bemanningshuset. Vi er glade for at du velger Bemanningshuset som din arbeidsgiver, og håper du vil trives hos oss. I dette heftet vil du blant annet finne praktiske

Detaljer

GRUPPEOPPGAVE VII - LØSNING

GRUPPEOPPGAVE VII - LØSNING GRUPPEOPPGAVE VII - LØSNING GOL07 (v15) OPPGAVE A 1) Leieinntekter tomannsbolig: Forutsatt lik leieverdi pr. kvm så blir leieinntekten skattepliktig når eier benytter mindre enn halve leieverdien selv

Detaljer

1P kapittel 2 Algebra

1P kapittel 2 Algebra 1P kapittel Algera Løsninger til oppgavene i oka.1 a a+ a a 5+ 4 9 c 8c 6c c d d d 0d 0. a + + 5+ 4+ 10 c 5 9 4 d 4 7. a 7 5+ + 8 5+ 8+ 7 + + 10 5y+ + y + 5y+ y 4 4y c 8y 8y + 8y 8y 4+ 0y 4.4 7r+ 10h+

Detaljer

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016 Vurderingsveiledning for lærere og sensorer i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for lærere og sensorer. Den tar utgangspunkt

Detaljer

Selvangivelse 2013 0400

Selvangivelse 2013 0400 Skatteetaten, Postboks 4305, 8608 Mo i Rana Selvangivelse 2013 0400 for lønnstakere og pensjonister mv. Nordmann Ola Bolignr.: H0202 Stredet 15 A 3333 Skattevig Fødselsnummer 03 11 63 003 31 Skatteklasse

Detaljer

Forbrukeremner i matematikkfagets lærebøker

Forbrukeremner i matematikkfagets lærebøker Forbrukeremner i matematikkfagets lærebøker For den Videregående skole etter Kunnskapsløftet 2006 Grethe Moéll Pedersen, 2012 2 Forord Dette prosjektet bygger videre på at jeg i 2008 skrev en rapport om

Detaljer

Overslag FRA A TIL Å

Overslag FRA A TIL Å Overslag FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overslag 2 2 Grunnleggende om overslag 2 3 Å gjøre overslag 6 4 Forsiktighetsregler 7 4.1 Når overslaget ikke

Detaljer

Selvangivelse 2014 0400

Selvangivelse 2014 0400 Skatteetaten, Postboks 4305, 8608 Mo i Rana Pensjon Per Stredet 15 3333 Skattevig SA levert med endring Selvangivelse 2014 0400 for lønnstakere og pensjonister mv. Fødselsnummer 10 10 23 003 00 Skatteklasse

Detaljer

YF kapittel 2 Likninger Løsninger til oppgavene i læreboka

YF kapittel 2 Likninger Løsninger til oppgavene i læreboka YF kapittel Likninger Løsninger til oppgavene i læreboka Oppgave 01 a a+ a a b 5b+ 4b 9b c 8c 6c c Oppgave 0 a + + b 5+ 4+ 10 c 5 9 4 Oppgave 0 a 7y 7y 0y 0 b 6y 5y y c 8y+ 1y 4y Oppgave 04 a 5z z z z

Detaljer

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen.

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. Oppgave 3 (2 poeng) Antall elever 5 10 Pris per elev (kroner) 600 100 Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. a) Tegn av tabellen

Detaljer

Generelt. Trond Kristoffersen. Lønningsrutinen. Ansatte - forpliktelser. Finansregnskap. Økt aktivitet (vekst) fører til behov for:

Generelt. Trond Kristoffersen. Lønningsrutinen. Ansatte - forpliktelser. Finansregnskap. Økt aktivitet (vekst) fører til behov for: Generelt Trond Kristoffersen Finansregnskap Lønn og Økt aktivitet (vekst) fører til behov for: Økte investeringer i eiendeler Mer kapital (lån og egenkapital) (Flere) ansatte Lønn og 2 Lønningsrutinen

Detaljer

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2

Detaljer

Hvor mye må jeg betale for 2 kg appelsiner?

Hvor mye må jeg betale for 2 kg appelsiner? Hvor mye må jeg betale for 2 kg appelsiner? 5 Jeg har omtrent 380 kr 400 kr! Avrunding og overslag MÅL I dette kapitlet skal du lære om avrunding av hele tall avrunding av desimaltall overslag i addisjon

Detaljer

Det gis ikke noen fradrag i lønn, pensjon mv. som skattlegges etter lønnstrekkordningen.

Det gis ikke noen fradrag i lønn, pensjon mv. som skattlegges etter lønnstrekkordningen. Skattedirektoratet meldinger SKD 5/03, 31. januar 2003 Om skatt og skattetrekk ved utbetaling av lønn mv. for arbeid, pensjon og visse trygdeytelser på Svalbard, samt lønn mv. for arbeid på Jan Mayen i

Detaljer

I resten av skjemaet ber vi deg svare ut fra den jobben du hadde i restaurant- og serveringsbransjen

I resten av skjemaet ber vi deg svare ut fra den jobben du hadde i restaurant- og serveringsbransjen Vedlegg 1 Spørreskjema uteliv 1. Jobber du i restaurant, café, bar (inkludert kaffebarer), pub eller nattklubb. Vi tenker her også på restauranter, barer, puber eller nattklubber tilknyttet hoteller. UT

Detaljer

2. Inntekt og skatt for næringsvirksomhet

2. Inntekt og skatt for næringsvirksomhet Inntekt, skatt og overføringer 1999 Inntekt og skatt for næringsvirksomhet Sigrun Kristoffersen 2. Inntekt og skatt for næringsvirksomhet Skattereformen i 1992 medførte store endringer i beskatningen av

Detaljer

Innledning. De tre rådene jeg vil ta for meg i denne e boken er: 1. Sett på turboen 2. Bytt jobb 3. Skaff deg flere inntektskilder

Innledning. De tre rådene jeg vil ta for meg i denne e boken er: 1. Sett på turboen 2. Bytt jobb 3. Skaff deg flere inntektskilder TRE RÅD FOR VIDEREKOMNE http://pengeblogg.bloggnorge.com/ Innledning I denne e boken skal jeg ta for meg tre råd for hvordan man kan komme videre, gitt at man har det grunnleggende på plass. Dette er altså

Detaljer