NORGES TEKNISK- SIDE 1 AV 3 NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI EKSAMEN I FAG TKP4100 STRØMNING OG VARMETRANSPORT

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "NORGES TEKNISK- SIDE 1 AV 3 NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI EKSAMEN I FAG TKP4100 STRØMNING OG VARMETRANSPORT"

Transkript

1 NORGES TEKNISK- SIDE AV 3 Faglig kontakt under eksamen: Reidar Kristoffersen, tlf: EKSAMEN I FAG TK400 STRØMNING OG VARMETRANSORT Torsdag 0 juni 00 Tid: C: Innføring i informasjonsteknologi: Introduksjon til Matlab, tilleggshefte II er tillatt. Bestemt, enkel kalkulator tillatt. Sensurdato: juli S 7, NB: Vedlagt formelsamling bakerst Oppgave/Oppgåve. (30%) p 0 Spørsmål a) Spørsmål b) og c) p 0 H Dyse H A A Et reservoar med konstant dybde H har et utøpsrør med tverrsnittsareal A som er påmontert en dyse med utløpsareal A. I reservoaret er det vann med tetthet ρ. Atmosfæretrykket er p 0, og tyngdens akselerasjon er g. Trykket kan regnes konstant over tverrsnittet av røret. a) Dysen er stengt. Finn overtrykket ( gage ) i røret rett før dysen, og finn kraften som virker fra vannet på dysen. Dysen åpnes og vannet strømmer friksjonsfritt ut mot atmosfæren. b) Finn overtrykket ( gage ) i røret rett før dysen nå. c) Finn kraften som virker fra vannet på dysen.

2 NORGES TEKNISK- SIDE AV 3 Oppgave/Oppgåve Kompressibel strømning (3%) En strøm av metangass strupes i en dyse. Trykket foran dysen,, er. bara og T er 93 K. er trykket i trangeste tverrsnitt og 3 er trykket ved dysens utløp. T V T V v A A 3 3 T 3 V 3 v 3 a) Hva er det høyeste trykket,, som gir sonisk hastighet i trangeste tverrsnitt og hva blir tilhørende temperatur T. b) Hva blir diameteren i trangeste tverrsnitt når kapasiteten på dysen skal være 0.3 kg metan/s. c) Hva blir høyeste trykk, 3 = 3,maks, om man skal kunne oppnå supersonisk strømning i den divergerende delen av dysen gitt at arealet A 3 = 0.00 m. d) Hva skjer i dysen hvis 3 er litt større enn 3,maks. Anta at metan oppfører seg som ideell gass i dysen. Data: R = 8.34 J/mol K, metan =.3, M metan = 6 kg/kmol,

3 NORGES TEKNISK- SIDE 3 AV 3 Oppgave/Oppgåve 3 Varmetransport(3%) En gass strømmer gjennom et rør som vist i figuren under. Temperaturen skal måles ved hjelp av et termoelement som angitt og to plasseringer av elementet er foreslått. T vegg T gass T vegg T gass T strål T termo Ttermo a b Figur Du vet selvsagt hvilken metode som vil gi den mest nøyaktige målingen, men din sjef er ikke helt på høyden og ikke overbevist. Du må derfor lage en beregningsrutine som beregner termoelement-temperaturen og som kan overbevise ham. a) Anta en termoelementplassering som i Figur. Sett opp de likninger som er nødvendige for å gjøre deg i stand til å beregne termoelementtemperaturen, T term for henholdsvis situasjonen i a) og b). Du har gitt T vegg, T gass og varmeovergangstallene mellom gass og termoelement, h T, og mellom gass og strålingsskjerm, h S, og termoelementets, strålingsskjermens og veggens emmisiviteter er henholdsvis ε term, ε skjerm og ε vegg. Du kan anta i a) at termoelementet er totalt omsluttet av rørveggen, og at i b) så er strålingsskjermen liten i forhold til veggen og totalt omsluttet av den. Anta også i dette tilfellet at termoelementet er lite og omsluttet av strålingsskjermen b) Sett opp et Matlab-script som løser både a) og b). Bruk fsolve som likningsløser og benytt struct til parameteroverføring. Du kan godt lage to program, ett for a) og ett for b). Hvis du ikke kommer fram til likningene som skal løses så bruk: x +3y ln(z) = 34 sin(x) + e y = 4z x y + z = 6 Data: T vegg = 600K, T gass = 98K h T = 30 w/m K, h s = 0 w/m K ε term = 0,7, ε skjerm = 0,, ε vegg = 0,9 Stefan-Boltzmanns konstant σ =, W/m K 4

4 NORGES TEKNISK- SIDE 4 AV 3 Løsningsforslag 0 juni Oppgave

5 NORGES TEKNISK- SIDE AV 3 Oppgave a) Kritisk trykkforhold w C = = 0,439 = 0,439, =,36 bar,3,3 3, 0, 439 Isentropiske forhold V = V Ideell gass V = RT / M V =RT / M Kombinerer : RT RT R R T T M M M M T T T T T T T,3,,3 T = 36, 93 3, 7 K b) V = RT 3 8, m 0609, M, 0 006, kg V = RT 3 8, 34 3, 7 m 0, 969 M, 360 0, 06 kg A A v v = V c = 4,6 m/s m A v V V A = m 0, , 0, 0007 m V, 3, 360 0, 969 Diameter : A = /4 D c D c = 4 Ac m 9 86 mm,, V V c) Energibalanse fra til 3: 3 3 vdv Vd 0

6 NORGES TEKNISK- SIDE 6 AV 3 3 v3 v V 0 Finner i tillegg et uttrykk for v 3 fra kontinuitetsligningen innsatt isentropirelasjonen: mv mv v 3 3 A3 A3 3 0, 3kg / s 0, ,,3 v ,,,3,3, 3 6 0,7634 v3 4, 0 3 Innsatt:, ,7634, ,3,,,, 0, 36, 0 Denne var ikke forventet løst ved eksamen. Ordnet fås: 808 0,, 67, , 0 6 0,366 0, 06 = 0 3 3, 67, ,366, Løses med prøve og feiling: Riktig løsning ( supersonisk ) 3,maks = 0,48 bar d) Da vil ikke dysen kunne gi supersonisk strømning ut. I deler av den divergerende dysen øker hastigheten fra lydhastighet(i trangeste tverrsnitt) inn i the supersoniske området, men trykket er ikke lavt nok til å greie dette helt til utløpet. Man vil derfor få en sjokkfront inne i den divergerende delen av dysen hvor trykket stiger og hastigheten går fra supersonisk til subsonisk(underlydshastighet). Oppgave 3 a) I det første tilfellet tar man en balanse for termoelementet: Akk = 0 = netto inn dannet(0) 0 = netto inn ved konvektiv overføring + netto inn ved stråling hatermo ( Tgass Ttermo ) termo Atermo ( Tvegg Ttermo) () Her er bare termoelementtemperaturen ukjent. I det andre tilfellet må vi sette opp balanser både for termoelementet og strålingsskjermen. For termoelementet blir den lik den forrige bare at omgivelsene nå er strålingsskjermen og ikke veggen: hatermo ( Tgass Ttermo ) termo Atermo ( Tskjerm Ttermo) () I tillegg kommer balansen for strålingsskjermen hvor vi må ta hensyn til stråling inn fraa vegg, stråling ut til termoelementet, og konvektiv varmeoverføring til gassen både på inn- og utsiden av skjermen: hs Askjerm ( Tgass Tskjerm ) skjerm Askjerm ( Tvegg Tskjerm) termo Atermo ( Tskjerm Ttermo ) (3)

7 NORGES TEKNISK- SIDE 7 AV 3 I ligning () kan overflaten til termoelementet forkortes bort. Det samme gjelder i ligning (). I ligning (3) kan vi dele på skjerm-arealet og siden dette er mye større enn termoelementarealet vil det siste leddet i ligning (3) falle bort og ligningen reduseres til: hs ( Tgass Tskjerm ) skjerm ( Tvegg Tskjerm) (4) Ligning () og (4) danner derfor et sett med to ukjente som kan løses med Matlab % Oppgave 3 % danner et struct p p.hs = 30; p.ht = 0; p.epst = 0.; p.epss = 0.6; p.tv = 600; p.tg = 98; p.sig =.67e-8; % For tilfelle a) Tterma0 = 300; %Må være mellom Tvegg og Tgass Tterma = %For tilfelle b) Tb0 = [300 30]; %Tipp for Tt og Ts, må være mellom Tvegg og Tgass Tb = % funksjon for del a) function resid=casea(x,p) % Balanse for termoelementet Tt = x; resid = p.ht*(tt - p.tg) - p.sig*p.epst*(p.tv^4 - Tt^4); % funksjon for del a) function resid=caseb(x,p) Tt = x(); Ts = x(); % Først balanse for termoelementet, deretter for strålingsskjermen res = p.ht*(tt - p.tg) - p.sig*p.epst*(ts^4 - Tt^4); res = *p.hs*(p.tg - Ts) + p.sig*p.epss*(p.tv^4 - Ts^4); resid = [res res];

G + + 2f G V V D. V 1 m RT 1 RT P V = nrt = = V = 4 D = m

G + + 2f G V V D. V 1 m RT 1 RT P V = nrt = = V = 4 D = m Institt for kjemisk prosessteknologi TK00 Strømning og transportprosesser Øving 8 Løsningsforslag Oppgave Starter med energiligningen på differensiell form d dp dl G + + f G = 0 Setter så inn for G= v

Detaljer

dp ρ L D dp ρ v V Både? og v endres nedover et rør, men produktet er konstant. (Husk? = 1/V). Innsatt og med deling på V 2 gir dette:

dp ρ L D dp ρ v V Både? og v endres nedover et rør, men produktet er konstant. (Husk? = 1/V). Innsatt og med deling på V 2 gir dette: SIK005 Strømning og transportprosesser Kompressibel strømning Rørstrømning Både i forbindelse med vår naturgassproduksjon på kontinentalsokkelen og i miljøsammenheng er strømningsberegninger på gass av

Detaljer

Løsningsforslag Øving 1

Løsningsforslag Øving 1 Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 1-59 Løsning Luftstrømmen gjennom en vindturbin er analysert. Basert på en dimensjonsanalyse er et uttrykk for massestrømmen gjennom turbinarealet

Detaljer

Løsningsforslag Øving 8

Løsningsforslag Øving 8 Løsningsforslag Øving 8 TEP4100 Fluidmekanikk, Vår 016 Oppgave 5-78 Løsning En vannslange koblet til bunnen av en tank har en dyse som er rettet oppover. Trykket i slangen økes med en pumpe og høyden av

Detaljer

Løsningsforslag Øving 7

Løsningsforslag Øving 7 Løsningsforslag Øving 7 TEP4100 Fluidmekanikk, Vår 016 Oppgave 5- Løsning Vinden blåser med konstant hastighet 8 m/s. Vi ønsker å finne den mekaniske energien per masseenhet i vindstrømmen, samt det totale

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF1100 Eksamensdag: 11. oktober Tid for eksamen: 15.00-18.00 Oppgavesettet er på sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2200 Eksamensdag: 4. Juni 2015 Tid for eksamen: 14.30-17.30 Oppgavesettet er på X sider + Vedlegg 1 (1 side) Vedlegg 1: Sondediagram

Detaljer

EKSAMEN I FAG SIO 1043 STRØMNINGSLÆRE Lørdag 1. juni 2002 Tid: kl. 09:00 15:00

EKSAMEN I FAG SIO 1043 STRØMNINGSLÆRE Lørdag 1. juni 2002 Tid: kl. 09:00 15:00 Side 1 av 10 Norges teknisk natrvitenskapelige niversitet NTNU Fakltet for Ingeniørvitenskap og teknologi Instittt for Mekanikk, Termo og Fliddynamikk Faglig kontakt nder eksamen: Per-Åge Krogstad, tlf.:

Detaljer

Løsningsforslag til Øving 6 Høst 2016

Løsningsforslag til Øving 6 Høst 2016 TEP4105: Fluidmekanikk Løsningsforslag til Øving 6 Høst 016 Oppgave 3.13 Skal finne utløpshastigheten fra røret i eksempel 3. når vi tar hensyn til friksjon Hvis vi antar at røret er m langt er friksjonen

Detaljer

Løsningsforslag til eksamen i FYS1000, 14/8 2015

Løsningsforslag til eksamen i FYS1000, 14/8 2015 Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 10. juni 2014 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 2/2 2012

FYSIKK-OLYMPIADEN Andre runde: 2/2 2012 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYPIADEN 0 0 Andre runde: / 0 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet: 3 klokketimer Hjelpemidler:

Detaljer

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00

Detaljer

Løsningsforslag til eksamen i FYS1000, 16/8 2013

Løsningsforslag til eksamen i FYS1000, 16/8 2013 Løsningsforslag til eksamen i FYS1000, 16/8 2013 Oppgave 1 a) Totalrefleksjon oppstår når lys går fra et medium med større brytningsindeks til et med mindre. Da vil brytningsvinkelen være større enn innfallsvinkelen,

Detaljer

gass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.:

gass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.: NORGES TEKNISKE NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side 1 av 5 Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd.Blekkan, tlf.: 73594157 EKSMEN

Detaljer

Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 13 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Kalkulator, én valgfri standard formelsamling. I h c A.

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Kalkulator, én valgfri standard formelsamling. I h c A. DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 15. mai 006 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Kalkulator, én valgfri standard formelsamling OPPGAVESETTET

Detaljer

Oppsummering av første del av kapitlet

Oppsummering av første del av kapitlet Forelesningsnotater om eksergi Siste halvdel av kapittel 7 i Fundamentals of Engineering Thermodynamics, M.J. Moran & H.N. Shapiro Rune N. Kleiveland, oktober Notatene følger presentasjonen i læreboka,

Detaljer

ELEVARK. ...om å tømme en beholder for vann. Innledning. Utarbeidet av Skolelaboratoriet ved NTNU - NKR

ELEVARK. ...om å tømme en beholder for vann. Innledning. Utarbeidet av Skolelaboratoriet ved NTNU - NKR ELEVARK...om å tømme en beholder for vann Innledning Problemstilling: Vi har et sylindrisk beger med et sirkulært hull nær bunnen. Vi ønsker å bestemme sammenhengen mellom væskehøyden som funksjon av tiden

Detaljer

I. Stasjonær strøm i rør

I. Stasjonær strøm i rør I. Stasjonær strøm i rør Oppgave I.1 En olje med kinematisk viskositet 0.135 St flyter gjennom et rør med diameter 15 cm. Hva er (omtrentlig) øvre grense for strømhastigheten hvis strømmen skal være laminær?

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 15. mai 008 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard

Detaljer

Løsningsforslag Øving 6

Løsningsforslag Øving 6 Løsningsforslag Øving 6 TEP4100 Fluidmekanikk, Aumn 016 Oppgave 4-109 Løsning Vi skal bestemme om en strømning er virvlingsfri, hvis den ikke er det skal vi finne θ-komponenten av virvlingen. Antagelser

Detaljer

Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK

Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:

Detaljer

Detaljert modellering av 'gas blowby'

Detaljert modellering av 'gas blowby' Bilag Innhold BILAG 1 FLYTSKJEMA... 57 B1.1 MODELL 1... 57 B1.2 MODELL2... 58 B1.3 MODELL 3... 59 B1.4 MODELL 4... 60 BILAG 2 DIMENSJONER PÅ UTSTYR... 61 B2.1 DIMENSJONER FOR MODELL 1-3... 61 B2.2 MODELL

Detaljer

EKSAMENSOPPGAVE. Kalkulator Rom Stoff Tid: Fysikktabeller (Bok/utskrift fra bok)

EKSAMENSOPPGAVE. Kalkulator Rom Stoff Tid: Fysikktabeller (Bok/utskrift fra bok) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2 Dato: Mandag 29. mai 2017 Klokkeslett: Kl 09:00 13:00 Sted: Åsgårdvegen

Detaljer

Hjelpemidler: A - Alle trykte og håndskrevne hjelpemidler tillatt.

Hjelpemidler: A - Alle trykte og håndskrevne hjelpemidler tillatt. NORGES TEKNISK-NATURVITENSKAPLIGE UNIVERSITET, INSTITUTT FOR VASSBYGGING Side av Faglig kontakt under eksamen: Prof. Geir Moe, Tel. 79 467 (.6$0(,(0(6,%+

Detaljer

Fysikkolympiaden 1. runde 23. oktober 3. november 2017

Fysikkolympiaden 1. runde 23. oktober 3. november 2017 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 3. oktober 3. november 017 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Q = π 4 D2 V = π 4 (0.1)2 0.5 m 3 /s = m 3 /s = 3.93 l/s Pa

Q = π 4 D2 V = π 4 (0.1)2 0.5 m 3 /s = m 3 /s = 3.93 l/s Pa 35 Løsning C.1 Q π 4 D2 V π 4 (0.1)2 0.5 m 3 /s 0.00393 m 3 /s 3.93 l/s G gsρ vann Q 9.81 1.26 998 0.00393 N/s 0.0484 kn/s ṁ G/g 48.4/9.81 kg/s 4.94 kg/s Løsning C.2 Omregning til absolutt trykk: p abs

Detaljer

Løsningsforslag Øving 3

Løsningsforslag Øving 3 Løsningsforslag Øving 3 TEP400 Fluidmekanikk, Vår 206 Oppgave 3-86 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2014

Fysikkolympiaden 1. runde 27. oktober 7. november 2014 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 7. oktober 7. november 014 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Institutt for fysikk. Eksamen i TFY4106 FYSIKK Torsdag 6. august :00 13:00

Institutt for fysikk. Eksamen i TFY4106 FYSIKK Torsdag 6. august :00 13:00 NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Johan S. Høye/Professor Asle Sudbø Telefon: 91839082/40485727 Eksamen i TFY4106 FYSIKK Torsdag 6. august 2009 09:00 13:00 Tillatte

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag. Eksamen i: Fysikk for tretermin (FO911A)

Fakultet for teknologi, kunst og design Teknologiske fag. Eksamen i: Fysikk for tretermin (FO911A) Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Fysikk for tretermin (FO911A) Målform: Bokmål Dato: 26/11-2014 Tid: 5 timer Antall sider (inkl. forside): 5 Antall oppgaver: 5 Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF1 Eksamensdag: 3. November 9 Tid for eksamen: 9.-1. Oppgavesettet er på 5 sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Løsningsforslag Øving 4

Løsningsforslag Øving 4 Løsningsforslag Øving 4 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 3-162 Løsning En halvsirkelformet tunnel skal bygges på bunnen av en innsjø. Vi ønsker å finne den totale hydrostatiske trykkraften som virker

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Navn : _FASIT UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: GEF 1000 Klimasystemet Eksamensdag: Tirsdag 19. oktober 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

Fasit eksamen Fys1000 vår 2009

Fasit eksamen Fys1000 vår 2009 Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover

Detaljer

F. Impulser og krefter i fluidstrøm

F. Impulser og krefter i fluidstrøm F. Impulser og krefter i fluidstrøm Oppgave F.1 Ved laminær strøm gjennom et sylindrisk tverrsnitt er hastighetsprofilet parabolsk, u(r) = u m (1 (r/r) 2 ) hvor u max er maksimalhastigheten ved aksen,

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2210 Eksamensdag: 9. oktober 2017 Tid for eksamen: 09:00-11:00 Oppgavesettet er på 2 sider Vedlegg: Ingen Tillatte hjelpemidler: Kalkulator Kontroller

Detaljer

GEF Løsningsforslag til oppgaver fra kapittel 9

GEF Løsningsforslag til oppgaver fra kapittel 9 GEF1100 - Løsningsforslag til oppgaver fra kapittel 9 i.h.h.karset@geo.uio.no Oppgave 1 a) Når vi studerer havet, jobber vi ofte med følgende variable: tetthet, trykk, høyden til havoverflaten, temperatur,

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

Løsningsforslag til Øving 3 Høst 2010

Løsningsforslag til Øving 3 Høst 2010 TEP5: Fluidmekanikk Løsningsforslag til Øving 3 Høst 2 Oppgave 2.32 Vi skal finne vannhøyden H i røret. Venstre side (A) er fylt med vann og 8cm olje; SG =,827 = ρ olje /ρ vann. Høyre side (B) er fylt

Detaljer

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa.

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa. Oppgave 1 Vi har et legeme som kun beveger seg langs x-aksen. Finn den gjennomsnittlige akselerasjonen når farten endres fra v 1 =4,0 m/s til v = 0,10 m/s i løpet av et tidsintervall Δ t = 1,7s. a) = -0,90

Detaljer

Oppgavesett nr.5 - GEF2200

Oppgavesett nr.5 - GEF2200 Oppgavesett nr.5 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1 a) Den turbulente vertikalfluksen av følbar varme (Q H ) i grenselaget i atmosfæren foregår ofte ved turbulente virvler. Hvilke to hovedmekanismer

Detaljer

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk

Detaljer

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, våren 16 i Matematikk 3 Løsningsforslag Ellipsen vil skal finne er på standardform x a + y b 1 der a > b for styrelinjene er vertikale linjer. Formelen for styrelinjene er x

Detaljer

Løsningsforslag Øving 12

Løsningsforslag Øving 12 Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 013 Oppgave 9-89 Løsning Vi skal finne et uttrykk for trykket som funksjon av x og y i et gitt hastighetsfelt. Antagelser 1 Strømningen er stasjonær.

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet. Eksamen GEOF100 Introduksjon til meteorologi og oseanografi

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet. Eksamen GEOF100 Introduksjon til meteorologi og oseanografi Side 1 av 5 (GEOF100) Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen GEOF100 Introduksjon til meteorologi og oseanografi Fredag 6. desember 2013, kl. 09:00-14:00 Hjelpemidler:

Detaljer

NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg

NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg Side 1 av 2/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg MIDTSEMESTEREKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Fredag 26.

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 7 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen (73592773) Hjelpemidler: C - pesifiserte

Detaljer

Temperaturkoeffisienten for et metall eller legering er resistansendring pr grad kelvin og pr ohm resistans.

Temperaturkoeffisienten for et metall eller legering er resistansendring pr grad kelvin og pr ohm resistans. .4 ESISTANS OG TEMPEATUAVHENGIGHET.4 ESISTANSENS TEMPEATUAVHENGIGHET esistans er ikke bare avhengig av resistivitet eller ledningsevnen, men også av temperaturen. Hvor mye resistansen endrer seg med i

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

Chapter 2. The global energy balance

Chapter 2. The global energy balance Chapter 2 The global energy balance Jordas Energibalanse Verdensrommet er vakuum Energi kan bare utveksles som stråling Stråling: Elektromagnetisk stråling Inn: Solstråling Ut: Reflektert solstråling +

Detaljer

HAVBØLGER. Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten:

HAVBØLGER. Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten: HAVBØLGER Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten: Airy teori, også kalt lineær bølgeteori eller bølger av første orden Fremstillingen her vil temmelig nøyaktig følge kompendiet

Detaljer

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar).

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar). Fasit for eksamen i MEK torsdag 3. desember 27 Hvert delspørsmål honoreres med poengsum fra til ( for perfekt svar). Oppgave Vi har gitt to vektorfelt i kartesiske koordinater (x,y,z) A = yi+coszj +xy

Detaljer

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG Prosessteknologi FO173N, 9 studiepoeng, AMMT, HiST,. august 2007 Side 1 (av 6) HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Kandidatnr: Eksamensdato:.august 2007 Varighet: Fagnummer:

Detaljer

Prosessteknikk eksamen 22/5-99. Løsningsforslag

Prosessteknikk eksamen 22/5-99. Løsningsforslag Prosessteknikk eksamen /-99. Løsningsforslag Revidert: 7. juni 1999 Foreslått fordeling ved karaktersetting. Og.1 : 1% Og. : 4% ( 1 1 1) Og.3 : % ( ) Og.4 : 1% Og. : 1% (78) Ogave 1 a) mg b) F k l l c)

Detaljer

Løsningsforslag til eksamen i FYS1000, 15/8 2014

Løsningsforslag til eksamen i FYS1000, 15/8 2014 Løsningsforslag til eksamen i FY1000, 15/8 2014 Oppgave 1 a) Lengden til strengen er L = 1, 2 m og farten til bølger på strengen er v = 230 m/s. Bølgelengden til den egensvingningen med lavest frekvens

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

D. Energibetraktninger ved stasjonær strøm

D. Energibetraktninger ved stasjonær strøm D. Energibetraktninger ved stasjonær strøm Oppgave D.1 En sylindrisk tank med vertikal akse og radius R, åpen mot atmosfæren i toppen, er fylt til høyde H med en ideell inkompressibel væske. Midt i bunnen

Detaljer

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Fysikk REA2041 EKSAMENSDATO: 14. mai 2008 KLASSE: 07HBINBPL, 07HBINBLAN, 0HBINBK, 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT TID: kl. 9.00 13.00 FAGLÆRER: Are Strandlie

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 6. desember 2010 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 6. desember 2010 Tid: kl. 09:00-13:00 Side av 8 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK Mandag 6. desember 00 id: kl. 09:00 - :00 OPPGAVE (40%)

Detaljer

Løsningsforslag nr.4 - GEF2200

Løsningsforslag nr.4 - GEF2200 Løsningsforslag nr.4 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1 - Definisjoner og annet pugg s. 375-380 a) Hva er normal tykkelse på det atmosfæriske grenselaget, og hvor finner vi det? 1-2 km. fra bakken

Detaljer

Løsningsforslag: Kontinuasjonseksamen TFY4115, august 2008

Løsningsforslag: Kontinuasjonseksamen TFY4115, august 2008 Institutt for fysikk, NTNU TFY4115 Fysikk, høsten 200 Løsningsforslag: Kontinuasjonseksamen TFY4115, august 2008 I tilknytning til oppgavene finner du her mer utførlige diskusjoner og kommentarer enn det

Detaljer

EKSAMEN I: TFY4300 Energi og miljøfysikk FY2201 Energi og miljøfysikk Fredag 12. desember 2003 TID:

EKSAMEN I: TFY4300 Energi og miljøfysikk FY2201 Energi og miljøfysikk Fredag 12. desember 2003 TID: 1 NTNU Institutt for fysikk Kontaktperson ved eksamen: Professor Berit Kjeldstad 735 91995 NORSK EKSAMEN I: TFY4300 Energi og miljøfysikk FY2201 Energi og miljøfysikk Fredag 12. desember 2003 TID: 09.00-14.00

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Oppgave 1. Svaralternativer. Oppgave 2. Svaralternativer

Oppgave 1. Svaralternativer. Oppgave 2. Svaralternativer Oppgave 1 To biljardkuler med samme masse m kolliderer elastisk. Den ene kulen er blå og ligger i ro før kollisjonen, den andre er rød og beveger seg med en fart v 0,r = 5 m s mot sentrum av den blå kula

Detaljer

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME ide 1 av 5 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE

Detaljer

Løsningsforslag til øving 10

Løsningsforslag til øving 10 Oppgave 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Våren 2013. a) Fra forelesningene, kapittel 4.5, har vi Ved å benytte og kan dette omformes til Med den gitte tilstandsligningen finner

Detaljer

Løsningsforslag eksamen TFY desember 2010.

Løsningsforslag eksamen TFY desember 2010. Løsningsforslag eksamen TFY4115 10. desember 010. Oppgave 1 a) Kreftene på klossene er vist under: Siden trinsene og snorene er masseløse er det bare to ulike snordrag T 1 og T. b) For å finne snordraget

Detaljer

Regneoppgaver AST 1010, vår 2017

Regneoppgaver AST 1010, vår 2017 Regneoppgaver AST 1010, vår 2017 (Sist oppdatert: 09.03.2017) OBS: Ikke få panikk om du ikke får til oppgavene med en gang, eller om du står helt fast: I forelesningsnotatene 1 finner du regneeksempler.

Detaljer

LØSNINGSFORSLAG, KAPITTEL 4

LØSNINGSFORSLAG, KAPITTEL 4 ØSNINGSFORSAG, KAPITTE 4 REVIEW QUESTIONS: 1 va er partialtrykk? En bestemt gass sitt partialtrykk er den delen av det totale atmosfæretrykket som denne gassen utøver. Totaltrykk = summen av alle gassenes

Detaljer

FYS1120 Elektromagnetisme, Oppgavesett 4

FYS1120 Elektromagnetisme, Oppgavesett 4 FYS1120 Elektromagnetisme, Oppgavesett 4 20. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 9.00 13.00 (4 timer). DATO: 1/12 2005 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV: 2 oppgaver på 5

Detaljer

P (v) = 4π( M W 2πRT ) 3 2 v 2 e Mv 2 2RT

P (v) = 4π( M W 2πRT ) 3 2 v 2 e Mv 2 2RT 1 Molekylhastigheter Et gitt antall like molekyler i gassfase, ved en gitt temperatur, holder ikke samme hastighet. De fleste har en hastighet nær gjennomsnittshastigheten, noen har lav hastighet, noen

Detaljer

dp dz dp dz 1 (z z 0 )

dp dz dp dz 1 (z z 0 ) 25 Løsning B.1 Fra adiabatisk gassligning: ρ ρ 0 p p 0 ) 1/κ, p 0, ρ 0 gitt ved havoverflaten a) Integrer hydrostatikkens grunnligning. La z være høydekoordinat: dp ρg dz p dp ρ z 0g dz p 0 p 1/κ p 1/κ

Detaljer

INTRODUKSJON HYDRODYNAMIKK

INTRODUKSJON HYDRODYNAMIKK INTRODUKSJON HYDRODYNMIKK Introduksjon Elementær matematikk = π r = π 4 D real () av en sirkel som funksjon av radius (r) og diameter (D) P = π r = π D Omkrets (P) av en sirkel som funksjon av radius (r)

Detaljer

Høgskolen i Telemark Eksamen Matematikk 2 modul Mai Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 24.

Høgskolen i Telemark Eksamen Matematikk 2 modul Mai Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 24. Høgskolen i Telemark Eksamen Matematikk 2 modul 24. Mai 203 Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 24. mai 203 EKSAMEN I MATEMATIKK 2 Modul 5 studiepoeng

Detaljer

Løsningsforslag til øving 9

Løsningsforslag til øving 9 NTNU Institutt for Fysikk Løsningsforslag til øving 9 FY0001 Brukerkurs i fysikk Oppgave 1 a) Etter første refleksjon blir vinklene (i forhold til positiv x-retning) henholdsvis 135 og 157, 5, og etter

Detaljer

TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE

TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE HØGSKOLEN I SØR-TRØNDELAG ADELING FOR TEKNOLOGI HØGSKOLEN I SØR-TRØNDELAG TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE Dato: Onsdag 07.05.08 arighet: 09.00-14.00 Klasser: 1FA 1FB 1FC 1FD Faglærere: Guri

Detaljer

EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 måndag 16. august 2010 Tid:

EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 måndag 16. august 2010 Tid: (Termo.2 16.8.2010) Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK

Detaljer

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2 SJØKRIGSSKOLEN Lørdag 16.09.06 UTSETT EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående

Detaljer

Lokalt gitt eksamen vår 2016 Eksamen

Lokalt gitt eksamen vår 2016 Eksamen Lokalt gitt eksamen vår 2016 Eksamen MATEMATIKK 1TY for yrkesfag MAT 1006 9 sider inkludert forside og opplysningsside Side 1 av 9 Eksamenstid: Totalt fire klokketimer. Vi anbefaler at du ikke bruker mer

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 29. mars 2012 Tid for eksamen: 15:00-17:00, 2 timer Oppgavesettet er på 6 sider inkludert forsiden

Detaljer

Oppsummering - Kap. 5 Termodynamikkens 2. Lov

Oppsummering - Kap. 5 Termodynamikkens 2. Lov EP 410 ermodynamikk 1 Spontane Prosesser Varmeoverføring ( > omg ), Ekspansjon (P > P omg ), og Frigjort Masse i Gravitasjonsfelt er Eksempler Energibalanser kan ikke prediktere Retning Hva kan ermodynamikkens.

Detaljer

- trykk-krefter. µ. u u u x. u venstre side. Det siste forsvinner fordi vi nettopp har vist x. r, der A er en integrasjonskonstant.

- trykk-krefter. µ. u u u x. u venstre side. Det siste forsvinner fordi vi nettopp har vist x. r, der A er en integrasjonskonstant. Løsningsforslag, MPT 1 Fluiddynamikk, vår 7 Oppgave 1 1. Bevarelse av impuls, massefart,..; k ma. Venstre side er ma og høyre side kreftene (pr. volumenhet). Substansielt deriverte: Akselerasjon av fluidpartikkel,

Detaljer

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en

hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en Skisse til løsning Eksamen i Reservoarteknikk. september, 998 Oppgave a) v k dφ s µ ds ; () hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en v s : volumhastighet, cm/s k : permeabilitet,

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 9. desember 2008 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 9. desember 2008 Tid: kl. 09:00-13:00 Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 410 TERMODYNAMIKK 1 Tirsdag 9. desember 008 Tid: kl. 09:00-13:00

Detaljer

Fysikkolympiaden 1. runde 31. oktober 11. november 2011

Fysikkolympiaden 1. runde 31. oktober 11. november 2011 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 31. oktober 11. november 011 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Frivillig test 5. april Flervalgsoppgaver.

Frivillig test 5. april Flervalgsoppgaver. Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt

Detaljer

EKSAMENSOPPGAVE. Administrasjonsbygget, rom Aud. Max.

EKSAMENSOPPGAVE. Administrasjonsbygget, rom Aud. Max. EKSAMENSOPPGAVE Eksamen i: MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2 Dato: Mandag 26. september 2016 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget, rom Aud. Max. Tillatte hjelpemidler:

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: YS1000 Eksamensdag: 26. mars 2015 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 7 sider Vedlegg: ormelark (2

Detaljer

ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014

ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014 ENT3R Oppgavehefte Basert på tidligere eksamener for 10. klasse Tommy Odland 2/4/2014 Dette er et oppgavehefte med oppgaver inspirert fra tidligere eksamener for 10. klassinger. Målet er at heftet skal

Detaljer

gass Side 1 av 5 NORGES TEKNISK NATUR- VITENSKAPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI

gass Side 1 av 5 NORGES TEKNISK NATUR- VITENSKAPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side av 5 NORGES TEKNISK NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd. Blekkan, tlf.7359457 EKSMEN I

Detaljer