Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Størrelse: px
Begynne med side:

Download "Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011"

Transkript

1 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20

2 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden angir ett entydig tall i verdimengden

3 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden angir ett entydig tall i verdimengden Vi kan tenke på en funksjon som en maskin x Funksjon f f(x)

4 3 Definisjon- og verdimengde f D f V f

5 4 Funksjon som en graf 2 f(x) = x 2 2x 2 3 4

6 5 De fire representasjonen av en funksjon Nummerisk (ved hjelp av tabell.) Lufttrykket målt ved en stemmegaffel er gitt ved tabellen tid / ms trykk / µbar 0,0,36 0,6,303,2 0,62,8 0,482..

7 5 De fire representasjonen av en funksjon Nummerisk (ved hjelp av tabell.) 2 Verbalt (ved tekst.) Største heltall - funksjonen f(x) = x = største heltall som er mindre eller lik x

8 5 De fire representasjonen av en funksjon Nummerisk (ved hjelp av tabell.) 2 Verbalt (ved tekst.) 3 visuelt (Beskrevet ved hjelp av graf.)

9 5 De fire representasjonen av en funksjon Nummerisk (ved hjelp av tabell.) 2 Verbalt (ved tekst.) 3 visuelt (Beskrevet ved hjelp av graf.) 4 Algebraisk (Beskrevet ved hjelp av formel) f(x) = sin x x

10 6 Delt forskrift Absoluttverdi-funksjonen f(x) = x. f(x) = { x ; x 0 x ; x < 0

11 6 Delt forskrift Absoluttverdi-funksjonen f(x) = x og dens graf. f(x) = { x ; x 0 x ; x < 0

12 7 Vertikal linjetest Kun en funskjonsverdi for hver argumentverdi f 2

13 7 Vertikal linjetest Kun en funskjonsverdi for hver argumentverdi En vertikal linje krysser maksimalt et punkt på grafen til en funksjon. 2 f

14 7 Vertikal linjetest Kun en funskjonsverdi for hver argumentverdi En vertikal linje krysser maksimalt et punkt på grafen til en funksjon. Hvis en vertikal linje krysser i flere punkter på grafen, så er den ikke grafen til en funksjon. 2 f

15 8 Lineære Funksjoner Definisjon En funksjon kalles lineær hvis grafen dens er en rett linje En lineær funksjon kan skrives på formen f(x) = mx + b, der m er stigningstallet og b er y-verdien til skjæringen med y-aksen. Eksempel f(x) = x + 4

16 9 Konstant funksjoner og proposjonaliteter Definisjon En funksjon kalles konstant hvis grafen dens er en horisontal rett linje

17 9 Konstant funksjoner og proposjonaliteter Definisjon En funksjon kalles konstant hvis grafen dens er en horisontal rett linje En konstant funksjon kan skrives på formen f(x) = c, der c er y-verdien til skjæringen med y-aksen.

18 9 Konstant funksjoner og proposjonaliteter Definisjon En funksjon kalles konstant hvis grafen dens er en horisontal rett linje En konstant funksjon kan skrives på formen y = c f(x) = c, der c er y-verdien til skjæringen med y-aksen.

19 9 Konstant funksjoner og proposjonaliteter Definisjon En funksjon kalles konstant hvis grafen dens er en horisontal rett linje En konstant funksjon kan skrives på formen f(x) = c, der c er y-verdien til skjæringen med y-aksen. Definisjon y = c En funksjon kalles en proposjonalitet hvis grafen dens er en rett linje igjennom origo

20 9 Konstant funksjoner og proposjonaliteter Definisjon En funksjon kalles konstant hvis grafen dens er en horisontal rett linje En konstant funksjon kan skrives på formen f(x) = c, der c er y-verdien til skjæringen med y-aksen. Definisjon y = c En funksjon kalles en proposjonalitet hvis grafen dens er en rett linje igjennom origo En proposjonalitet kan skrives på formen f(x) = m x der m er proposjonalitetskonstanten.

21 9 Konstant funksjoner og proposjonaliteter Definisjon En funksjon kalles konstant hvis grafen dens er en horisontal rett linje En konstant funksjon kan skrives på formen f(x) = c, der c er y-verdien til skjæringen med y-aksen. Definisjon y = c En funksjon kalles en proposjonalitet hvis grafen dens er en rett linje igjennom origo En proposjonalitet kan skrives på formen f(x) = m x der m er proposjonalitetskonstanten. y = mx

22 0 Polynomer Definisjon (Polynom P(x) av grad n) P(x) = a n x n + a n x n + + a x + a 0.

23 0 Polynomer Definisjon (Polynom P(x) av grad n) P(x) = a n x n + a n x n + + a x + a 0. Definisjon (Koeffisienter.) Konstantene a 0, a osv kalles koeffisientene til P(x).

24 0 Polynomer Definisjon (Polynom P(x) av grad n) P(x) = a n x n + a n x n + + a x + a 0. Definisjon (Koeffisienter.) Konstantene a 0, a osv kalles koeffisientene til P(x). Eksempel f(x) = x 2 x er et 2.gradspolynom.

25 Potensfunksjoner Eksempel Eksempler på potensfunksjoner er y = x y = x 2 etc y = x 3

26 Potensfunksjoner Eksempel Eksempler på potensfunksjoner er y = x y = x 2 etc y = x 3 Definisjon En potensfunksjon er en funksjon på formen f(x) = x a, der a er en konstant.

27 Potensfunksjoner Eksempel Eksempler på potensfunksjoner er y = x y = x 2 etc y = x 3 Definisjon En potensfunksjon er en funksjon på formen f(x) = x a, der a er en konstant. Eksempel y = x 4 = x 4 og rotfunksjoner er andre eksempler.

28 2 Rot funksjoner Definisjon (nte-roten) w = n a er definert som det tallet som gir w n = a For eksempel er 2 = 3 8 fordi 2 3 = 8.

29 2 Rot funksjoner Definisjon (nte-roten) w = n a er definert som det tallet som gir w n = a For eksempel er 2 = 3 8 fordi 2 3 = 8. nte røtter kan brukes til å definere funksjoner y = 3 x y = x 2 x 2 x

30 3 Rasjonale funksjoner Definisjon (rasjonal funksjon) Hvis P og Q er polynomer så kalles y = P(x) for en rasjonal funksjon. Q(x)

31 3 Rasjonale funksjoner Definisjon (rasjonal funksjon) Hvis P og Q er polynomer så kalles y = P(x) for en rasjonal funksjon. Q(x) 4 2 y = x x + x y = x 2 x 2 x 2 4

32 4 Stigende og avtagende funksjoner Definisjon En funksjon f kalles stigende på intervallet I hvis f(x ) < f(x 2 ) når x < x 2 i I f(x) = x er stigende på [0, >

33 4 Stigende og avtagende funksjoner Definisjon En funksjon f kalles stigende på intervallet I hvis f(x ) < f(x 2 ) når x < x 2 i I Definisjon En funksjon f kalles avtagende på intervallet I hvis f(x ) > f(x 2 ) når x < x 2 i I f(x) = x er avtagende på <, 0]

34 5 Jevne og odde funksjoner Definisjon (Odde) En funksjon f(x) kalles for en odde funksjon hvis f( x) = f(x) for alle x i definisjonsmengden. Eksempel Potensfunksjonen: f(x) = x 3

35 6 Jevne og odde funksjoner Definisjon (Jevn) En funksjon f(x) kalles for en jevn funksjon hvis f( x) = f(x) for alle x i definisjonsmengden. Eksempel Polynomet: f(x) = x 4 + x 2

36 7 Horisontal og vertikal forskyvning Horisontal forskyvning mot høyre 2 Horisontal forskyvning mot venstre 3 Vertikal forskyvning opp 4 Vertikal forskyvning ned f(x ) 2

37 7 Horisontal og vertikal forskyvning Horisontal forskyvning mot høyre 2 Horisontal forskyvning mot venstre 3 Vertikal forskyvning opp 4 Vertikal forskyvning ned f(x + ) 2

38 7 Horisontal og vertikal forskyvning Horisontal forskyvning mot høyre 2 Horisontal forskyvning mot venstre 3 Vertikal forskyvning opp 4 Vertikal forskyvning ned f(x) + 2

39 7 Horisontal og vertikal forskyvning Horisontal forskyvning mot høyre 2 Horisontal forskyvning mot venstre 3 Vertikal forskyvning opp 4 Vertikal forskyvning ned f(x) 2

40 8 Skalering og refleksjon Vertikal krymping 2 f(x) 2 Horisontal krymping 3 Vertikal ekspansjon 4 Horisontal ekspansjon 5 Vertikal refleksjon 2 6 Horisontal refleksjon

41 8 Skalering og refleksjon Vertikal krymping f(2 x) 2 Horisontal krymping 3 Vertikal ekspansjon 4 Horisontal ekspansjon 5 Vertikal refleksjon 2 6 Horisontal refleksjon

42 8 Skalering og refleksjon Vertikal krymping 2 f(x) 2 Horisontal krymping 3 Vertikal ekspansjon 4 Horisontal ekspansjon 5 Vertikal refleksjon 2 6 Horisontal refleksjon

43 8 Skalering og refleksjon Vertikal krymping f( 2 x) 2 Horisontal krymping 3 Vertikal ekspansjon 4 Horisontal ekspansjon 5 Vertikal refleksjon 2 6 Horisontal refleksjon

44 8 Skalering og refleksjon Vertikal krymping f(x) 2 Horisontal krymping 3 Vertikal ekspansjon 4 Horisontal ekspansjon 5 Vertikal refleksjon 2 6 Horisontal refleksjon

45 8 Skalering og refleksjon Vertikal krymping f( x) 2 Horisontal krymping 3 Vertikal ekspansjon 4 Horisontal ekspansjon 5 Vertikal refleksjon 2 6 Horisontal refleksjon

46 9 Vinkler Grader 90

47 9 Vinkler Grader og Radianer r = 90 θ = π/2,5708

48 20 Trigonometriske funksjoner h x a b cos x = a/h sin x = b/h tan x = b/a f(x) = cos(x) 3 2 f(x) = cos(x) f(x) = sin(x) 3 2 f(x) = tan(x)

49 20 Trigonometriske funksjoner h x a b cos x = a/h sin x = b/h tan x = b/a f(x) = cos(x) 3 2 f(x) = sin(x) f(x) = sin(x) 3 2 f(x) = tan(x)

50 20 Trigonometriske funksjoner h x a b cos x = a/h sin x = b/h tan x = b/a f(x) = cos(x) 3 2 f(x) = tan(x) f(x) = sin(x) 3 2 f(x) = tan(x)

51 2 Trigonometriske funksjoner h x a b sec x = h/b csc x = h/b cot x = a/b f(x) = sec(x) 3 2 f(x) = sec(x) f(x) = csc(x) 3 2 f(x) = cot(x)

52 2 Trigonometriske funksjoner h x a b sec x = h/b csc x = h/b cot x = a/b f(x) = sec(x) 3 2 f(x) = csc(x) f(x) = csc(x) 3 2 f(x) = cot(x)

53 2 Trigonometriske funksjoner h x a b sec x = h/b csc x = h/b cot x = a/b f(x) = sec(x) 3 2 f(x) = cot(x) f(x) = csc(x) 3 2 f(x) = cot(x)

54 22 Periodisitet En funksjon er periodisk med periode T hvis f(x + T) = f(x)

55 22 Periodisitet En funksjon er periodisk med periode T hvis f(x + T) = f(x) Eksempel: f(x) = sin(x)

56 23 Trigonometriske identiteter (cos θ, sin θ) cos 2 θ + sin 2 θ = cos(a + B) = cos A cos B sin A sin B sin(a + B) = sin A cos B + cos A sin B

57 24 Cosinus-loven B c 2 = a 2 + b 2 2ab cos θ a C θ c b A

58 25 Eksponensiell oppførsel Eksponensiell endring kjenetegnes at endringen til en størrelse er proposjonal med størrelsen f(x) = 2 x 3 2

59 26 Eksponensialfunkjsoner Definisjon En funksjon på formen y = a x kalles for en eksponensial funksjon. y = ( 4 )x 3 y = 4 x y = ex y = ( 2 )x y = 2 x 2 Tangenten til e x igjennom punktet (0,) har stigningsgrad

60 27 Egenskaper til eksponensial funksjoner a x a y = a x+y 2 a x /a y = a x y 3 (a x ) y = a xy 4 a x b x = (ab) x 5 a x /b x = (a/b) x

61 27 Egenskaper til eksponensial funksjoner a x a y = a x+y 2 a x /a y = a x y 3 (a x ) y = a xy 4 a x b x = (ab) x 5 a x /b x = (a/b) x

62 27 Egenskaper til eksponensial funksjoner a x a y = a x+y 2 a x /a y = a x y 3 (a x ) y = a xy 4 a x b x = (ab) x 5 a x /b x = (a/b) x

63 27 Egenskaper til eksponensial funksjoner a x a y = a x+y 2 a x /a y = a x y 3 (a x ) y = a xy 4 a x b x = (ab) x 5 a x /b x = (a/b) x

64 27 Egenskaper til eksponensial funksjoner a x a y = a x+y 2 a x /a y = a x y 3 (a x ) y = a xy 4 a x b x = (ab) x 5 a x /b x = (a/b) x

65 28 En-til-enfunksjoner En-til-en hvis: bare oppfylles når f(x ) = f(x 2 ) x = x 2

66 28 En-til-enfunksjoner En-til-en hvis: bare oppfylles når Eksempler: f(x ) = f(x 2 ) x = x 2 f(x) = ax + b, a og b er konstanter. f(x) = e x f(x) = sin x, π 2 < x < π 2 f(x) = tan x, π 2 < x < π 2

67 29 Inverse funksjoner To (en-til-en) funksjoner f og g er hverandres inverser hvis f(g(y)) = y og g(f(x)) = x x f g f(x)

68 29 Inverse funksjoner To (en-til-en) funksjoner f og g er hverandres inverser hvis f(g(y)) = y og g(f(x)) = x x f f f(x) Vi skriver g = f

69 30 Finne inverser Løs først likningen y = f(x) for x 2 Skriv løsningen som x = g(y) 3 Bytt om på x og y. (Gjør aldri dette i fysikk anvendelser) Eksempel (Inverter f(x) = x 2, x > 0.) Eksempel (Finn tiden) En stein faller avstanden s = 5 t 2 meter i løpet av t sekunder. Finn tiden det tar å falle s meter.

70 30 Finne inverser Løs først likningen y = f(x) for x 2 Skriv løsningen som x = g(y) 3 Bytt om på x og y. (Gjør aldri dette i fysikk anvendelser) Eksempel (Inverter f(x) = x 2, x > 0.) Eksempel (Finn tiden) En stein faller avstanden s = 5 t 2 meter i løpet av t sekunder. Finn tiden det tar å falle s meter.

71 30 Finne inverser Løs først likningen y = f(x) for x 2 Skriv løsningen som x = g(y) 3 Bytt om på x og y. (Gjør aldri dette i fysikk anvendelser) Eksempel (Inverter f(x) = x 2, x > 0.) y = x 2. Løser for x og får x = y Eksempel (Finn tiden) En stein faller avstanden s = 5 t 2 meter i løpet av t sekunder. Finn tiden det tar å falle s meter.

72 30 Finne inverser Løs først likningen y = f(x) for x 2 Skriv løsningen som x = g(y) 3 Bytt om på x og y. (Gjør aldri dette i fysikk anvendelser) Eksempel (Inverter f(x) = x 2, x > 0.) y = x 2. Løser for x og får x = y Eksempel (Finn tiden) En stein faller avstanden s = 5 t 2 meter i løpet av t sekunder. Finn tiden det tar å falle s meter.

73 30 Finne inverser Løs først likningen y = f(x) for x 2 Skriv løsningen som x = g(y) 3 Bytt om på x og y. (Gjør aldri dette i fysikk anvendelser) Eksempel (Inverter f(x) = x 2, x > 0.) y = x 2. Løser for x og får x = y g(y) = y Eksempel (Finn tiden) En stein faller avstanden s = 5 t 2 meter i løpet av t sekunder. Finn tiden det tar å falle s meter.

74 30 Finne inverser Løs først likningen y = f(x) for x 2 Skriv løsningen som x = g(y) 3 Bytt om på x og y. (Gjør aldri dette i fysikk anvendelser) Eksempel (Inverter f(x) = x 2, x > 0.) y = x 2. Løser for x og får x = y g(y) = y Eksempel (Finn tiden) En stein faller avstanden s = 5 t 2 meter i løpet av t sekunder. Finn tiden det tar å falle s meter.

75 30 Finne inverser Løs først likningen y = f(x) for x 2 Skriv løsningen som x = g(y) 3 Bytt om på x og y. (Gjør aldri dette i fysikk anvendelser) Eksempel (Inverter f(x) = x 2, x > 0.) y = x 2. Løser for x og får x = y g(y) = y g(x) = x Eksempel (Finn tiden) En stein faller avstanden s = 5 t 2 meter i løpet av t sekunder. Finn tiden det tar å falle s meter.

76 3 Logaritmiske funksjoner Logaritmen f(x) = log a x defineres som den inverse av. a x

77 3 Logaritmiske funksjoner Logaritmen defineres som den inverse av. Den naturlig logaritmen defineres som den inverse av. f(x) = log a x a x f(x) = ln x e x

78 32 Egenskaper til logaritmen log a bc = log a b + log a c 2 log a (b/c) = log a b log a c 3 log a (b c ) = c log a b

79 32 Egenskaper til logaritmen log a bc = log a b + log a c 2 log a (b/c) = log a b log a c 3 log a (b c ) = c log a b

80 32 Egenskaper til logaritmen log a bc = log a b + log a c 2 log a (b/c) = log a b log a c 3 log a (b c ) = c log a b

81 33 Inverse trigonometriske funksjoner Trigonometriske funksjoner er ikke en-til-en Inverse trigonometriske funksjoner defineres ved å invertere funksjonene på passende intervaller sin (x) = Arcsin x

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 20 2 Stigende og avtagende funksjoner Definisjon En funksjon f kalles stigende på intervallet I hvis

Detaljer

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner Funksjoner Forelesning i Matematikk TMA00 Hans Jako Rivertz Institutt for matematiske fag 9. august 0 Stigende og avtagende funksjoner En funksjon f kalles stigende på intervallet I vis f (x ) < f (x )

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 2: Funksjoner (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 16. august, 2012 Eksponentialfunksjoner Eksponentialfunksjoner Definisjon: Eksponentialfunksjon En

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Kapittel 3.3. Enringsrate 3 Enrings rate hastighet og akselersjon Definisjon Hvis s(t) er

Detaljer

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x NTNU Institutt for matematiske fag TMA400 Matematikk Høsten 20 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere y f(x) 00 +2 x, dvs. løse ligningen mhp. x. y 00 +2 x y(+2 x ) 00 2 x 00 00 y y

Detaljer

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner 1 Fremdriftplan I går 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner I dag 1.3 Trigonometriske funksjoner 1.4 Eksponentialfunksjoner 1.5 Omvendte funksjoner, logaritmiske funksjoner, inverse

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 10 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 10 Derivasjon I dagens forelesning skal vi se på følgende: 1 Antideriverte. 2 Differensiallikninger

Detaljer

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100

Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 24. august 2010 2 Grenselover for x ± L = lim f(x) M = lim g(x) 1. lim (f(x) ± g(x))

Detaljer

Trasendentale funksjoner

Trasendentale funksjoner Trasendentale funksjoner Department of Mathematical Sciences, NTNU, Norway September 9, 2014 Kap. 3.1 og 3.2. Forelesning 8. September. Inverse funksjoner, definisjon og eksistens Deriverte av inverse

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

Andre forelesning Forelesning i Matematikk 1 TMA4100

Andre forelesning Forelesning i Matematikk 1 TMA4100 Andre forelesning Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. august 2010 Induksjon Pensumlitteratur: Notat 3 Induksjon Brukes til å bevise formler og setninger.

Detaljer

Kapittel 1. Funksjoner. 1.1 Definisjoner

Kapittel 1. Funksjoner. 1.1 Definisjoner Kapittel 1 Funksjoner Kurset MAT1001 dreier seg kort sagt om å lage matematiske problemer av virkeligheten og deretter løse problemene. Hittil i kurset har vi allerede møtt mange problemer, og de har så

Detaljer

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100 Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Integrasjon Forelesning i Matematikk 1 TMA4100

Integrasjon Forelesning i Matematikk 1 TMA4100 Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 21. oktober 2011 Kapittel 7.4. Delbrøksoppspalting og Integrasjon av rasjonale funksjoner 3 Integrasjon av

Detaljer

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100 Areal mellom kurver Volum Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 27. september 20 Kapittel 5.6. Substitusjon og arealet mellom kurver 3 Areal mellom kurver Problem

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer. Eksamen i FO99A Matematikk Underveiseksamen Dato 30. mars 007 Tidspunkt 09.00-14.00 Antall oppgaver 4 Vedlegg Tillatte hjelpemidler Sirkelskive i radianer Godkjent kalkulator Godkjent formelsamling Oppgave

Detaljer

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG Institutt for matematiske fag Eksamensoppgave i MA/MA6 Grunnkurs i analyse I. LØSNINGSFORSLAG Faglig kontakt under eksamen: John Erik Fornæss /Kari Hag Tlf: 464944/483988 Eksamensdato: 8. desember 5 Eksamenstid

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

Løsningsforslag eksamen R2

Løsningsforslag eksamen R2 Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e

Detaljer

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 7. oktober 2011 Kapittel 6.4. Areal til omdreiningslegemer 3 Overflate-areal av en rotasjonsflate

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Oppfriskningskurs dag 2

Oppfriskningskurs dag 2 Grafer og Oppfriskningskurs dag 2 Grafer og Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Grafer og Outline 1 Grafer og Outline Grafer og 1 Grafer og Grafer og Vi ser på ligninger av to

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Kalkulus 1. Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger.

Kalkulus 1. Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger. Kalkulus 1 Grenser Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger. Vi sier at funksjonen f(x) har en grense f(a)

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving Avsnitt.7 99 Vi deriverer to ganger: = A 1 cos(ln) B1 sin(ln) = A 1 cos(ln) A 1 sin(ln)+b 1 sin(ln) B 1 cos(ln)

Detaljer

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2 TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

1 Trigonometriske relationer

1 Trigonometriske relationer gdmandsen.net Ophavsret Kopiering, distribtion og fremvisning af dette dokment eller dele deraf er tilladt i ikke-kommercielle sammenhænge, sålænge dette foregår med tydelig kildeangivelse. Al anden anvendelse

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Løsningsforslag Øving 1 Kapittel 7.1: Substitusjon Teorem 1. Hvis u = g() så er f(g())g

Detaljer

Plenum Kalkulus. Fredrik Meyer. 23. oktober 2015

Plenum Kalkulus. Fredrik Meyer. 23. oktober 2015 Plenum Kalkulus Fredrik Meyer. oktober 05 7. Oppgave (7.). Du skal lage en rektangulær innehengning til hesten din. Den ene siden dekkes av låven og på de tre andre sidene skal du bygge gjerde. Hva er

Detaljer

EKSAMEN I MATEMATIKK 1000

EKSAMEN I MATEMATIKK 1000 EKSAMEN I MATEMATIKK 1000 Oppgave 1 a) Finn den deriverte av disse funksjonene: f(x) = x 3 e 5x og g(x) = ln(tan(x)) + x 3. b) Finn de følgende ubestemte integralene: i) (x 3 + xe x2 ) dx og ii) cos 2

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100

Løsningsforslag til underveiseksamen i MAT 1100 Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Mandag 2. mars 2015 før forelesningen 10:30 Antall oppgaver: 17

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Mandag 2. mars 2015 før forelesningen 10:30 Antall oppgaver: 17 Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Mandag 2. mars 205 før forelesningen 0:0 Antall oppgaver: 7 Deriver de følgende funksjonene. 2 a) f(x) = cos(2x )

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

Eksamen R1 - H

Eksamen R1 - H Eksamen R1 - H 013-8.11.013 Løsningsskisser Del 1 - Uten hjelpemidler Oppgave 1 a) Kjerneregel: f x e u, u 3x f x e u 3 6e 3x b) Kjerneregel på ln 3x ln u, u 3x gir ln 3x 1 u 3 3 3x 1 x Produktregel gir

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Del1. Oppgave 1. a) Deriver funksjonen gitt ved. b) Bestem integralene. fx x. 5 e d. x x. c) Løs differensiallikningen. d) 1) Bruk formlene.

Del1. Oppgave 1. a) Deriver funksjonen gitt ved. b) Bestem integralene. fx x. 5 e d. x x. c) Løs differensiallikningen. d) 1) Bruk formlene. Del1 Oppgave 1 a) Deriver funksjonen gitt ved fx x ( ) cos(3 x) b) Bestem integralene 1) x 5 e d x x 6x ) dx x 1 c) Løs differensiallikningen når y y y 3 0 d) 1) Bruk formlene cos( u v) cosu cosv sinu

Detaljer

Fasit, Kap : Derivasjon 2.

Fasit, Kap : Derivasjon 2. Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. 1 Fasit, Kap. 3.5-3.8: Derivasjon. Oppgave 1 a) f (x) =x. Denne eksisterer over alt (det er vanligvis punkter med null i nevner som kan skaffe

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

1 Mandag 15. februar 2010

1 Mandag 15. februar 2010 1 Mandag 15. februar 2010 Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av teorien vi har gjennomgått

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1) Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.

Detaljer

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering.

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering. 11 CAS i GeoGebra Fra og med versjon 4.2 får GeoGebra et eget CAS-vindu. CAS står for Computer Algebra System og er en betegnelse for programvare som kan gjøre symbolske manipuleringer. Eksempler på slike

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, øst 2013 Forelesning 7 www.ntnu.no TMA4100 Matematikk 1, øst 2013, Forelesning 7 Derivasjon Denne uken skal vi begynne på tema 2 om derivasjon. I dagens forelesning skal vi se på

Detaljer

Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I

Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I Eksamen Fag: AA6516 Matematikk 2MX Eksamensdato: 7. desember 2005 Vidaregåande kurs I / Videregående kurs I Studieretning: Allmenne, økonomiske og administrative fag Privatistar/Privatister Oppgåva ligg

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Prøve i R2 Integrasjonsmetoder

Prøve i R2 Integrasjonsmetoder Del 1 Hjelpemidler: ingen 1 Oppgave 1 Prøve i R Integrasjonsmetoder Caspar W. Hatlevik 19. oktober 1 Finn de ubestemte integralene og regn ut det bestemte integralet a. x + x + 1dx b. e 4x + x dx c. 1

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

Løsningsforslag Matematikk 2MX - AA mai 2006

Løsningsforslag Matematikk 2MX - AA mai 2006 Løsningsforslag Matematikk 2MX - AA6516-3. mai 2006 eksamensoppgaver.org September 21, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD Abstract. Oppgaven tar for seg utvalgte temaer innenfor trigonometri, og retter seg mot lærere som skal undervise i fagene 1T og R2. Date: May 7,

Detaljer

Problem 1. Problem 2. Problem 3. Problem 4

Problem 1. Problem 2. Problem 3. Problem 4 Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2

Detaljer

Eksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål

Eksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål Eksamen 05.12.2007 AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister Nynorsk/Bokmål Oppgave 1 a) Deriver funksjonen: f x 2 ( ) = cos( x + 1) b) Løs likningen og oppgi svaret

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet 1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Løsningsforslag Eksamen 3MX - AA6524-04.06.2007. eksamensoppgaver.org

Løsningsforslag Eksamen 3MX - AA6524-04.06.2007. eksamensoppgaver.org Løsningsforslag Eksamen 3MX - AA65 -.6.7 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer