Oppfriskningskurs dag 2

Størrelse: px
Begynne med side:

Download "Oppfriskningskurs dag 2"

Transkript

1 Grafer og Oppfriskningskurs dag 2 Grafer og Steffen Junge Oppfriskningskurs i matematikk august 2009

2 Grafer og Outline 1 Grafer og

3 Outline Grafer og 1 Grafer og

4 Grafer og Vi ser på ligninger av to variable x og y. Et tallpar (x 0, y 0 ) som innsatt i ligningen gjør denne sann kalles en løsning av ligningen. Mengden av alle løsninger kalles grafen for ligningen. Grafen kan være tom eller bestå av enkelte punkter, men vil typisk beskrive en kurve i planet.

5 Grafer og Vi ser på ligninger av to variable x og y. Et tallpar (x 0, y 0 ) som innsatt i ligningen gjør denne sann kalles en løsning av ligningen. Mengden av alle løsninger kalles grafen for ligningen. Grafen kan være tom eller bestå av enkelte punkter, men vil typisk beskrive en kurve i planet.

6 Grafer og Vi ser på ligninger av to variable x og y. Et tallpar (x 0, y 0 ) som innsatt i ligningen gjør denne sann kalles en løsning av ligningen. Mengden av alle løsninger kalles grafen for ligningen. Grafen kan være tom eller bestå av enkelte punkter, men vil typisk beskrive en kurve i planet.

7 Grafer og Vi ser på ligninger av to variable x og y. Et tallpar (x 0, y 0 ) som innsatt i ligningen gjør denne sann kalles en løsning av ligningen. Mengden av alle løsninger kalles grafen for ligningen. Grafen kan være tom eller bestå av enkelte punkter, men vil typisk beskrive en kurve i planet.

8 Grafer og Vi ser på ligninger av to variable x og y. Et tallpar (x 0, y 0 ) som innsatt i ligningen gjør denne sann kalles en løsning av ligningen. Mengden av alle løsninger kalles grafen for ligningen. Grafen kan være tom eller bestå av enkelte punkter, men vil typisk beskrive en kurve i planet.

9 Grafer - eksempler Grafer og Tegn grafen for xy = 1 Tegn grafen for x 2 + y 2 = 1 Tegn grafen for x y 2 = 1 Tegn grafen for x + y = 1 Tegn grafen for x = y 2

10 Grafer - eksempler Grafer og Tegn grafen for xy = 1 Tegn grafen for x 2 + y 2 = 1 Tegn grafen for x y 2 = 1 Tegn grafen for x + y = 1 Tegn grafen for x = y 2

11 Grafer - eksempler Grafer og Tegn grafen for xy = 1 Tegn grafen for x 2 + y 2 = 1 Tegn grafen for x y 2 = 1 Tegn grafen for x + y = 1 Tegn grafen for x = y 2

12 Grafer - eksempler Grafer og Tegn grafen for xy = 1 Tegn grafen for x 2 + y 2 = 1 Tegn grafen for x y 2 = 1 Tegn grafen for x + y = 1 Tegn grafen for x = y 2

13 Grafer - eksempler Grafer og Tegn grafen for xy = 1 Tegn grafen for x 2 + y 2 = 1 Tegn grafen for x y 2 = 1 Tegn grafen for x + y = 1 Tegn grafen for x = y 2

14 Grafer - eksempler Grafer og Tegn grafen for xy = 1 Tegn grafen for x 2 + y 2 = 1 Tegn grafen for x y 2 = 1 Tegn grafen for x + y = 1 Tegn grafen for x = y 2

15 Sirkler Grafer og Sirkelen med radius r og sentrum i (a, b) er gitt som grafen til ligningen (x a) 2 + (y b) 2 = r 2 Eksempel: Hva er ligningen for sirkelen med radius 3 og sentrum i (0, 1)? Eksempel: Hva er radius og sentrum i x 2 + y x 6y = 0?

16 Sirkler Grafer og Sirkelen med radius r og sentrum i (a, b) er gitt som grafen til ligningen (x a) 2 + (y b) 2 = r 2 Eksempel: Hva er ligningen for sirkelen med radius 3 og sentrum i (0, 1)? Eksempel: Hva er radius og sentrum i x 2 + y x 6y = 0?

17 Sirkler Grafer og Sirkelen med radius r og sentrum i (a, b) er gitt som grafen til ligningen (x a) 2 + (y b) 2 = r 2 Eksempel: Hva er ligningen for sirkelen med radius 3 og sentrum i (0, 1)? Eksempel: Hva er radius og sentrum i x 2 + y x 6y = 0?

18 Sirkler Grafer og Sirkelen med radius r og sentrum i (a, b) er gitt som grafen til ligningen (x a) 2 + (y b) 2 = r 2 Eksempel: Hva er ligningen for sirkelen med radius 3 og sentrum i (0, 1)? Eksempel: Hva er radius og sentrum i x 2 + y x 6y = 0?

19 Rette linjer Grafer og Alle par av punkter (x 0, y 0 ) og (x 1, y 1 ) i planet definerer en entydig rett linje i planet. Denne har stigningstall α = y x = y 1 y 0 x 1 x 0 Linjen med stigningstall α som skjærer punktet (x 0, y 0 ) har ligning y y 0 = α(x x 0 ) Eksempel: Finn ligningen for linjen som skjærer punktene (1, 2) og ( 2, 5).

20 Rette linjer Grafer og Alle par av punkter (x 0, y 0 ) og (x 1, y 1 ) i planet definerer en entydig rett linje i planet. Denne har stigningstall α = y x = y 1 y 0 x 1 x 0 Linjen med stigningstall α som skjærer punktet (x 0, y 0 ) har ligning y y 0 = α(x x 0 ) Eksempel: Finn ligningen for linjen som skjærer punktene (1, 2) og ( 2, 5).

21 Rette linjer Grafer og Alle par av punkter (x 0, y 0 ) og (x 1, y 1 ) i planet definerer en entydig rett linje i planet. Denne har stigningstall α = y x = y 1 y 0 x 1 x 0 Linjen med stigningstall α som skjærer punktet (x 0, y 0 ) har ligning y y 0 = α(x x 0 ) Eksempel: Finn ligningen for linjen som skjærer punktene (1, 2) og ( 2, 5).

22 Rette linjer Grafer og Alle par av punkter (x 0, y 0 ) og (x 1, y 1 ) i planet definerer en entydig rett linje i planet. Denne har stigningstall α = y x = y 1 y 0 x 1 x 0 Linjen med stigningstall α som skjærer punktet (x 0, y 0 ) har ligning y y 0 = α(x x 0 ) Eksempel: Finn ligningen for linjen som skjærer punktene (1, 2) og ( 2, 5).

23 Rette linjer Grafer og Alle par av punkter (x 0, y 0 ) og (x 1, y 1 ) i planet definerer en entydig rett linje i planet. Denne har stigningstall α = y x = y 1 y 0 x 1 x 0 Linjen med stigningstall α som skjærer punktet (x 0, y 0 ) har ligning y y 0 = α(x x 0 ) Eksempel: Finn ligningen for linjen som skjærer punktene (1, 2) og ( 2, 5).

24 Outline Grafer og 1 Grafer og

25 Funksjon Grafer og En funksjon f er en maskin som tar inn tall x og spytter ut nøyaktig ett tilhørende tall f (x) Mengden av tall f kan ta inn kalles definisjonsmengden. Mengden av funksjonsverdier f (x) kalles verdimengden. En funksjon som bare sender een x-verdi til hvert element i verdimengden kalles en-til-en eller injektiv.

26 Funksjon Grafer og En funksjon f er en maskin som tar inn tall x og spytter ut nøyaktig ett tilhørende tall f (x) Mengden av tall f kan ta inn kalles definisjonsmengden. Mengden av funksjonsverdier f (x) kalles verdimengden. En funksjon som bare sender een x-verdi til hvert element i verdimengden kalles en-til-en eller injektiv.

27 Funksjon Grafer og En funksjon f er en maskin som tar inn tall x og spytter ut nøyaktig ett tilhørende tall f (x) Mengden av tall f kan ta inn kalles definisjonsmengden. Mengden av funksjonsverdier f (x) kalles verdimengden. En funksjon som bare sender een x-verdi til hvert element i verdimengden kalles en-til-en eller injektiv.

28 Funksjon Grafer og En funksjon f er en maskin som tar inn tall x og spytter ut nøyaktig ett tilhørende tall f (x) Mengden av tall f kan ta inn kalles definisjonsmengden. Mengden av funksjonsverdier f (x) kalles verdimengden. En funksjon som bare sender een x-verdi til hvert element i verdimengden kalles en-til-en eller injektiv.

29 Funksjon Grafer og En funksjon f er en maskin som tar inn tall x og spytter ut nøyaktig ett tilhørende tall f (x) Mengden av tall f kan ta inn kalles definisjonsmengden. Mengden av funksjonsverdier f (x) kalles verdimengden. En funksjon som bare sender een x-verdi til hvert element i verdimengden kalles en-til-en eller injektiv.

30 Grafer og Funksjoner - Eksempler Hva er definisjonsmengden til f (x) = x 1? Hva er definisjonsmengden til g(x) = 1 x 2 1? Hva er verdimengden til h(x) = 1 x Hva er verdimengden til f (x) = x 2 + 2x + 2? Er g(x) = x 3 x 2 injektiv?

31 Grafer og Funksjoner - Eksempler Hva er definisjonsmengden til f (x) = x 1? Hva er definisjonsmengden til g(x) = 1 x 2 1? Hva er verdimengden til h(x) = 1 x Hva er verdimengden til f (x) = x 2 + 2x + 2? Er g(x) = x 3 x 2 injektiv?

32 Grafer og Funksjoner - Eksempler Hva er definisjonsmengden til f (x) = x 1? Hva er definisjonsmengden til g(x) = 1 x 2 1? Hva er verdimengden til h(x) = 1 x Hva er verdimengden til f (x) = x 2 + 2x + 2? Er g(x) = x 3 x 2 injektiv?

33 Grafer og Funksjoner - Eksempler Hva er definisjonsmengden til f (x) = x 1? Hva er definisjonsmengden til g(x) = 1 x 2 1? Hva er verdimengden til h(x) = 1 x Hva er verdimengden til f (x) = x 2 + 2x + 2? Er g(x) = x 3 x 2 injektiv?

34 Grafer og Funksjoner - Eksempler Hva er definisjonsmengden til f (x) = x 1? Hva er definisjonsmengden til g(x) = 1 x 2 1? Hva er verdimengden til h(x) = 1 x Hva er verdimengden til f (x) = x 2 + 2x + 2? Er g(x) = x 3 x 2 injektiv?

35 Grafer og Funksjoner - Eksempler Hva er definisjonsmengden til f (x) = x 1? Hva er definisjonsmengden til g(x) = 1 x 2 1? Hva er verdimengden til h(x) = 1 x Hva er verdimengden til f (x) = x 2 + 2x + 2? Er g(x) = x 3 x 2 injektiv?

36 Outline Grafer og 1 Grafer og

37 Grafer og f er alle punkter av formen (x, f (x)) der x løper over hele definisjonsmengden. Eller ekvivalent grafen til ligningen y = f (x). Ofte vil vi for eksempel behandle funksjonen f (x) = x 2 + x og ligningen y = x 2 + x synonymt da de har samme graf. Grafer gir en meget god intuitiv oppfattelse av. MEN en skal være varsom med a dra for vide konklusjoner basert på graf-observasjoner alene.

38 Grafer og f er alle punkter av formen (x, f (x)) der x løper over hele definisjonsmengden. Eller ekvivalent grafen til ligningen y = f (x). Ofte vil vi for eksempel behandle funksjonen f (x) = x 2 + x og ligningen y = x 2 + x synonymt da de har samme graf. Grafer gir en meget god intuitiv oppfattelse av. MEN en skal være varsom med a dra for vide konklusjoner basert på graf-observasjoner alene.

39 Grafer og f er alle punkter av formen (x, f (x)) der x løper over hele definisjonsmengden. Eller ekvivalent grafen til ligningen y = f (x). Ofte vil vi for eksempel behandle funksjonen f (x) = x 2 + x og ligningen y = x 2 + x synonymt da de har samme graf. Grafer gir en meget god intuitiv oppfattelse av. MEN en skal være varsom med a dra for vide konklusjoner basert på graf-observasjoner alene.

40 Grafer og f er alle punkter av formen (x, f (x)) der x løper over hele definisjonsmengden. Eller ekvivalent grafen til ligningen y = f (x). Ofte vil vi for eksempel behandle funksjonen f (x) = x 2 + x og ligningen y = x 2 + x synonymt da de har samme graf. Grafer gir en meget god intuitiv oppfattelse av. MEN en skal være varsom med a dra for vide konklusjoner basert på graf-observasjoner alene.

41 Grafer og f er alle punkter av formen (x, f (x)) der x løper over hele definisjonsmengden. Eller ekvivalent grafen til ligningen y = f (x). Ofte vil vi for eksempel behandle funksjonen f (x) = x 2 + x og ligningen y = x 2 + x synonymt da de har samme graf. Grafer gir en meget god intuitiv oppfattelse av. MEN en skal være varsom med a dra for vide konklusjoner basert på graf-observasjoner alene.

42 Grafer og f er alle punkter av formen (x, f (x)) der x løper over hele definisjonsmengden. Eller ekvivalent grafen til ligningen y = f (x). Ofte vil vi for eksempel behandle funksjonen f (x) = x 2 + x og ligningen y = x 2 + x synonymt da de har samme graf. Grafer gir en meget god intuitiv oppfattelse av. MEN en skal være varsom med a dra for vide konklusjoner basert på graf-observasjoner alene.

43 Grafer - Eksempler Grafer og Tegn grafen til f (x) = 1 + x + 2 Tegn grafen til g(x) = 1 x 2 1 Tegn grafen til h(x) = 1 x 2 Er grafen til y 2 = x grafen til en funksjon med variabel x? Tegn grafen til s(x) = x 2 +2x x+1

44 Grafer - Eksempler Grafer og Tegn grafen til f (x) = 1 + x + 2 Tegn grafen til g(x) = 1 x 2 1 Tegn grafen til h(x) = 1 x 2 Er grafen til y 2 = x grafen til en funksjon med variabel x? Tegn grafen til s(x) = x 2 +2x x+1

45 Grafer - Eksempler Grafer og Tegn grafen til f (x) = 1 + x + 2 Tegn grafen til g(x) = 1 x 2 1 Tegn grafen til h(x) = 1 x 2 Er grafen til y 2 = x grafen til en funksjon med variabel x? Tegn grafen til s(x) = x 2 +2x x+1

46 Grafer - Eksempler Grafer og Tegn grafen til f (x) = 1 + x + 2 Tegn grafen til g(x) = 1 x 2 1 Tegn grafen til h(x) = 1 x 2 Er grafen til y 2 = x grafen til en funksjon med variabel x? Tegn grafen til s(x) = x 2 +2x x+1

47 Grafer - Eksempler Grafer og Tegn grafen til f (x) = 1 + x + 2 Tegn grafen til g(x) = 1 x 2 1 Tegn grafen til h(x) = 1 x 2 Er grafen til y 2 = x grafen til en funksjon med variabel x? Tegn grafen til s(x) = x 2 +2x x+1

48 Grafer - Eksempler Grafer og Tegn grafen til f (x) = 1 + x + 2 Tegn grafen til g(x) = 1 x 2 1 Tegn grafen til h(x) = 1 x 2 Er grafen til y 2 = x grafen til en funksjon med variabel x? Tegn grafen til s(x) = x 2 +2x x+1

49 Grafer og Nyttige tips til tegning av grafer La f være en gitt funksjon. Grafen til g(x) = f (x) + a er grafen til f forskyvet a enheter i y-retning. Grafen til h(x) = f (x a) er grafen for f forskyvet a enheter i x-retning.

50 Grafer og Nyttige tips til tegning av grafer La f være en gitt funksjon. Grafen til g(x) = f (x) + a er grafen til f forskyvet a enheter i y-retning. Grafen til h(x) = f (x a) er grafen for f forskyvet a enheter i x-retning.

51 Grafer og Nyttige tips til tegning av grafer La f være en gitt funksjon. Grafen til g(x) = f (x) + a er grafen til f forskyvet a enheter i y-retning. Grafen til h(x) = f (x a) er grafen for f forskyvet a enheter i x-retning.

52 Outline Grafer og 1 Grafer og

53 Polynom Grafer og Et n te grads polynom har formen P(x) = A n x n + + A 1 x + A 0 Et n te grads polynom har høyst n nullpunkter eller røtter Dersom r er en rot i et n te gradspolynom P da er P(x) = (x r)q(x) der Q er et (n 1) te grads polynom. Q kan finnes ved polynomdivisjon

54 Polynom Grafer og Et n te grads polynom har formen P(x) = A n x n + + A 1 x + A 0 Et n te grads polynom har høyst n nullpunkter eller røtter Dersom r er en rot i et n te gradspolynom P da er P(x) = (x r)q(x) der Q er et (n 1) te grads polynom. Q kan finnes ved polynomdivisjon

Oppfriskningskurs i matematikk Dag 2

Oppfriskningskurs i matematikk Dag 2 Oppfriskningskurs i matematikk Dag 2 Petter Nyland Institutt for matematiske fag Tirsdag 7. august 2018 Beskjeder Rombytte: EL5 i dag og i morgen. F1 igjen på torsdag. Skal fikse fasit (til tallsvar) på

Detaljer

MA0003-8. forelesning

MA0003-8. forelesning Implisitt derivasjon og 31. august 2009 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 2 Stine M. Berge 06.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 06.07.19 1 / 16 Funksjoner Definisjon En funksjon f er en prosses som ett element i en

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Notater nr 9: oppsummering for uke 45-46

Notater nr 9: oppsummering for uke 45-46 Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

Injektive og surjektive funksjoner

Injektive og surjektive funksjoner Injektive og surjektive funksjoner Christian F. Heide 5. september 07 Dette notatet forklarer begrepene injektive og surjektive funksjoner, og er tenkt brukt som et supplement til avsnitt.5 i boken «Mathem»

Detaljer

Eksamen R1 Høsten 2013

Eksamen R1 Høsten 2013 Eksamen R1 Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene f x e a) 3 x b) gx x ln3x c) hx x

Detaljer

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 HELDAGSPRØVE I MATEMATIKK 1T HØST DEL 1 (Uten hjelpemidler, leveres etter 3 timer) Oppgave 1. Trekk sammen uttrykkene: a) 3(a + 1) 4(1 a) (6a 1) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 = a. b) 1

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

Oppfriskningskurs i matematikk Dag 1

Oppfriskningskurs i matematikk Dag 1 Oppfriskningskurs i matematikk Dag 1 Petter Nyland Institutt for matematiske fag Mandag 6. august 2018 Om meg Bachelor- og mastergrad i matematiske fag (2014, 2016) Doktorgradsstipendiat i matematikk (2016

Detaljer

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen.

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen. 5.9 Sirkellikningen Fra kapittel 4.3 vet vi at sirkelen er det geometriske stedet for de punktene som har en bestemt avstand r fra et fast punkt S. Avstanden r kaller vi radien, og punktet S kaller vi

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for dagen Del 1: 09:00-11:45 Lunsj: 11:45-12:15 Del 2: 12:15-14:30 Eksamensinformasjon: 14:30-15:00 Plan for tiden før lunsj Økt 1: 09:00-09:45 Økt 2: 10:00-10:45

Detaljer

Eksamen REA3022 R1, Våren 2013

Eksamen REA3022 R1, Våren 2013 Eksamen REA30 R1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Formlene for arealet A av en sirkel og volumet

Detaljer

Basisoppgaver til 1P kap. 5 Funksjoner

Basisoppgaver til 1P kap. 5 Funksjoner Basisoppgaver til 1P kap. 5 Funksjoner 5.1 Funksjoner og grafer 5.2 Førstegradsfunksjoner 5.3 Lineær vekst 5.4 Proporsjonalitet 5.5 Andregradsfunksjoner 5.6 Mer om funksjoner Basisoppgaver 5.1 Funksjoner

Detaljer

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4.

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4. Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 1. januar 1 kl. 14. Antall oppgaver: 4 Løsningsforslag Oppgave 1 a = [3, 1, ], b = [, 4, 7] og c = [ 4, 1, ]. a) a = 3 + ( 1)

Detaljer

Oppfriskningskurs dag 1

Oppfriskningskurs dag 1 Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 8.11.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 8 Oppgaver fra boken: 10.1 : 13, 14, 18 10.2 : 15, 18, 32 10.3

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

Eksamen R1, Va ren 2014, løsning

Eksamen R1, Va ren 2014, løsning Eksamen R1, Va ren 014, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f x lnx x Vi bruker

Detaljer

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik: Funksjoner La A og B være to mengder. En funksjon f fra A til B betegnes med f: A -> B og er en tilordning (regel) som til ethvert element a A tilordner ett og bare ett element b B. Elementet b kalles

Detaljer

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik: Funksjoner La A og B være to mengder. En funksjon f fra A til B betegnes med f: A -> B og er en tilordning (regel) som til ethvert element a A tilordner ett og bare ett element b B. Elementet b kalles

Detaljer

Stigningstall og konstantledd, løsningsforslag

Stigningstall og konstantledd, løsningsforslag Stigningstall og konstantledd, løsningsforslag Oppgave: Løsningsforslag Listen [1] Oppgave Oppgave 1 a) Skriv ned stigningstallet og konstantleddet i de tre funksjonene under. 1. f(x) = x + Stigningstall

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle

Detaljer

Matematikk R1 Forslag til besvarelse

Matematikk R1 Forslag til besvarelse Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her

Detaljer

Matematikk R1 Oversikt

Matematikk R1 Oversikt Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac

Detaljer

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet. MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Funksjoner, M1 høst 2007

Funksjoner, M1 høst 2007 Funksjoner, M1 høst 2007 Avdeling for lærerutdanning, Høgskolen i Vestfold 10. september 2007 Innhold 1 Innføring 1 1.1 Entydighet............................. 3 1.2 Hvordan funksjoner presenteres.................

Detaljer

Oppgave 1. Oppgave 2

Oppgave 1. Oppgave 2 Midtveiseksamen i MET1180 1 - Matematikk for siviløkonomer 12. desember 2018 Oppgavesettet har 15 flervalgsoppgaver. Rett svar gir poeng, galt svar gir svaralternativ (E) gir 0 poeng. Bare ett svar er

Detaljer

Oppgaver i funksjonsdrøfting

Oppgaver i funksjonsdrøfting Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på

Detaljer

Grenseverdier og asymptoter. Eksemplifisert med 403, 404, 408, 409, 410, 411, 412, 414, 416, 417, 418, 419

Grenseverdier og asymptoter. Eksemplifisert med 403, 404, 408, 409, 410, 411, 412, 414, 416, 417, 418, 419 Grenseverdier og asymptoter Eksemplifisert med 403, 404, 408, 409, 40, 4, 42, 44, 46, 47, 48, 49 Grenseverdier Grenseverdien til en funksjon, lim x a f x g, er en verdi vi kan komme så nær vi vil, når

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017

Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017 Løsningsforlag til eksamen i Diskret matematikk 29. november 2017 Oppgave 1, 2, 3, 4, 5 og 6 teller likt. For å få full score må man vise hvordan man har kommet frem til svarene (ved f. eks. figurer eller

Detaljer

OPPGAVESETT MAT111-H17 UKE 36. Oppgaver til seminaret 8/9. Husk at seminaret finnes i to varianter, begge fredag :

OPPGAVESETT MAT111-H17 UKE 36. Oppgaver til seminaret 8/9. Husk at seminaret finnes i to varianter, begge fredag : OPPGAVESETT MAT111-H17 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 8/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Øving 2. Oppgave 1: Diverse algebra med føring. Oppgave 2: Ligningssystem som tekstoppgave. Oppgave 3: Grafgjenkjenning

Øving 2. Oppgave 1: Diverse algebra med føring. Oppgave 2: Ligningssystem som tekstoppgave. Oppgave 3: Grafgjenkjenning Øving 2 Oppgave 1: Diverse algebra med føring Finn x som løser ligningene: a) x 2 + 9 = 25 b) x 2 = 2x + 8 c) 2x 2 + 12x = 32 d) x 1 = 1/x e) 2x 4 = x + 2 f) Gå gjennom føringen av oppgave a) og e) med

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 20 2 Stigende og avtagende funksjoner Definisjon En funksjon f kalles stigende på intervallet I hvis

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i Eksamensdag: 9. april,. Tid for eksamen: : :. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus og

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A = Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (

Detaljer

MAT1100 - Grublegruppen Uke 36

MAT1100 - Grublegruppen Uke 36 MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00 SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende

Detaljer

Eksamen R1 - H

Eksamen R1 - H Eksamen R1 - H 013-8.11.013 Løsningsskisser Del 1 - Uten hjelpemidler Oppgave 1 a) Kjerneregel: f x e u, u 3x f x e u 3 6e 3x b) Kjerneregel på ln 3x ln u, u 3x gir ln 3x 1 u 3 3 3x 1 x Produktregel gir

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 4 110 Funksjoner og andregradsuttrykk Studentene skal kunne benytte begrepet funksjoner og angi definisjonsmengde og verdimengde til funksjoner regne med lineære funksjoner og andregradsfunksjoner og bestemme

Detaljer

Funksjoner med GeoGebra

Funksjoner med GeoGebra Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4

Detaljer

Eksamen høsten 2015 Løsninger

Eksamen høsten 2015 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a f x = x + x 3 5 f () x = 3 x+ 5 = 6x + 5 b gx = 3 ( x ) gu = 3 u 4 4 3 g () u = 34

Detaljer

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 31.05.01 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 Innleveringsfrist: Mandag 26. september 2016, kl. 14, i Infosenterskranken i inngangsetasjen

Detaljer

Andre forelesning Forelesning i Matematikk 1 TMA4100

Andre forelesning Forelesning i Matematikk 1 TMA4100 Andre forelesning Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. august 2010 Induksjon Pensumlitteratur: Notat 3 Induksjon Brukes til å bevise formler og setninger.

Detaljer

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er 7.5 Potensfunksjoner Funksjonen f gitt ved f () = 3 er et eksempel på en potensfunksjon. For alle potensfunksjoner er funksjonsuttrykket på formen f () = a k der tallet a og eksponenten k kan være både

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

TMA4140 Diskret matematikk Høst 2011 Løsningsforslag Øving 7

TMA4140 Diskret matematikk Høst 2011 Løsningsforslag Øving 7 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av?? TMA4140 Diskret matematikk Høst 011 Løsningsforslag Øving 7 7-1-10 a) Beløpet etter n 1 år ganges med 1.09 for å

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

7 t 11 t 14 t kr. 350 t kr. 1 Returkraft mottar avfall 2 [FUNKSJONER PÅ RETURKRAFT HEFTE B]

7 t 11 t 14 t kr. 350 t kr. 1 Returkraft mottar avfall 2 [FUNKSJONER PÅ RETURKRAFT HEFTE B] 2 [FUNKSJONER PÅ RETURKRAFT HEFTE B] 1 Returkraft mottar avfall Les dette høyt og svar på spørsmålene: Mathur er på avdeling A. Her tømmes søpla i en stor bunker. I løpet av ett år leveres ca 130 000 tonn

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold Funksjonstegner... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 3 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 4 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Oppfriskningskurs Sommer 2019

Oppfriskningskurs Sommer 2019 Oppfriskningskurs Sommer 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Oppgave 9 fra Øving 2 a) Er funksjonen f(x) = en-til-en? Hvorfor/hvorfor ikke? { 1 x hvis 0 x

Detaljer

GeoGebra-opplæring i Matematikk S1

GeoGebra-opplæring i Matematikk S1 GeoGebra-opplæring i Matematikk S1 Emne Underkapittel Utregning av algebraiske uttrykk 1.4 Forenkle uttrykk 1.5 Faktorisering 1.5 Kvadratsetningene 1.6 Grafisk løsning av eksponentiallikninger 1.8 Grafisk

Detaljer

Løsningsforslag. Kalkulus. til. 2. utgave. Lisa Lorentzen. 6. februar 2015

Løsningsforslag. Kalkulus. til. 2. utgave. Lisa Lorentzen. 6. februar 2015 Løsningsforslag til Kalkulus. utgave Lisa Lorentzen 6. februar 05 .. Reelle tall Kapittel : Grunnleggende emner.. Reelle tall Oppgave,,3: Se fasit. Oppgave 4: a) Siden grafen til g(x) = x er linjen gitt

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Eksamen. Fag: VG1341 Matematikk 1MY. Eksamensdato: 3. mai 2006. Felles allmenne fag Privatistar/Privatister

Eksamen. Fag: VG1341 Matematikk 1MY. Eksamensdato: 3. mai 2006. Felles allmenne fag Privatistar/Privatister Eksamen Fag: VG1341 Matematikk 1MY Eksamensdato: 3. mai 2006 Felles allmenne fag Privatistar/Privatister Oppgåva ligg føre på begge målformer, først nynorsk, deretter bokmål. / Oppgaven foreligger på begge

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

og variasjon av parameterene Oppsummering.

og variasjon av parameterene Oppsummering. Inhomogene differensiallikninger av andre orden Ubestemte koeffisienters metode og variasjon av parameterene Oppsummering. MAT-INF1100 October 30, 2007 NYTT TEMA Innhomogene likninger: Oppdeling i partikulær

Detaljer

Velkommen til TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP og MTPROD høsten 2010

Velkommen til TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP og MTPROD høsten 2010 Velkommen til TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 19. august 2010 2 Hvorfor skal dere studere matematikk? Det står i studiehåndboken.

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 1 Stine M. Berge 05.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 05.07.19 1 / 23 Introduksjon Informasjon: https://wiki.math.ntnu.no/oppfrisk/2019/start

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag

Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag Matematikk for IT Prøve 1 Onsdag 18. september 2013 Løsningsforslag Oppgave 1 a) Er 26 11 (mod 3)? Begrunn svaret. Dette spørsmålet betyr: Gir 26 : 3 samme rest som 11 : 3? Vi ser at 26 : 3 gir rest 2,

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Fasit eksamen i MAT102 4/6 2014

Fasit eksamen i MAT102 4/6 2014 Fasit eksamen i MAT /6. (a Løs ligningssstemene. Svar: i ( x i = 3x + = 7 x + = ( 6, ii x z ii = x + z = 3x + 6 + z = +. er fri. (b Ved å bruke MATLAB-kommandoen rref på totalmatrisen til ligningssstemet

Detaljer

Studieretning: Allmenne, økonomiske og administrative fag

Studieretning: Allmenne, økonomiske og administrative fag Eksamen Fag: AA654 Matematikk 3MX Eksamensdato: 3. juni 005 Vidaregåande kurs II /Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar / Elever Oppgåva ligg føre på begge

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 = Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Mandag 2. mars 205 før forelesningen 0:30 Antall oppgaver: 7 Løsningsforslag Deriver de følgende funksjonene. a) f(x)

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner Funksjoner Forelesning i Matematikk TMA00 Hans Jako Rivertz Institutt for matematiske fag 9. august 0 Stigende og avtagende funksjoner En funksjon f kalles stigende på intervallet I vis f (x ) < f (x )

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Fasit MAT102 juni 2016

Fasit MAT102 juni 2016 Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for i dag og i morgen Dag 1: 09.00-11.45 Del 1: teori. 11.45-12.30 Lunsj 12.30-13.15 Del 2: bruk av GeoGebra. 13.15-15.15 Oppgaveregning, del 1. Dag 2: 09.00-10.45

Detaljer