1 Trigonometriske relationer

Størrelse: px
Begynne med side:

Download "1 Trigonometriske relationer"

Transkript

1 gdmandsen.net Ophavsret Kopiering, distribtion og fremvisning af dette dokment eller dele deraf er tilladt i ikke-kommercielle sammenhænge, sålænge dette foregår med tydelig kildeangivelse. Al anden anvendelse kræver forfatterens skriftlige tilladelse Indholdet stilles til rådighed nder Open Content License [http://opencontent.org/openpb/]. Trigonometriske relationer I forbindelse med beregninger på trigonometriske fnktioner, er der et væld af sammenhænge, overgange, relationer og regneregler, som ofte er nyttige til at bevise nye sammenhænge. Nedenstående er en oversigt over de mest relevante, men de bliver ikke beviset her.. Enhedscirklen Defineret som cirklen med centrm i Origo (x,y) = (0,0) og med radis r =. Positiv omløbsretning er mod ret.. cos(v) aflæses på.aksen sin(v) aflæses på.aksen tan(v) aflæses på x= sin x tan v = cos v v {90 o, 70 o,osv.} Ret linjes hældning vs. hældningsvinkel: α = Δ y Δ x = tan(v) tan (α) = v Illstration : enhedscirklen, r = Stedvektorerne P og Q vil således have koordinaterne P = cos v ;sin v Q = ; tan v P = (cos(v) sin (v )) og Q = ( tan(v ))...hvor P også er en enhedsvektor, P =, jfr. grndrelationen Grndrelationen side 3. trigo_relationer.odt Side /7 Jakob Gdmandsen --7

2 . Trigonometriske grndfnktioner Cosins Dm( f ) = R, Vm( f ) = [ ;] Sins Dm( f ) = R, Vm( f ) = [ ;] Tangens Dm( f ) = R {90 o, 70 o,...,+80 o p } Vm( f ) = [ ;] En oversigt over dvalgte værdier kan ses på Inverse trigonometriske grndfnktioner cos(v) = x v = cos (v) csc(v) = cos(v) v = csc ( x) sin(v) = x v = sin (v) sec(v) = sin (v) = sec ( x) tan(v) = x v = tan (v) tan(v) = sin(v) cos(v) cot (v) = tan(v) v = cot ( x) Ved de inverse fnktioner skal opmærksomheden henledes på definitionsmængde og relationer der medfører flere løsninger: Invers Cosins, cos - Dm(f)=[-;] Invers Sins, sin - Dm(f)=[-;] cos v = cos v sin v = sin 80 v Invers Tangens, tan - Dm(f)= R tan v = tan v 80.. Reciprokke trigonometriske fnktioner De reciprokke trigonometriske fnktioner sec(x) (Sekant), csc(x) (Cosekant) og cot(x) (Cotangens) giver anledning til flere interessante relationer. sec x = sec x = cos cos x x x {, 3 },... x 0 csc x = csc x = sin sin x x x {0,,...} x 0 cot x = tan x cos x = sin x x {0,,...} cot x = tan x x 0 Se mere om relationer vedrørende reciprokke og hyperbolske fnktioner på trigo_relationer.odt Side /7 Jakob Gdmandsen --7

3 .3 Sammenhænge mellem trigonometriske fnktioner.3. Grndrelationen Ved brg af Pythagoras' lærersætning på definitionerne for sins og cosins i enhedscirklen, hvor kateterne har længderne henholdsvis cos(v) og sin(v) samt hypotensen lig, fås:.3. Overgangsformler = cos (v)+sin (v) Grader cos v = cos v sin v = sin v cos v 80 = cos v sin v 80 = sin v cos v 80 = cos v sin v 80 = sin v cos 80 v = cos v sin 80 v = sin v cos v 90 = sin v sin v 90 = cos v cos v 90 = sin v sin v 90 = cos v cos 90 v = sin v sin 90 v = cos v +tan (v) = cos (v) +cot (v) = sin (v) tan v = tan v tan v 80 =tan v tan 80 v = tan v Radianer d.o. cos(v π) = cos(v) sin (v π) = sin (v) cos(v+π) = cos(v) sin (v+π) = sin (v) cos(π v) = cos(v) sin (π v) = sin (v) d.o. d.o. tan (v+π) =tan (v) tan (π v) = tan(v) tan 90 v = tan v tan 90 v = tan v tan v 90 = tan v cot ( v) = cot (v ) sec(v) = sec(v) csc( v) = csc(v ) tan (π v ) = tan(v) tan (π+v ) = tan (v) tan (v π) = tan (v) trigo_relationer.odt Side 3 /7 Jakob Gdmandsen --7

4 .3.3 Additionsformlerne sin( v)=sin( )cos(v) cos()sin(v) sin(+v)=sin() cos(v)+cos()sin( v) cos(+v)=cos()cos(v) sin ()sin(v) cos( v)=cos()cos(v)+sin ()sin(v) tan (+v) = sin (+v) cos(+v) = sin ()cos(v)+cos()sin (v) cos()cos(v) sin()sin (v) = tan ()+tan (v) tan() tan(v) Additionsformlerne ved vektorregning cot (+v ) = cot()cot(v)+ cot()+cot (v) cos(+v)+cos( v)=cos()cos(v) cos(+v) cos( v)= sin()sin (v) sin(+v)+sin( v)= sin() cos(v) sin(+v) sin( v)=cos()sin(v) For =v, og derved v sin(v)= sin( v) cos(v) cos(v)=cos (v) sin (v)=cos (v) = sin (v) tan (v) = tan(v) tan (v) For v/ sin( v = ± cos(v) cos( v = ± +cos(v) +hvis v /er i. eller. kvadrant hvis v /er i 3. eller 4. kvadrant +hvis v/er i. eller 4. kvadrant hvis v/er i. eller 3. kvadrant tan ( v =± cos(v) +cos(v) = sin (v) +cos(v) = cos(v) =csc(v) cot(v) sin(v) +hvis v /er i. eller 3. kvadrant hvis v /er i. eller 4. kvadrant Bemærk fortegn. trigo_relationer.odt Side 4 /7 Jakob Gdmandsen --7

5 .3.4 Sm, differens og prodkt sin()+sin (v) = sin( +v cos ( v sin() sin (v) = cos( +v sin ( v cos()+cos(v) = cos( +v cos ( v cos() cos(v) = sin( +v sin ( v sin()sin (v) = (cos( v) cos(+v)) cos()cos(v) = (cos( v )+cos(+v)) sin()cos(v) = (sin ( v)+sin (+v)).4 Logaritmiske formler For +v = x og -v = y = x+ y og v= x y cos( x)+cos( y) = cos( x+ y cos ( x y cos(x) cos( y) = sin( x+ y sin ( x y sin( x)+sin( y) = sin( x+ y cos ( x y sin( x) sin ( y) = cos( x+ y sin ( x y trigo_relationer.odt Side 5 /7 Jakob Gdmandsen --7

6 .4. Relationer mellem inverse trigonometriske fnktioner sin ( x)+cos ( x) = π tan (x)+cot ( x) = π sec (x)+csc (x) = π csc (x) = sin ( x) ( sec (x) = cos ( x ) cot ( x) = tan x ) sin ( x) = sin (x) cos ( x) = π cos ( x) tan ( x) = tan (x) cot ( x) = π cot (x) sec ( x) = π sec ( x) csc ( x) = csc ( x) trigo_relationer.odt Side 6 /7 Jakob Gdmandsen --7

7 .4. Relationer mellem fnktioner og vinkler i. kavdrant sin(v)= cos(v)= tan(v)= cot(v)= sec(v)= csc(v)= sin(v) + cos(v) tan(v) cot(v) sec(v) csc(v) trigo_relationer.odt Side 7 /7 Jakob Gdmandsen --7

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 20 2 Stigende og avtagende funksjoner Definisjon En funksjon f kalles stigende på intervallet I hvis

Detaljer

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner Funksjoner Forelesning i Matematikk TMA00 Hans Jako Rivertz Institutt for matematiske fag 9. august 0 Stigende og avtagende funksjoner En funksjon f kalles stigende på intervallet I vis f (x ) < f (x )

Detaljer

Geometri, (E-opgaver 9b)

Geometri, (E-opgaver 9b) Geometri, (E-opgaver 9b) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER... 3

Detaljer

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x NTNU Institutt for matematiske fag TMA400 Matematikk Høsten 20 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere y f(x) 00 +2 x, dvs. løse ligningen mhp. x. y 00 +2 x y(+2 x ) 00 2 x 00 00 y y

Detaljer

Trigonometri. Høgskolen i Gjøvik Avdeling for teknologi. Notat til repetisjonskurs i matematikk. Hans Petter Hornæs. E-post: hans.hornaes@hig.

Trigonometri. Høgskolen i Gjøvik Avdeling for teknologi. Notat til repetisjonskurs i matematikk. Hans Petter Hornæs. E-post: hans.hornaes@hig. Høgskolen i Gjøvik Avdeling for teknologi Versjon fra 2. august 2000 - Trigonometri Notat til repetisjonskurs i matematikk. Hans Petter Hornæs E-post: hans.hornaes@hig.no - Dette heftet kan brukes både

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 1

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 1 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel A. c) tan + sin0 + d) sin60 tan0 A. B. A y sin0 0 sin0 cos0 y 0 y cos0 C 60 D cos AD 0 6 B AD 0 cos 0 CD AD B.6 A tan60 CD BD BD BD tan60 6 AB AD

Detaljer

i den nederste figur pi næste side har hældningen 0, fordi ^r P \ J = -2x Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG

i den nederste figur pi næste side har hældningen 0, fordi ^r P \ J = -2x Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG 3.Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG Definition 3.1: Lineær sammenhæng Ved en W *. W ^ - s en ret linje e n sammenhæng, hvor grafen er Hældningen er det stykke a, Linjen ;

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner 1 Fremdriftplan I går 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner I dag 1.3 Trigonometriske funksjoner 1.4 Eksponentialfunksjoner 1.5 Omvendte funksjoner, logaritmiske funksjoner, inverse

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Kapittel 3.3. Enringsrate 3 Enrings rate hastighet og akselersjon Definisjon Hvis s(t) er

Detaljer

Lektion 14. Repetition

Lektion 14. Repetition Lektion 4 Repetition Naturlige eksponentialfunktion 7 6 5 4 y y=sin().5 6 4 4 6.5 y=tan() 5.5.5 y 5 y=arcsin().5.5.5.5.8.6.4...4.6.8 Naturlige logaritmefunktion 4 6 8 Standardfunktioner (cos(), sin())

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

side 1 av 8 Fysikk 3FY (Alf Dypbukt) Rune, Jon Vegard, Øystein, Erlend, Marthe, Hallvard, Anne Berit, Lisbeth

side 1 av 8 Fysikk 3FY (Alf Dypbukt) Rune, Jon Vegard, Øystein, Erlend, Marthe, Hallvard, Anne Berit, Lisbeth side 1 av 8 Fysikk 3FY (Alf Dypbukt) Racerbilkjøring Mål: Regne ut alt vi kan ut i fra de målingene vi tar. Innledning: I denne rapporten har vi gjort diverse utregninger, basert på tall vi har fra et

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 2: Funksjoner (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 16. august, 2012 Eksponentialfunksjoner Eksponentialfunksjoner Definisjon: Eksponentialfunksjon En

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 10 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 10 Derivasjon I dagens forelesning skal vi se på følgende: 1 Antideriverte. 2 Differensiallikninger

Detaljer

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD Abstract. Oppgaven tar for seg utvalgte temaer innenfor trigonometri, og retter seg mot lærere som skal undervise i fagene 1T og R2. Date: May 7,

Detaljer

Lektion 2. Differentiable funktioner. Den afledte funktion, differentialkvotienten. Tangent og lineær approximation. Maksimum og minimum

Lektion 2. Differentiable funktioner. Den afledte funktion, differentialkvotienten. Tangent og lineær approximation. Maksimum og minimum Lektion Differentiable funktioner Den afledte funktion, differentialkvotienten Tangent og lineær approimation Maksimum og minimum Taylor polynomiet Opgaver Differentiable funktioner Lad f() være en kontinuert

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 1 Finn volum og overateareal til følgende gurer. Tegn gjerne

Detaljer

R2 - Eksamen Løsningsskisser

R2 - Eksamen Løsningsskisser R - V0 R - Eksamen 04.06.0 - Løsningsskisser Del - Uten hjelpemidler Oppgave a) ) Kjerneregel: fx 3 sin u, u x f x 3 cosu 6 cosu 6 cosx ) 3) Produktregel: g x x sin x x cosx x sin x x cosx Kjerneregel:

Detaljer

Right Triangle Trigonometry

Right Triangle Trigonometry 0 Capter Trigonometry 70. f 8 7 8 Vertical asymptote: 8 0 y 7 0 7 8 9 9 ± 8 y Slant asymptote: ± 89 ;.,. y 7 8 y-intercept: 0, 8 -intercept:.8, 0 Section. Rigt Triangle Trigonometry You sould know te rigt

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Løsning til matematik aflevering /nm

Løsning til matematik aflevering /nm Løsning til matematik aflevering 07 0404/nm Opg.. a) Reducer ved beregning følgende udtryk mest mulig: f f f b a b a a b b a b a a a a a a b a b a b a b a b a b a a b a a b a a b a b a b a b a b a b a

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100

Løsningsforslag til underveiseksamen i MAT 1100 Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første

Detaljer

Del1. Oppgave 1. a) Deriver funksjonen gitt ved. b) Bestem integralene. fx x. 5 e d. x x. c) Løs differensiallikningen. d) 1) Bruk formlene.

Del1. Oppgave 1. a) Deriver funksjonen gitt ved. b) Bestem integralene. fx x. 5 e d. x x. c) Løs differensiallikningen. d) 1) Bruk formlene. Del1 Oppgave 1 a) Deriver funksjonen gitt ved fx x ( ) cos(3 x) b) Bestem integralene 1) x 5 e d x x 6x ) dx x 1 c) Løs differensiallikningen når y y y 3 0 d) 1) Bruk formlene cos( u v) cosu cosv sinu

Detaljer

Oversigt [LA] 11, 12

Oversigt [LA] 11, 12 Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz

Detaljer

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene.

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene. Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering Innleveringsfrist Fredag oktober 01 kl 1:00 Antall oppgaver: 16 Løsningsforslag 1 Finn volum og overateareal til følgende gurer Tegn

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF300 Løsningsforslag 23. januar 205 Tidsfrist: 30.januar 205 Oppgave a) Gjør om til kanoniske polarkoordinater, d.v.s. (r, θ)-koordinater innenfor området r 0 og 80 < θ < 80.

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

Løsningsforslag til underveisvurdering i MAT111 vår 2005

Løsningsforslag til underveisvurdering i MAT111 vår 2005 Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x

Detaljer

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka R kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka E Bruker formelen cos 36 cos( 8 ) E sin 8 v og sin8 5 cos v sin sin8 5 5 6 5 5 8 5 5 8 6 5 8 6 5 8 8 3 5 5 5 a f ( ) sin 5 cos f ( ) 5cos

Detaljer

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG Institutt for matematiske fag Eksamensoppgave i MA/MA6 Grunnkurs i analyse I. LØSNINGSFORSLAG Faglig kontakt under eksamen: John Erik Fornæss /Kari Hag Tlf: 464944/483988 Eksamensdato: 8. desember 5 Eksamenstid

Detaljer

Eksamen i matematikk. Hvordan har eksamen i R1 høsten 2011 endret all læreplantolkning?

Eksamen i matematikk. Hvordan har eksamen i R1 høsten 2011 endret all læreplantolkning? Eksamen i matematikk Hvordan har eksamen i R1 høsten 2011 endret all læreplantolkning? Samarbeidet udir/forlag Før reform 94: En representant fra hvert matematikkverk var med på å lage eksamensoppgavene

Detaljer

5.5.1 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger. Løsningsforslag + + = =

5.5.1 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger. Løsningsforslag + + = = til oppgavene i avsnitt 55 til oppgaver i avsnitt 55 551 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger cos( u + v) sin( u + v) cosu sin u u+ v u = sin( u v) cos( u v) sin

Detaljer

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering Innleveringsfrist Tirsdag. februar 203 kl. 0:30 Antall oppgaver: 9 Løsningsforslag Avgjør om følgende rekker konvergerer. Finn summen

Detaljer

Fasit, Kap : Derivasjon 2.

Fasit, Kap : Derivasjon 2. Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. 1 Fasit, Kap. 3.5-3.8: Derivasjon. Oppgave 1 a) f (x) =x. Denne eksisterer over alt (det er vanligvis punkter med null i nevner som kan skaffe

Detaljer

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x =

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x = Prøve i FO99A - Matematikk Dato: 1. desember 014 Målform: Bokmål Antall oppgaver: 8 (0 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Komplekse tall og trigonometri

Komplekse tall og trigonometri Kapittel Komplekse tall og trigonometri Grunnen til at vi har dette kapittelet midt i temaet Differenslikninger er for å kunne løse andre ordens differenslikninger. Da vil vi trenge å løse andregradslikninger.

Detaljer

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04 Løsningsforslag til obligatorisk oppgave i MAT 00, H-04 Oppgave : a) Vi har zw ( + i )( + i) + i + i + i i og + i + i ( ) + i( + ) z w + i + i ( + i )( i) ( + i)( i) i + i i i ( i ) ( + ) + i( + ) + +

Detaljer

Kompendium for LEI102 Matematikk. Petter N. Sæterdal 28. oktober 2015. Kompendium for matematikk LEI102 side 1/49

Kompendium for LEI102 Matematikk. Petter N. Sæterdal 28. oktober 2015. Kompendium for matematikk LEI102 side 1/49 Kompendium for LEI102 Matematikk Petter N. Sæterdal 28. oktober 2015 Kompendium for matematikk LEI102 side 1/49 Forord Dette kompendiet er skrevet for studentene på linjen "Landmåling og eiendomsdesign"

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 2 Geometri

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 2 Geometri QED 1 7 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Geometri Kapittel Kapittel.3 3. For eksempel: a) b) c) d) 1 e) Kapittel.4 6. 7. Denne oppgaven kan det være greit å vente med til etter

Detaljer

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).

Detaljer

R2 eksamen våren ( )

R2 eksamen våren ( ) R Eksamen V01 R eksamen våren 01. (1.05.01) Løsningsskisser (Versjon 1.05.1) Del 1 - Uten hjelpemidler Oppgave 1 a) f x sin x sin x b) Kjerneregel (u x): g x 6 cosx 6 cosx c) Produktregel: h x e x sinx

Detaljer

Derivasjon og differensiallikninger

Derivasjon og differensiallikninger Derivasjon og differensiallikninger Anton Bjartnes Høgskolen i Nord-Trøndelag Kompendium Steinkjer 005 Derivasjon og differensiallikninger Anton Bjartnes Høgskolen i Nord-Trøndelag Kompendium Avdeling

Detaljer

Heldagsprøve. Matematikk - R April 2009 Løsningsskisser Ny versjon:

Heldagsprøve. Matematikk - R April 2009 Løsningsskisser Ny versjon: R -Heldagsprøve V10 Heldagsprøve Matematikk - R 9. April 009 Løsningsskisser Ny versjon: 05.05.10 Del 1 Oppgave 1 a) Deriver funksjonen f sinln Deriver funksjonen f 3sin 1 c) Bestem summen av rekken 4

Detaljer

MATTE R2. Notater Kapitel 1-8 ANDREAS JENSEN JONASSEN 2EDA

MATTE R2. Notater Kapitel 1-8 ANDREAS JENSEN JONASSEN 2EDA MATTE R Notater Kapitel 1-8 ANDREAS JENSEN JONASSEN EDA kap. 1 Integralregning... 4 Kap. 1.1 Antiderivert... 4 Kap. 1. - Ubestemt integral... 5 Kap. 1. Integralet... 7... 7 Kap. 1.4 - Integrasjon av eksponentielle

Detaljer

Problem 1. Problem 2. Problem 3. Problem 4

Problem 1. Problem 2. Problem 3. Problem 4 Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Oppgave 1 a) Finn alle løsningene til likningen 10x 100 = 90x 1. b) Finn alle løsninger v til likningen slik at 0 v 4π. 2 cos

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Fasit, Implisitt derivasjon.

Fasit, Implisitt derivasjon. Ukeoppgaver, uke 8, i Matematikk, Implisitt derivasjon. 5 Fasit, Implisitt derivasjon. Oppgave Vi kaller den deriverte av y for y, og dette blir første ledd. Andre ledd må deriveres med kjerneregelen,

Detaljer

K Andre Ordens Differensialligninger

K Andre Ordens Differensialligninger K 6.6 - Andre Ordens Differensialligninger Innhold: H-P Ulven, 03.04.09 Terminologi Utvikling av regel for løsning av y ay by 0 (Tilfelle: y Ce r 1x De r x ) Utvikling av regel for løsning av y ay by 0

Detaljer

Oppfriskningskurs dag 1

Oppfriskningskurs dag 1 Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

Trasendentale funksjoner

Trasendentale funksjoner Trasendentale funksjoner Department of Mathematical Sciences, NTNU, Norway September 9, 2014 Kap. 3.1 og 3.2. Forelesning 8. September. Inverse funksjoner, definisjon og eksistens Deriverte av inverse

Detaljer

Funksjoner (kapittel 1)

Funksjoner (kapittel 1) Ukeoppgaver, uke 34 og 35, i Matematikk 0, Funksjoner og grenser. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 34 og 35 Funksjoner (kapittel ) Oppgave Figuren til øyre viser

Detaljer

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 1 FYS-2130 Lars Kristian Henriksen UiO 28. januar 2015 2 For at en kraft skal danne grunnlaget for svingninger, må det virke en kraft som til en hver tid virker inn mot likevektspunktet.

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving Avsnitt.7 99 Vi deriverer to ganger: = A 1 cos(ln) B1 sin(ln) = A 1 cos(ln) A 1 sin(ln)+b 1 sin(ln) B 1 cos(ln)

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

Et Komplekst tall på kartesisk(standard), polar(eksponentialform) og trigonometrisk form

Et Komplekst tall på kartesisk(standard), polar(eksponentialform) og trigonometrisk form Kapittel Komplekse tall.1 Kompleksetall-Oppsummering Kvadratroten av 1 må være en løsning til ligningen x = 1, om den finnes. Tallet i kalles den imaginære enheten og er det vi trenger for å definere de

Detaljer

TRIGONOMETRISKE BEREGNINGER FOR GEOMATIKK VED BRUK AV KALKULATORER

TRIGONOMETRISKE BEREGNINGER FOR GEOMATIKK VED BRUK AV KALKULATORER BILAG TRIGONOMETRISKE BEREGNINGER FOR GEOMATIKK VED BRUK AV KALKULATORER FORELØPIG UTGAVE 1. OKTOBER 2016 1 BØKER FRA BYGGESAKEN AS Les om bøkene og bestill på www.byggesaken.no 2 KALKULATORER OG TRIGONOMETRISKE

Detaljer

Sådan optimerer du dine. call to action-knapper

Sådan optimerer du dine. call to action-knapper Sådan optimerer du dine call to action-knapper 213,16% flere konverteringer Statistisk signifikansniveau: 99% Lille ændring på siden STOR EFFEKT på beslutningen Det kritiske punkt mellem bounce og konvertering

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. HansPetterHornæsogLarsNilsBakken. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 4 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. HansPetterHornæsogLarsNilsBakken. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 4 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO: 9. desember 0 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9.00 3.00. FAGANSVARLIG: HnsPetterHornæsogLrsNilsBkken

Detaljer

Fasit til Flervariabelanalyse med lineær algebra

Fasit til Flervariabelanalyse med lineær algebra Fasit til Flervariabelanalyse med lineær algebra Advarsel: Arbeidet med denne fasiten har gått fortere enn det burde, og feilprosenten er nok litt høyere enn vanlig. Finner du feil eller lurer på om noe

Detaljer

Plenum Kalkulus. Fredrik Meyer. 23. oktober 2015

Plenum Kalkulus. Fredrik Meyer. 23. oktober 2015 Plenum Kalkulus Fredrik Meyer. oktober 05 7. Oppgave (7.). Du skal lage en rektangulær innehengning til hesten din. Den ene siden dekkes av låven og på de tre andre sidene skal du bygge gjerde. Hva er

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)

Detaljer

Andre forelesning Forelesning i Matematikk 1 TMA4100

Andre forelesning Forelesning i Matematikk 1 TMA4100 Andre forelesning Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. august 2010 Induksjon Pensumlitteratur: Notat 3 Induksjon Brukes til å bevise formler og setninger.

Detaljer

Komplekse tall og Eulers formel

Komplekse tall og Eulers formel Komplekse tall og Eulers formel Harald Hanche-Olsen 2011-03-24 1. Oppvarming Jeg vil anta at leseren er kjent med komplekse tall, men vil likevel si noen ord om temaet. Naivt kan man starte med bare å

Detaljer

u 4 du = 1 5 u5 + C = 1 5 (x2 +4) 5 + C u 1/2 du = 1 2 u1/2 + C = 1 2

u 4 du = 1 5 u5 + C = 1 5 (x2 +4) 5 + C u 1/2 du = 1 2 u1/2 + C = 1 2 4 Ukeoppgaver, ke 4, i Matematikk, Sbstitsjon. Fasit, Sbstitsjon. Oppgave a) Med = +4er = slik at d d = d =d. Dermed kan faktorene d i integralet erstattes med d, mens + 4 inne i parentesen erstattes med

Detaljer

Løsningsforslag R2 Eksamen 21.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 21.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R2 Eksamen 6 Vår 21.05.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

ARBEIDSNOTATER FOR MA 001. Jan Ubøe. Matematisk Institutt 1990

ARBEIDSNOTATER FOR MA 001. Jan Ubøe. Matematisk Institutt 1990 ARBEIDSNOTATER FOR MA 001 av Jan Ubøe Matematisk Institutt 1990 Foror Hensikten me ette heftet er først og fremst følgene: 1. Å lette innlæring av rutinepregee metoer som er sentrale for kurset. 2. Å fungere

Detaljer

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995 Løsningsforslag eksamen STE 638 Geometrisk modellering 9/8 995. a) Vi skal bestemme hvilke av avbildningene/transformasjonene som er homeomorfier. f 4 6 Determinanten til matrisen er lik, dvs at den har

Detaljer

Løsning til utvalgte oppgaver fra kapittel 12 (15).

Løsning til utvalgte oppgaver fra kapittel 12 (15). Løsning til utvalgte oppgaver fra kapittel (5) Oppgave 7 ( 5) Vi skal btte integrasjonsrekkefølgen i integralet dd Når vi btter integrasjons- rekkefølgen må integrasjonsområdet beskrives på ntt Dobbelintegralet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEG2210 Eksamensdag: Onsdag 8. juni 2005 Tid for eksamen: 3 timer Oppgavesettet er på 3 sider Vedlegg: 1 vedlegg (2 sider)

Detaljer

Eksamen i V139A Matematikk 30

Eksamen i V139A Matematikk 30 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 21. desember 21 9. 14. Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator ottmanns formelsamling

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

with plots plot sin x, x =KPi..Pi Pi 3 eval tan eval cos K1 1 > evalf sin 3 2 K 2 $Pi

with plots plot sin x, x =KPi..Pi Pi 3 eval tan eval cos K1 1 > evalf sin 3 2 K 2 $Pi with plots Maple har en rekke innebygde funksjoner. Kommandoen plot brukes til å tegne grafen til en funksjon, og kommandoene eval og evalf brukes til å beregne funksjonsverdier for en funskjon. Den første

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer. Eksamen i FO99A Matematikk Underveiseksamen Dato 30. mars 007 Tidspunkt 09.00-14.00 Antall oppgaver 4 Vedlegg Tillatte hjelpemidler Sirkelskive i radianer Godkjent kalkulator Godkjent formelsamling Oppgave

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering Kyrkjekrinsen skole Plan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 9. trinn Lærer: Torill Birkeland Uke Årshjul Geometri Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet Komplekse tall Vi definerer det komplekse tallet z C. Komplekse eksponentialer og fasorer Det komplekse planet Kartesisk og polar form Komplekse eksponentiale signaler Roterende fasor Addisjon av fasorer

Detaljer

Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole

Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole Helge Jellestad, Laksevåg videregående skole Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole Kart er en grei tilnærming til trigonometri. Avstanden mellom koordinatene

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 8 Oppgaver fra boken: 10.1 : 13, 14, 18 10.2 : 15, 18, 32 10.3

Detaljer

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag Matematikk 1 Oversiktsforelesning Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag November 25, 2009 LS (IMF) tma4100rep November 25, 2009 1 / 21 Matematikk 1 Hovedperson Relle funksjoner

Detaljer

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål Eksempeloppgave 008 REA04 Matematikk R Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer