MAT1120 Oppgaver til plenumsregningen torsdag 18/9
|
|
- Lisa Aase
- 7 år siden
- Visninger:
Transkript
1 MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Magnus Dahler Norling September 2014
2 Oppgave rank A = rank B = 5 (teorem 13+14). dim Nul A = n - rank A = 6-5 = 1 (teorem 14). Col A utspennes av søyle 1,2,3,5 og 6 i A siden disse er pivot-søyler i B (teorem 13 s. 158). Row A utspennes av alle radene i B, siden disse er pivot-rader (teorem 13 s. 247). Nul A = Nul B (nullrommet det samme etter rad-operasjoner). Vi kan redusere B til (bruk rref) Vi ser at x 4 kan velges fritt, og at x 1 = x 2 = x 3 = x 4 og x 5 = x 6 = 0, slik at en basis for Nul A blir ( 1, 1, 1, 1, 0, 0).
3 Oppgave dim Nul A = 5 rank A = 3 (teorem 14). dim Row A = dim Col A (teorem 14) = rank A (def s. 249) = 2. rank A T = dim Col A T (def. s. 249) = dim Row A = rank A = 2.
4 Oppgave dim Row A = rank A = 4 - dim Nul A = 4 2 = 2
5 Oppgave La A være koeffisientmatrisen til likningsystemet (dette er en 6 8-matrise). 2 frie variable og 8 variable totalt betyr at den reduserte trappeformen har 6 pivot-søyler. Dermed er dim Col A = 6, så Col A utspenner hele R 6. Dermed har Ax = b alltid en løsning (uansett b) (teorem 12, s. 77), og det er dermed umulig å gjøre systemet inkonsistent.
6 Oppgave La A være en m n-matrise. dim Row A + dim Nul A = rank A + dim Nul A = n (teorem 14). dim Col A + dim Nul A T = dim Row A T + dim Nul A T = antall kolonner i A T etter hva vi akkurat har vist. Dette er det samme som antall rader i A, dvs. m.
7 Oppgave rank uv T = rank 2a 2b 2c 3a 3b 3c 5a 5b 5c. Ser at [ a b c ] er en basis for radrommet, slik at rank uv T = dim Row uv T 1.
8 Oppgave [ ] [ uv T v1 v = 2 v Skal dette være lik 2v 1 2v 2 2v ser vi at vi må ha (v 1, v 2, v 3 ) = (1, 3, 4). ], så
9 Oppgave Anta 2 3-matrisen A har rang 1, og at u 0 er første kolonne i A. Vi har rank A = dim Col A = 1. Hvis første kolonne u i A er 0, så må de andre kolonnene være på formen c 2 u, c 3 u. Altså er A på formen [ ] [ ] u1 c 2 u 1 c 3 u 1 u1 [ ] = 1 c2 c u 2 c 2 u 2 c 3 u 2 u 3 2 Hvis rank A = 1, så vil en av kolonnene i A være forskjellig fra 0. I regnestykket ovenfor bruker vi da denne kolonnen i stedet for den første kolonnen hvis denne er 0 (regnestykket går greit uavhengig av hvilken kolonne vi velger).
10 Oppgave Teorem 15 sier at er basisskiftematrisen fra D til A. Derfor er (i) oppfylt for alle x. [[d 1 ] A [d 2 ] A [d 3 ] A ]
11 Oppgave a) Vi trenger [f 1 ] D, [f 2 ] D, [f 3 ] D Ser at [f 1 ] D = (2, 1, 1), [f 2 ] D = (0, 3, 1), [f 3 ] D = ( 3, 0, 2). Vi får altså at P D F = b) [x] D = P D F [x] F = =
12 Oppgave For å finne P C B må vi regne ut [b 1 ] C og [b 2 ] C. For å finne [b 1 ] C må vi løse [ ] [ ] [ ] 1 1 a1 1 = a 2 (kolonnene i matrisen er c 1 og c 2, høyre side er b 1. Løser vi denne med rref får vi [b 1 ] C = (a 1, a 2 ) = (9, 10). På samme måte blir Dermed blir [b 2 ] C = ( 8, 9). [ P C B = ].
13 På samme måte får vi Dermed blir [c 1 ] B = (9, 10), [c 2 ] B = (8, 9). P B C = [ (Alternativt kunne vi regnet ut (P C B ) 1 ). ]
14 Oppgave La D være standardbasisen. Vi har at [1 3t 2 ] D = (1, 0, 3), [2 + t 5t 2 ] D = (2, 1, 5), [1 + 2t] D = (1, 2, 0). Dermed blir P D B = Vi må løse = [t 2 ] B Løser vi med rref får vi at [t 2 ] B = (3, 2, 1).
15 Oppgave [M] I oppgave regnet vi ut P = P B C. Formel (6) side 257 forteller oss at P 1 er P C B, det vil si at kolonne k i P 1 er koordinatvektoren til x k i basisen C. Regner ut inv(p) med Matlab og ser at vi kan skrive cos 2 (t) = 1/2 + 1/2 cos(2t) cos 3 (t) = 3/4 cos(t) + 1/4 cos(3t) cos 4 (t) = 3/8 + 1/2 cos(2t) + 1/8 cos(4t) cos 5 (t) = 5/8 cos(t) + 5/16 cos(3t) + 1/16 cos(5t) cos 6 (t) = 5/ cos(2t) cos(4t) cos(6t)
16 Oppgave [M] sett x = 5 cos 3 (t) 6 cos 4 (t) + 5 cos 5 (t) 12 cos 6 (t). Har at [x] B = (0, 0, 0, 5, 6, 5, 12), og [x] C = P 1 [x] B. Setter inn og får [x] C = ( 6, , , , , , ). Det holder altså å regne ut integralet ( cos(t) cos(2t) cos(3t) 3 cos(4t) cos(5t) cos(6t))dt = 6t sin(t) sin(2t) sin(4t) sin(5t) sin(6t) + C sin(3t)
17 Oppgave Vi har differenslikningen y k+3 4y k+2 + 1y k+1 + 6y k = 0. Gitt at ( 1) k, 2 k, og 3 k løser differenslikningen. er disse en basis for løsningsrommet? 1. Løsningsrommet er 3-dimensjonalt (Teorem 17 s. 264). 2. ( 1) k, 2 k, og 3 k er lineært uavhengige: Som i eksempel 2: Lag Casorati-matrisen ( 1) ( 1) ( 1) = og gjør en rref på denne. Vi får identitetsmatrisen, og derfor er de tre signalene er lineært uavhengige. De må derfor utspenne hele løsningsrommet, som jo også er tredimensjonalt (teorem 12 s. 243).,
18 Oppgave y k+3 + y k+2 8y k+1 12y k = 0. Løsningsrommet er 3-dimensjonalt. Vi former Casorati-matrisen u 0 v 0 w 0 u 1 v 1 w 1, u 2 v 2 w 2 der u k = ( 2) k, v k = k( 2) k, og w k = 3 k, og får rref på denne gir identitetsmatrisen, og de tre løsningene utspenner løsningsrommet ved samme resonnement som i oppgave ,
19 Oppgave y k+2 25y k = 0. Løsningsrommet er 2-dimensjonalt. Som i eksempel 4 gjetter vi på y k = r k og får likningen r k+2 25r k = 0, som gir oss r 2 25 = 0. Dette gir oss løsningene u k = 5 k, v k = ( 5) k. Vi former så Casorati-matrisen, og gjør en rref på denne som før for å vise at u k og v k danner en basis for løsningsrommet.
20 Oppgave Y k+2 a(1 + b)y k+1 + aby k = 1. Sett a = 0.9, b = 0.5. Prøv Y k = T. Vi får T 1.35T T = 0.1T = 1, så Y k = T = 10 er en løsning. Den homogene likningen er Y k Y k Y k = 0. Vi løser r r = 0 og får r = 1.35± , som gir r = 3/4 og r = 3/5. Vi former så Casorati-matrisen, og gjør en rref på denne. Siden løsningsrommet er todimensjonalt, så blir den generelle løsningen Y k = 10 + a 1 (3/4) k + a 2 (3/5) k.
21 Oppgave Vi setter y k = 2 cos(πk/4) + cos(3πk/4). a) Filteret fra eksempel 3 er z k = 0.35y k y k y k. Vi får z 0 = = z 1 = = 0 z 2 = = osv. I Matlab kan man gjøre slik: k = 0:10; y = 2*cos( pi *k/4) + cos(3*pi*k/4); z = zeros(1,8); for (s=1:8) z(s) = 0.35 * y(s) * y(s+1) * y(s+2); end
22 b) I eksempel 3 regnet vi ut output når input var y k = cos(πk/4) og w k = cos(3πk/4). I a) regnet vi ut utgangen på 2y k + w k. Siden filteret er lineært kan vi kombinere utgangen til y k og w k. I eksempel 3 regnet vi ut at utgangen til w k er 0, og derfor blir utgangen til 2y k + w k lik 2z k (z k var utgangen til cos(πk/4)). Vi kunne altså brukt utregningen fra eksempel 3 direkte, siden vi regnet ut z k der.
23 Oppgave Setter vi inn y k = 1 + 2k får vi y k+2 25y k = 48k (k + 2) 25(1 + 2k) = (2 50)k = 48k 20. Vi har fra oppgave at løsningsrommet til den homogene ligningen y k+2 25y k = 0 er spent ut av u k = 5 k og v k = ( 5) k. Siden løsningsrommet er todimensjonalt blir dermed den generelle løsningen 1 + 2k + a 1 5 k + a 2 ( 5) k.
24 Oppgave Anta T (x p ) = z, og T (u) = 0. Vi skal vise at T (u + x p ) = z. Dette viser vi slik: T (u + x p ) = T (u) + T (x p ) = 0 + z = z.
MAT1120 Oppgaver til plenumsregningen torsdag 18/9
MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 4.8 Teorem 16 s. 282: y k+n + a 1 y k+n 1 + + a n 1 y k+1 + a n y k = z k har alltid en løsning
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
Detaljer4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
Detaljer10 Radrommet, kolonnerommet og nullrommet
Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For
DetaljerMAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.
MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom
Detaljer6.5 Minste kvadraters problemer
6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør
Detaljer(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3
NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis
DetaljerBasis, koordinatsystem og dimensjon
Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
Detaljer8 Vektorrom TMA4110 høsten 2018
8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.
Detaljer6.8 Anvendelser av indreprodukter
6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner
Detaljer6.4 (og 6.7) Gram-Schmidt prosessen
6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en
DetaljerEksamensoppgave MAT juni 2010 (med løsningsforslag)
Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6
DetaljerVektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?
Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke
DetaljerMAT 1110: Bruk av redusert trappeform
Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte
DetaljerMAT1120 Notat 1 Tillegg til avsnitt 4.4
MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n
Detaljer6.4 Gram-Schmidt prosessen
6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig
DetaljerMAT1120 Repetisjon Kap. 1
MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer
Detaljer4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer
DetaljerMAT1120 Notat 1 Tillegg til avsnitt 4.4
MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis
DetaljerRang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015
Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c
DetaljerNorges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Mandag. desember Oppgave a) Karakteristisk polynom er + = ;
Detaljer4.2 Nullrom, kolonnerom og lineære transformasjoner
4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en
Detaljer7.4 Singulærverdi dekomposisjonen
7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon
DetaljerLineær uavhengighet og basis
Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c
Detaljer12 Lineære transformasjoner
2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f
DetaljerMAT1120 Repetisjon Kap. 1, 2 og 3
MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................
DetaljerLO510D Lin.Alg. m/graf. anv. Våren 2005
TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til
DetaljerKap. 6 Ortogonalitet og minste kvadrater
Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom
DetaljerUNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
DetaljerEKSAMEN I MATEMATIKK 3 (TMA4110)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven
DetaljerLineære likningssystemer og matriser
Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger
DetaljerObligatorisk innlevering 3 - MA 109, Fasit
Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert
DetaljerTMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:
TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og
DetaljerMA1201, , Kandidatnummer:... Side 1 av 5. x =.
MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =
DetaljerLøsningsforslag for eksamen i Matematikk 3 - TMA4115
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt
DetaljerEKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid:
EKSAMEN EMNE: MA6 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen Klasser: (div) Dato: mai Eksamenstid: Eksamensoppgaven består av følgende: Antall sider (ink forside): 5 Antall oppgaver: Antall vedlegg:
DetaljerTMA4110 Matematikk 3 Haust 2011
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA40 Matematikk 3 Haust 0 Løysingsforslag Øving Oppgåver frå læreboka kap 5, s 7-73 5 Eigenrommet som svarar til λ = 5 er det
DetaljerMA1201/MA6201 Høsten 2016
MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerMinste kvadraters løsning, Symmetriske matriser
Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).
DetaljerTMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0
TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerHomogene lineære ligningssystem, Matriseoperasjoner
Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har
DetaljerMAT1120 Oppgaver til plenumsregningen torsdag 25/9
MAT1120 Oppgaver til plenumsregningen torsdag 25/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 5.1 Denisjon av egenverdier, egenvektorer, egenrom. Teorem 1 s. 306: Egenverdiene til en triangulær
Detaljer13 Oppsummering til Ch. 5.1, 5.2 og 8.5
3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne
DetaljerLineærtransformasjoner
Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerEgenverdier og egenvektorer
Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon
DetaljerLøsningsforslag øving 7
Løsningsforslag øving 7 8 Husk at en funksjon er injektiv dersom x y gir f(x) f(y), men her ser vi at f(3) 9 f( 3), eller generelt at f(z) z f( z) for alle z C, som betyr at f ikke er injektiv Vi ser også
DetaljerObligatorisk oppgave 2
Universitetet i Oslo MAT0 Obligatorisk oppgave Skrevet av: Sindre Rannem Bilden 4. oktober 04 Først utleder vi hva U T U tilsier, siden U kan skrives kan også U T skrives på formen U = [ u u n ] U T =
DetaljerMatriser. Kapittel 4. Definisjoner og notasjon
Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper
DetaljerLøsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i MA22/MA622 Lineær algebra med anvendelser våren 29 Oppgave a) Rangen til A er lik antallet
DetaljerUNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side).
UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: MAT 2 Lineær algebra Day of examination: 9. desember 2. Examination hours: 4.3 8.3. This problem set consists of 6 pages.
DetaljerNotat2 - MAT Om matriserepresentasjoner av lineære avbildninger
Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon
DetaljerEksamensoppgave i TMA4115 Matematikk 3
Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand
DetaljerEKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Hjelpemidler (kode C): Enkel kalkulator
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:
DetaljerRepetisjon: Om avsn og kap. 3 i Lay
Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert
DetaljerMA1201/MA6201 Høsten 2016
MA121/MA621 Høsten 216 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 2.3 1 b) c) d) 1 3 1 1 3 1 A I 2
DetaljerEmne 9. Egenverdier og egenvektorer
Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller
DetaljerLineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler
Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1
DetaljerEksamensoppgave i MA1201 Lineær algebra og geometri
Institutt for matematiske fag Eksamensoppgave i MA1201 Lineær algebra og geometri Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 05.10.2016 Eksamenstid (fra til): 08:15 09:45
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte
DetaljerMAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse
MAT3000/4000 - Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt
Detaljer100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)
ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med
DetaljerVær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
DetaljerRepetisjon: om avsn og kap. 3 i Lay
Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet
DetaljerEKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG
DetaljerEKSAMEN. 1 Om eksamen. EMNE: MA-109 FAGLÆRER: Svein Olav Nyberg, Turid Knutsen, Øystein Alvik
EKSAMEN EMNE: MA- FAGLÆRER: Svein Olav Nyberg, Turid Knutsen, Øystein Alvik Klasser: (div) Dato: mai Eksamenstid: Eksamensoppgaven består av følgende: Antall sider (ink forside): Antall oppgaver: Antall
DetaljerEKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller
Detaljer4 Matriser TMA4110 høsten 2018
Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere
DetaljerGenerelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.
Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer
Detaljer12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)
Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er
DetaljerLøsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet
DetaljerMer om lineære likningssystemer, vektorer og matriser
Kapittel Mer om lineære likningssystemer, vektorer og matriser I dette kapittelet tar vi utgangspunkt i lineære likningssystemer, som vi lærte om i MAT, og setter dette inn i et større rammeverk, kalt
DetaljerLØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010
LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4
DetaljerLineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
Detaljer15 Hovedprinsippet for vektorrom med et indre produkt
Hovedprinsippet for vektorrom med et indre produkt La oss minne Hovedprinsippet (Seksjon 8.): Alle (endelig dimensjonale dvs. de som har en endelig basis) vektorrom kan beskrives som R n der n dim V. Alle
DetaljerRom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.
Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse
DetaljerMAT-1004 Vårsemester 2017 Obligatorisk øving 3
MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE OPPGAVE Hvordan løses oppgave? 5 4 Hvordan løses oppgave? 6 5 Formatering av svarene 8 5. Rasjonale tall............................. 8 5. Matriser
DetaljerFasit til utvalgte oppgaver MAT1110, uka 13/4-16/4
Fasit til utvalgte oppgaver MAT0, uka /4-6/4 Øyvind Ryan oyvindry@i.uio.no April, 00 Oppgave 4.8. a Bytt om første og andre rad. b Legg til ganger rad til rad. c Bytt om første og andre rad. d Legg til
DetaljerEKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet
DetaljerVi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på
Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske
DetaljerKap. 6 Ortogonalitet og minste kvadraters problemer
Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =
Detaljerx 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder
4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes
Detaljer3.9 Teori og praksis for Minste kvadraters metode.
3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:
DetaljerUtkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.
Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir
DetaljerOBLIG 2 - MAT 1120 Høsten 2005
> with(linearalgebra): with(linalg):with(plots): Warning, the name GramSchmidt has been rebound Warning, the protected names norm and trace have been redefined and unprotected Warning, the name changecoords
DetaljerMer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
DetaljerEksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1
Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra
DetaljerMer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
Detaljer