Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Størrelse: px
Begynne med side:

Download "Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra"

Transkript

1 Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets regler. Oppgavesettet er på sider. Alle svar må begrunnes. Oppgave. Betrakt matrisen A = 0. a. Finn den reduserte trappeformen til A. b. Avjør om b = er i søylerommet Col(A). c. Finn den løsningen til ligningen A x =. d. Hva er rangen til matrisen A? e. Hva er dimensjonen til nullrommet Nul(A)? f. Avjør om b = (4,5) er i radrommet Row(A). g. Hva er dimensjonen til Row(A)? Fasit til oppgave. a. Finn den reduserte trappeformen til matrisen A. A =

2 b. Avjør om b = er i søylerommet Col(A). En vektor b Col(A) dersom systemet A x = b er konsekvent. Vi finner den reduserte trappeformen for den utvidede matrisen og konkluderer med at b Col(A) c. Finn den løsningen til ligningen A x =. Vi bruker den reduserte trappeformen til den utvidede matrisen og finner x =, x =. d. Hva er rangen til matrisen A? Rangen til matrisen A er lik dimensjon til Col(A) som er. e. Hva er dimensjonen til nullrommet Nul(A)? Fra rangteoremet vet vi at = dim ( Col(A) ) +dim ( Null(A) ) ( ). Siden dimensjonen til Col(A) er konkluderer vi med at dim Nul(A) = 0. f. Avjør om c = (4,5) er i radrommet Row(A). Vi kan skrive 4 r + 9 r = (4,5) der r og r er den henholdsvis første og den andre raden i A. Det viser at c = (4,5) Row(A). g. Hva er dimensjonen til Row(A)? Vi ser at den første raden og den tredje raden i A er( lineært avhengige ) og de to første radene er lineært uavhengige, som viser at dim Row(A) =. Oppgave.

3 a. Betrakt de lineære transformasjonene T : R R og S: R R 4 definert ved ( ) x T = x x x x, S y y +y y = y y y x +4x y y y +y +y Finn komposisjonstransformasjonen S T : R R 4. b La 0 < φ π. Vi lar R φ: R R være den lineære transformasjonen som roterer hver vektor i R om z-aksen med en vinkel φ mot urviserne. Finn standardmatrisen til R φ og finn bilde av vektoren v = (,,) under rotasjonen R φ, når φ = π. Fasit til oppgave. a. Betrakt de lineære transformasjonene T : R R og S: R R 4 definert ved ( ) x T = x x x x, S y y +y y = y y y x +4x y y. y +y +y Finn komposisjonstransformasjon S T: R R 4. Standard matrisen [T] til transformasjonen T er [T] = 0 4 og standard matrisen [S] til transformasjonen S er 0 [S] = 0 0. Da er matrisen til komposisjonstransformasjonen S T 0 [S T] = =

4 4 Vi konkluderer med at ( ) x (S T) = x ) 5x +4x+ = x 7x x x +x. 6x +x ( x b. La 0 < φ π. Vi lar R φ: R R være den lineære transformasjonen som roterer hver vektor i R om z-aksen med en vinkel φ mot urviserne. Finn standardmatrisen til R φ og finn bilde av vektoren v = (,,) under rotasjonen R φ, når φ = π.. Siden R φ dreier vektorer i xy-planet en vinkel ϕ mot urviseren får vi ved enkel trigonometri at R φ 0 = cosφ sinφ, R φ 0 = sinφ cosφ, R φ 0 0 = Det endelige resultatet blir at matrisen: cosφ sinφ 0 [R φ ] = sinφ cosφ svarer til rotasjonen R φ. Bildet av vektoren v = er vektoren w = + på grunn av at w = [R π ] cosφ sinφ 0 = sinφ cosφ 0 = Oppgave. Avjør om mengdene A og B er underrom av R. a. A = x y slik at x = y +, z = y, z

5 b. B = x y slik at x y +z = 0. z 5 Fasit til oppgave. a. A = x y slik at x = y +, z = y. z Siden origo 0 0 ikke er i A, er mengden A ikke et underrom av R. 0 b. B = x y slik at x y +z = 0 z. Origo 0 0 er i B. La x = x x B, y = y y B. Da er 0 x x x +x = 0 og y y +y = 0 etter definisjonen av B. Vi adderer x og y. Det gir vektoren z der: z = z z = x +y x +y. z x +y Av likninger ovenfor ser vi at: z z +z = (x +y ) (x +y )+(x +y ) = (x x +x )+(y y +y ) = 0+0 = 0 og det vil si at z = x + y B. Vi ser også at cx cx +cx = c(x x +x ) = c 0 = 0 = c x B. Oppgave 4. Betrakt matrisen M = 7 6. a. Finn alle egenverdiene til M. y

6 6 b. Finn en basis for hvert egenrommet. c. Er matrisen M diagonaliserbar? Hvis svaret er ja finn da den diagonale matrisen som svarer til M. Dersom svar er nei, forklar hvorfor matrisen M ikke er diagonaliserbar. Fasit til oppgave 4. a. Finn alle egenverdiene til M. Siden finner vi egenverdiene: det(a λi) = x(x x+6) λ = 0, λ = 6, λ = 6. b. Finn en basis for hvert egenrommet. La λ = 0. Vi finner at matrisen M er radekvivalent til matrisen 0 / Det medfører at løsningen til likningen M v = 0 er v = x / /. For å finne de andre egenvektorene løser vi matriselikningen x x = Da har vi at x = x +x og egenrommet V 6 for egenverdien λ = 6 er V 6 = x +x x = x +x 0 = span, 0 x 0 0 Så v = og v = 0. 0 x

7 b. Er matrisen M diagonaliserbar? Hvis svaret er ja finn da den diagonale matrisen som svarer til M. Dersom svar er nei, forklar hvorfor matrisen M ikke er diagonaliserbar. Matrisen M er diagonaliserbar fordi sum av dimensjoner av egenrommene er lik. Tilsvarende diagonal matrisen er Exercise 5. 7 La V være underrommet av R definert ved V = x x slik at x +x +x = 0. x a. Vis at a =, b = og c = er ortogonale. 0 b. Finn en ortonormal basis α = ( α, α, α ) fra systemet av vektorene a, b, c. c. Finn basisskiftematrisen M e α fra standard basisen e = ( e, e, e ) til basisen α. d. Regn ut M T e αm e α. e. Hvilke av vektorene a, b, c hører til V? f. La P : R R være projeksjon på V: P( x) = proj V ( x). Finn matrisen M α av den lineære transformasjonen P med hensyn på basisen α. Fasit til oppgave 5. a. Vis at a =, b = og c = er ortogonale. 0 Vi regner ut indre productet a b = +( )+0 = 0, a c = + = 0, b c = +0 = 0, som sier at a, b, c er ortogonale.

8 8 b. Finn en ortonormal basis α = ( α, α, α ) fra systemet av vektorene a, b, c. La / α = a = a / /, α = b = / /, α = c b 0 Systemet α = ( α, α, α ) er ortonormalt. c = / 6 / 6 /. 6 c. Finn basisskiftematrisen M e α fra standard basisen e = ( e, e, e ) til basisen α. / / / 6 M e α = / / / 6 / 0 / 6 d. Regn ut M T e α M e α. Me α T M e α = Me α M e α = fordi M e α er enortogonal matrise og derfor er Me α T = M e α. e. Hvilke av vektorene a, b, c hører til V? Vektorene b og c hører til V. f. La P: R R være projeksjon på V: P( x) = proj V ( x). Finn matrisen [P α ] av den lineære transformasjonen P med hensyn på basisen α. [P α ] =

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14. Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................

Detaljer

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske

Detaljer

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

Detaljer

EKSAME SOPPGAVE MAT-1004 (BOKMÅL)

EKSAME SOPPGAVE MAT-1004 (BOKMÅL) EKSAME SOPPGAVE MAT-00 (BOKMÅL) Eksamen i : Mat-00 Lineær algebra. Dato : Torsdag 09. juni. Tid : 09.00 -.00. Sted: : Teorifagb., hus, plan. Tillatte hjelpemidler : Godkjent kalkulator, to A ark egne notater

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til! Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:

Detaljer

Eksamensoppgave i MA1201 Lineær algebra og geometri

Eksamensoppgave i MA1201 Lineær algebra og geometri Institutt for matematiske fag Eksamensoppgave i MA1201 Lineær algebra og geometri Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 05.10.2016 Eksamenstid (fra til): 08:15 09:45

Detaljer

MA1202/MA S løsningsskisse

MA1202/MA S løsningsskisse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

Diagonalisering. Kapittel 10

Diagonalisering. Kapittel 10 Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3 NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis

Detaljer

EKSAMEN RF5100, Lineær algebra

EKSAMEN RF5100, Lineær algebra Side av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF500, Lineær algebra Tillatte hjelpemidler: Godkjent kalkulator og utdelt formelark Varighet: 3 timer Dato: 4. oktober 04 Emneansvarlig: Lars Sydnes

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 6

MAT-1004 Vårsemester 2017 Obligatorisk øving 6 MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE Hvordan å løse oppgaven? 4 Formatering av svarene 9. Rasjonale tall............................. 9. Matriser og vektorer.........................

Detaljer

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon: EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet

Detaljer

Basis, koordinatsystem og dimensjon

Basis, koordinatsystem og dimensjon Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis

Detaljer

= 3 11 = = 6 4 = 1.

= 3 11 = = 6 4 = 1. MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at

Detaljer

Eksamensoppgave i TMA4115 Matematikk 3

Eksamensoppgave i TMA4115 Matematikk 3 Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til

Detaljer

MA1201, , Kandidatnummer:... Side 1 av 5. x =.

MA1201, , Kandidatnummer:... Side 1 av 5. x =. MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

Kap. 6 Ortogonalitet og minste kvadraters problemer

Kap. 6 Ortogonalitet og minste kvadraters problemer Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Hjelpemidler (kode C): Enkel kalkulator

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4 Matematikk Haust Løysingsforslag Øving Oppgåver frå læreboka kap. 6., s. 7 u v = ( 7)+( 5) ( 4)+( ) 6 = u = +( 5) +( ) = v

Detaljer

Eksamensoppgave i TMA4110/TMA4115 Calculus 3

Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

EKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid:

EKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid: EKSAMEN EMNE: MA6 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen Klasser: (div) Dato: mai Eksamenstid: Eksamensoppgaven består av følgende: Antall sider (ink forside): 5 Antall oppgaver: Antall vedlegg:

Detaljer

Digital Arbeidsbok i ELE 3719 Matematikk

Digital Arbeidsbok i ELE 3719 Matematikk Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse MAT3000/4000 - Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra

Detaljer

Kap. 5 og Notat 2 Oppsummering

Kap. 5 og Notat 2 Oppsummering Kap. 5 og Notat 2 Oppsummering Vi lar A være en reell n n matrise, med mindre noe annet sies. x R n er en egenvektor for A tilh. egenverdien λ R betyr at A x = λ x og x 0. Hvis A er triangulær, er egenverdiene

Detaljer

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Mandag. desember Oppgave a) Karakteristisk polynom er + = ;

Detaljer

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

6.4 (og 6.7) Gram-Schmidt prosessen

6.4 (og 6.7) Gram-Schmidt prosessen 6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en

Detaljer

Eksamensoppgave i MA1202/MA6202 Lineær algebra med anvendelser

Eksamensoppgave i MA1202/MA6202 Lineær algebra med anvendelser Institutt for matematiske fag Eksamensoppgave i Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 01. juni 2017 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

SIF5010 Matematikk 3. y 00, 2y 0 +5y = sin x 4A, 2B =0 4B +2A =1;

SIF5010 Matematikk 3. y 00, 2y 0 +5y = sin x 4A, 2B =0 4B +2A =1; for fakultet E og F varen 998 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Lsningsforslag eksamen varen 998 Eksamen SIF5, mai 98 a) y, y +5y sin x P (r) r, r +5; r i Som

Detaljer

Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.

Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012. Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i MA22/MA622 Lineær algebra med anvendelser våren 29 Oppgave a) Rangen til A er lik antallet

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side).

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side). UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: MAT 2 Lineær algebra Day of examination: 9. desember 2. Examination hours: 4.3 8.3. This problem set consists of 6 pages.

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

16 Ortogonal diagonalisering

16 Ortogonal diagonalisering Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen

Detaljer

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1 Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra

Detaljer

Oppgavesett. Kapittel Oppgavesett 1

Oppgavesett. Kapittel Oppgavesett 1 Kapittel 9 Oppgavesett Dette kapitlet består av fire oppgavesett med oppgaver fra alle deler av kompendiet. 9. Oppgavesett Oppgave. Et dynamisk system er gitt ved x n+ = M x n der M er -matrisen.6.. M

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

OBLIG 2 - MAT 1120 Høsten 2005

OBLIG 2 - MAT 1120 Høsten 2005 > with(linearalgebra): with(linalg):with(plots): Warning, the name GramSchmidt has been rebound Warning, the protected names norm and trace have been redefined and unprotected Warning, the name changecoords

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av

Detaljer

RF5100 Lineær algebra Leksjon 12

RF5100 Lineær algebra Leksjon 12 RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z

Detaljer

MAT1120 Oppgaver til plenumsregningen torsdag 18/9

MAT1120 Oppgaver til plenumsregningen torsdag 18/9 MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Magnus Dahler Norling (magnudn@math.uio.no) September 2014 Oppgave 4.6.4 rank A = rank B = 5 (teorem 13+14). dim Nul A = n - rank A = 6-5 = 1 (teorem

Detaljer

EKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov

EKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Mat-004 Lineær algebra Dato: Torsdag. juni 207 Klokkeslett: 09.00-3.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator,

Detaljer

Emne 6. Lineære transformasjoner. Del 1

Emne 6. Lineære transformasjoner. Del 1 Emne 6. Lineære transformasjoner. Del 1 Lineære transformasjoner kan sammenliknes med vanlig funksjonslære. X x 1 x 2 x 3 f Y Gitt to tallmengder X og Y. y 1 En funksjon f er her en regel som y 2 knytter

Detaljer

Young-Laplace si likning

Young-Laplace si likning Young-Laplace si likning Dette er Appendiks A i hovedoppgaven til Leiv Magne Siqveland, Høgskolen i Stavanger, Sivilingeniørutdanningen, innlevert 8. juni 996. Krumme flater z Z (a,b) X Y y x Figur : Flate

Detaljer

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse.

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse. Forord Denne læreboken gir en innføring i lineær algebra, rettet mot begynnerkurs på Universitets- og Høyskolenivå. Arbeidet med dette stoffet tok til som en del av et større prosjekt, som omfattet datastøttet

Detaljer

MAT 1120: Obligatorisk oppgave 2, H-09

MAT 1120: Obligatorisk oppgave 2, H-09 MAT 1120: Obligatorisk oppgave 2, H-09 Innlevering: Senest fredag 30 oktober, 2009, kl1430, på Ekspedisjonskontoret til Matematisk institutt (7 etasje NHA) Du kan skrive for hånd eller med datamaskin,

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU

Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H & Rorres, C: Elementary Linear Algebra, 11 utgave Jonas Tjemsland 26 april 2015 4 Generelle vektorrom 41 Reelle

Detaljer

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %

Detaljer

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010 LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer