Lineær uavhengighet og basis
|
|
|
- Sebastian Nordli
- 8 år siden
- Visninger:
Transkript
1 Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010
2 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c 1,..., c k slik at w = c 1 v 1 + c 2 v c k v k.
3 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c 1,..., c k slik at w = c 1 v 1 + c 2 v c k v k. Teorem Hvis v 1, v 2,..., v k er vektorer i et vektorrom V så er mengde W av alle lineære kombinasjoner av v 1, v 2,..., v k et underrom i V. Vi sier at W er utspent av vektorene v 1, v 2,..., v k og skriver W = span{v 1, v 2,..., v k }.
4 Lineært uavhengige vektorer Vektorene v 1, v 2,..., v k er lineært uavhengige hvis ligningen c 1 v 1 + c 2 v c k v k = 0 bare har den trivielle løsningen c 1 = c 2 =... = c n = 0.
5 Lineært uavhengige vektorer Vektorene v 1, v 2,..., v k er lineært uavhengige hvis ligningen c 1 v 1 + c 2 v c k v k = 0 bare har den trivielle løsningen c 1 = c 2 =... = c n = 0. Vektorene v 1, v 2,..., v k er lineært avhengige hvis det finnes c 1, c 2,...c n, ikke alle null, slik at c 1 v 1 + c 2 v c k v k = 0.
6 Vektorer i R n Teorem I R n er n vektorer v 1, v 2,..., v n lineært uavhengige hvis og bare hvis n n matrisen A med kolonnevektorer v 1, v 2,..., v n, A = [v 1, v 2,..., v n ], har determinant ulik null, det(a) 0.
7 Vektorer i R n Teorem I R n er n vektorer v 1, v 2,..., v n lineært uavhengige hvis og bare hvis n n matrisen A med kolonnevektorer v 1, v 2,..., v n, A = [v 1, v 2,..., v n ], har determinant ulik null, det(a) 0. Teorem I R n er k vektorer v 1, v 2,..., v k, k < n, lineært uavhengige hvis og bare hvis n k matrisen A med kolonnevektorer v 1, v 2,..., v k, A = [v 1, v 2,..., v k ], inneholder en k k matrise med determinant ulik null.
8 Basis Basis for vektorrom: En endelig mengde S = {v 1, v 2,..., v n } av vektorer i et vektorrom V er en basis av V hvis vektorene i S er lineært uavhengige, og vektorene i S utspenner V, span(s) = V.
9 Basis Basis for vektorrom: En endelig mengde S = {v 1, v 2,..., v n } av vektorer i et vektorrom V er en basis av V hvis vektorene i S er lineært uavhengige, og vektorene i S utspenner V, span(s) = V. Da kan enhver vektor i V skrives entydig på formen w = c 1 v 1 + c 2 v c n v n.
10 Basis for R n Standardbasis i R n er e 1 = (1, 0,..., 0) e 2 = (0, 1,..., 0)... e n = (0, 0,..., 1) Det finnes mange forskjellige basiser for R n.
11 Dimensjon Teorem La S = {v 1, v 2,..., v n } være en basis for vektorrom V, hvis T = {w 1, w 2,..., w m } er en delmengde av V og m > n så er vektorene i T lineart avhengige.
12 Dimensjon Teorem La S = {v 1, v 2,..., v n } være en basis for vektorrom V, hvis T = {w 1, w 2,..., w m } er en delmengde av V og m > n så er vektorene i T lineart avhengige. Teorem To basiser for et vektorrom V har like mange vektorer.
13 Dimensjon Teorem La S = {v 1, v 2,..., v n } være en basis for vektorrom V, hvis T = {w 1, w 2,..., w m } er en delmengde av V og m > n så er vektorene i T lineart avhengige. Teorem To basiser for et vektorrom V har like mange vektorer. Antallet vektorer i en basis for V kalles dimensjonen til vektorromet V.
14 Basis og dimensjon Teorem La V være et n-dimensjonalt vektorrom. Hvis S = {v 1, v 2,..., v n } er en mengde med n lineært uavhengige vektorer i V, så er S en basis for V.
15 Basis og dimensjon Teorem La V være et n-dimensjonalt vektorrom. Hvis S = {v 1, v 2,..., v n } er en mengde med n lineært uavhengige vektorer i V, så er S en basis for V. Hvis S = {v 1, v 2,..., v n } er en mengde med n vektorer som utspenner V, span(s) = V, så er S en basis for V.
16 Basis og dimensjon Teorem La V være et n-dimensjonalt vektorrom. Hvis S = {v 1, v 2,..., v n } er en mengde med n lineært uavhengige vektorer i V, så er S en basis for V. Hvis S = {v 1, v 2,..., v n } er en mengde med n vektorer som utspenner V, span(s) = V, så er S en basis for V. Hvis S er lineært uavhendig, så finnes en basis for V som inneholder S
17 Basis og dimensjon Teorem La V være et n-dimensjonalt vektorrom. Hvis S = {v 1, v 2,..., v n } er en mengde med n lineært uavhengige vektorer i V, så er S en basis for V. Hvis S = {v 1, v 2,..., v n } er en mengde med n vektorer som utspenner V, span(s) = V, så er S en basis for V. Hvis S er lineært uavhendig, så finnes en basis for V som inneholder S Hvis S utspenner V så inneholder S en basis for V.
Basis, koordinatsystem og dimensjon
Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis
MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.
MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3
NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;
MAT1120 Notat 1 Tillegg til avsnitt 4.4
MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
MAT1120 Notat 1 Tillegg til avsnitt 4.4
MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis
GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type
Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.
Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015
Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c
(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer
5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
4.2 Nullrom, kolonnerom og lineære transformasjoner
4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en
Lineærtransformasjoner
Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
MAT1120 Repetisjon Kap. 1
MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer
10 Radrommet, kolonnerommet og nullrommet
Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For
Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?
Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke
TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0
TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x
Kap. 6 Ortogonalitet og minste kvadrater
Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og
4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer
EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG
Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger
Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon
Homogene lineære ligningssystem, Matriseoperasjoner
Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har
8 Vektorrom TMA4110 høsten 2018
8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.
Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
Vektorligninger. Kapittel 3. Vektorregning
Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det
Mer om lineære likningssystemer, vektorer og matriser
Kapittel Mer om lineære likningssystemer, vektorer og matriser I dette kapittelet tar vi utgangspunkt i lineære likningssystemer, som vi lærte om i MAT, og setter dette inn i et større rammeverk, kalt
Mer lineær algebra. Inger Christin Borge. Matematisk institutt, UiO. Kompendium i MAT1012 Matematikk 2. Våren 2014
Mer lineær algebra Kompendium i MAT Matematikk Våren 4 Inger Christin Borge Matematisk institutt, UiO Forord Dette kompendiet er skrevet til bruk i andre del av emnet MAT. I dette emnet jobber vi under
MA1201/MA6201 Høsten 2016
MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til
Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
Emne 7. Vektorrom (Del 1)
Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske
Løsningsforslag øving 6
Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en
9 Lineærtransformasjoner TMA4110 høsten 2018
9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!
Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:
UNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.
Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen
Eksamensoppgave i MA1201 Lineær algebra og geometri
Institutt for matematiske fag Eksamensoppgave i MA1201 Lineær algebra og geometri Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 05.10.2016 Eksamenstid (fra til): 08:15 09:45
MAT-1004 Vårsemester 2017 Obligatorisk øving 2
MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene
MA1201, , Kandidatnummer:... Side 1 av 5. x =.
MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =
MAT1120 Repetisjon Kap. 1, 2 og 3
MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger
Lineær algebra-oppsummering
Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
MAT 1110: Bruk av redusert trappeform
Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte
Lineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
MAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom
Minste kvadraters løsning, Symmetriske matriser
Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).
6 Determinanter TMA4110 høsten 2018
6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til
Løsningsforslag øving 7
Løsningsforslag øving 7 8 Husk at en funksjon er injektiv dersom x y gir f(x) f(y), men her ser vi at f(3) 9 f( 3), eller generelt at f(z) z f( z) for alle z C, som betyr at f ikke er injektiv Vi ser også
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte
Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009
Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b
MAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
6.4 (og 6.7) Gram-Schmidt prosessen
6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en
7.4 Singulærverdi dekomposisjonen
7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon
Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling
Dagens mål Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 IF2310 - Digital bildebehandling Ole Marius Hoel Rindal, slides av Andreas Kleppe Dagens mål Forstå
MA1201/MA6201 Høsten 2016
MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta
MAT-1004 Vårsemester 2017 Prøveeksamen
MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av
MAT-1004 Vårsemester 2017 Obligatorisk øving 6
MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE Hvordan å løse oppgaven? 4 Formatering av svarene 9. Rasjonale tall............................. 9. Matriser og vektorer.........................
Lineære rom og avbildninger
Kapittel 3 Lineære rom og avbildninger I dette kapitlet skal vi se på begrepene vektor og matrise inn i en mer generell setting. Vi skal definere begrepet vektorrom og se hvordan vi kan betrakte matriser
MAT Prøveeksamen 29. mai - Løsningsforslag
MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]
Oppgave 1 (25 %) - Flervalgsoppgaver
Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består
15 Hovedprinsippet for vektorrom med et indre produkt
Hovedprinsippet for vektorrom med et indre produkt La oss minne Hovedprinsippet (Seksjon 8.): Alle (endelig dimensjonale dvs. de som har en endelig basis) vektorrom kan beskrives som R n der n dim V. Alle
12 Lineære transformasjoner
2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f
Eksamensoppgave i TMA4110/TMA4115 Calculus 3
Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
Emne 10 Litt mer om matriser, noen anvendelser
Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes
OBLIG 2 - MAT 1120 Høsten 2005
> with(linearalgebra): with(linalg):with(plots): Warning, the name GramSchmidt has been rebound Warning, the protected names norm and trace have been redefined and unprotected Warning, the name changecoords
Lineære ligningssystem og matriser
Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan
Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.
Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse
Forelesning i Matte 3
Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære
Repetisjon: Om avsn og kap. 3 i Lay
Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert
Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler
Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1
MAT1120 Oppgaver til plenumsregningen torsdag 18/9
MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Magnus Dahler Norling ([email protected]) September 2014 Oppgave 4.6.4 rank A = rank B = 5 (teorem 13+14). dim Nul A = n - rank A = 6-5 = 1 (teorem
LO510D Lin.Alg. m/graf. anv. Våren 2005
TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til
Diagonalisering. Kapittel 10
Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel
EKSAME SOPPGAVE MAT-1004 (BOKMÅL)
EKSAME SOPPGAVE MAT-00 (BOKMÅL) Eksamen i : Mat-00 Lineær algebra. Dato : Torsdag 09. juni. Tid : 09.00 -.00. Sted: : Teorifagb., hus, plan. Tillatte hjelpemidler : Godkjent kalkulator, to A ark egne notater
Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise
Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med
Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.
Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer
Løsningsforslag til noen oppgaver om Zorns lemma
Løsningsforslag til noen oppgaver om Zorns lemma Fredrik Meyer Her er et løsningsforslag på Oppgave 3 og Oppgave 5 i notatet om Zorns lemma. De to første oppgavene ble gjort på plenum. Oppgave 1. Vi skal
MAT-1004 Vårsemester 2017 Prøveeksamen
MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................
= 3 11 = = 6 4 = 1.
MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at
6.4 Gram-Schmidt prosessen
6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig
6.8 Anvendelser av indreprodukter
6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner
Kap. 6 Ortogonalitet og minste kvadraters problemer
Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =
Repetisjon: om avsn og kap. 3 i Lay
Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet
Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet
12 Projeksjon TMA4110 høsten 2018
Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,
MA1202/MA S løsningsskisse
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ
Emne 9. Egenverdier og egenvektorer
Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller
3.9 Teori og praksis for Minste kvadraters metode.
3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:
Et forsøk på et oppslagsverk for TMA4145 Lineære metoder
Et forsøk på et oppslagsverk for TMA4145 Lineære metoder Ruben Spaans May 21, 2009 1 Oppslagsverk Adjungert Ball, la (X, d) være et metrisk rom og la ɛ > 0. Da er for x 0 X: 1. B(x 0 ; ɛ) = {x x X d(x,
Determinanter til 2 2 og 3 3 matriser
Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =
Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU
Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H & Rorres, C: Elementary Linear Algebra, 11 utgave Jonas Tjemsland 26 april 2015 4 Generelle vektorrom 41 Reelle
TMA4115 Matematikk 3 Vår 2017
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4115 Matematikk Vår 2017 Obligatoriske oppgaver Lay, avsnitt 1.6 5. Bor-sulfid reagerer voldsomt med vann for å danne borsyre
Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at
Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =
