MA1201/MA6201 Høsten 2016
|
|
- Siv Bjerke
- 7 år siden
- Visninger:
Transkript
1 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta at A har de distinkte egenverdiene λ,, λ n. La x i være egenvektoren tilhørende egenverdien λ i, slik at Ax i = λ i x i. La P være matrisen som har x,, x n som kolonnevektorer (i den rekkefølgen). Fra teorem 5.. vet vi at x,, x n er lineært uavhengige, så P er en inverterbar matrise. La Λ være diagonalmatrisen som har λ,, λ n som diagonalelementer. La oss se på AP = A [ [ [ x x n = Ax Ax n = λ x λ n x n λ = [. x x n = P Λ. λ n Ligningen AP = P Λ kan vi skrive om til Λ = P AP. Siden Λ er en diagonalmatrise, er A altså diagonaliserbar. b) Stemmer ikke. La B være en ikke-diagonaliserbar kvadratisk matrise, for eksempel den i eksempel 5. La A være identitetsmatrisen av samme dimensjon som B. Da er A diagonaliserbar (den er ferdig diagonalisert), og AB = B = BA, men B er ikke diagonaliserbar. c) Stemmer. Anta at λ er en egenverdi for A, med tilhørende egenvektor x. Vi kan skrive om ligningen A = P AP til P A = BP. Dermed er B(P x) = P Ax = P λx = λ(p x). Det gir oss at Λ er en egenverdi for B, med tilhørende egenvektor P x. Altså er alle egenverdier av A også egenverdier for B. Vi kan på samme måte vise at alle egenverdier av B er egenverdier for A, ved å ta utgangspunkt i AP = P B. Eventuelt kan vi bruke lemma..4, side 66, som sier at similære matriser (som A og B er) har samme karakteristiske polynom. d) Stemmer ikke. La oss igjen se på matrisen B fra eksempel 5. Vi viste i eksempelet spesielt at B ikke er diagonaliserbar. Om vi ser på matrisen D =, [ så har den samme egenverdier som B, men siden B ikke er diagonaliserbar kan det ikke finnes noen matrise slik at D = P BP. 8. november 6 Side av 7
2 Løsningsforslag Øving Alternativt kan man se på A og B av ulik dimensjon, men med samme egenverdier (for eksempel identitetsmatrisene I og I ). Vi vet at determinanten til en matrise er lik produktet av egenverdiene. Siden ikke er et kvadrattall, og egenverdiene til A er heltall, må A ha to distinkte egenverdier. Da vet vi fra oppgave (a) at A er diagonaliserbar. Kapittel 6.4 Når vi vil diagonalisere en symmetrisk matrise følger vi denne oppskriften. Finn det karakteristiske polynomet til matrisen. Finn egenverdiene til matrisen.. Finn egenvektorene til matrisen. Hvis en egenverdi har algebraisk multiplisitet større enn, sørg for at egenvektorene tilhørende den egenverdien er ortogonale. Normaliser egenvektorene. 4. La P være matrisen som har egenvektorene som kolonner, og la Λ være diagonalmatrisen som har egenverdiene til A som diagonalelementer, slik at tallet i rad og kolonne i av Λ er egenverdien som tilhører egenvektoren i kolonne i av P. 5. Du har nå at Λ = P T AP. Dette kan du med fordel dobbeltsjekke! b) Vi regner først ut det karakteristiske polynomet for matrisen: [ λ 4 det = ( λ)( λ) 4 4 = λ 5 = (λ 5)(λ + 5). 4 λ Vi har altså egenverdiene λ = 5 og λ = 5. Fra det regner vi ut egenvektorer: A 5I = [ gir oss egenvektoren x = [. Normalisert får vi v = 5 [. A+5I = [ gir oss egenvektoren x = [. Normalisert får vi v = [ 5. Da får vi at P = [ 5. Vi kontrollregner: P T AP = [ [ [ 4 5 = [ [ [ = [ [ 5 = [ [ 5 5 = = Λ f) Vi regner først ut det karakteristiske polynomet for matrisen: λ det λ = λ [ [ [ λ = ( λ) det + det + det λ λ λ = ( λ)(( λ)( λ) 4) + ( ( λ) 4) + ( 4 ( λ)) = λ + λ + 9λ 7 8. november 6 Side av 7
3 Løsningsforslag Øving Det er ikke så vanskelig å se at λ = er en rot av polynomet. Med polynomdivisjon får vi at λ + λ + 9λ 7 = (λ ) (λ + ), Så egenverdiene er λ, = (dobbel rot) og λ =. A I = [ [ gir oss egenvektorene og og v = [ 6 R R R R. Disse er ikke ortonormale, men ved å bruke [ Gram-Schmidt og så normalisere resultatet får vi egenvektorene v =. 4 A + I = R +R 6 6 gir oss egenvektoren [ R R R 6 R Dette gir oss matrisen P = R +R R R, som normalisert blir v = [. [ 6 Jeg vil såklart også her anbefale kontrollregning ;) Vi vet at A er symmetrisk, så den må ha et fullt sett med egenvektorer. A har egenverdiene λ = og λ =. λ har geometrisk (og dermed algebraisk) multiplisitet, så λ må ha geometrisk og algebraisk multiplisitet. Videre vet vi at E(λ ) = E(λ ). Det vil si at dersom vi kan finne en basis for E(λ ), så har vi et fullt sett med egenvektorer tilhørende λ. Da har vi også et fullt sett med egenvektorer for A. Hvis de i tillegg er ortogonale, så har vi at A = P ΛP T, der P inneholder egenvektorene til A og Λ inneholder egenverdiene. For å finne egenvektorene for E(λ ) utvider vi basisen for E(λ ) til en ortogonal basis for R. De nye basisvektorene er da basisvektorer for E(λ ) = E(λ ). Vi starter med utgangspunkt i u = u = u = som er en basis for R. Vi kommer til å normalisere de nye vektorene underveis. 8. november 6 Side av 7
4 Løsningsforslag Øving v = u u = v = u u v v v = v = v v = 6 v = u u v v v u v v v = = + = 6 v = v v = = = = Vi har altså P = [ 6 Da får vi A = P ΛP T = 6 6 = 6 = 8 8 = Siden A [ = [, er λ = en egenverdi for A, med tilhørende egenvektor x = [. Vi vet at produktet av egenverdiene er lik determinanten, så den andre egenverdien må være λ =. Den tilhørende egenvektoren er ortogonal på x, så vi kan velge x = [. Vi normaliserer egenvektorene, og får v = [ og v = [. Vi setter [ λ Λ = = λ [ og P = [ Da får vi at A = P ΛP T = [ [ [ = = [ 5 5 [ [ 8. november 6 Side 4 av 7
5 Løsningsforslag Øving Jeg viser her kun resultatene for positivt (semi-)definitt; beviset for det negative tilfellet er symmetrisk. a) Anta at A og B er positivt definitte matriser, og anta at x. Da er (A + B)x x = (Ax + Bx) x = Ax x + Bx x > + =, og dermed er A + B positivt definitt. b) La A være positivt definitt. La λ være en egenverdi for A, med tilhørende egenvektor x. Da vet vi at λx x = Ax x >. Siden x x = x > (egenvektorer er per definisjon ulike nullvektoren), så må også λ >. På den andre siden, anta at A er en symmetrisk n n-matrise med kun positive egenverdier λ,, λn (telt med multiplisitet). Da vet vi vi kan danne en ortogonal basis for R n bestående av egenvektorer til A, kall de v,, v n. La x være en vilkårlig ikke-null vektor i R n. Da kan vi skrive x = a v + + a n v n. Ax x = A(a v + + a n v n ) (a v + + a n v n ) = (a Av + + a n Av n ) (a v + + a n v n ) = (a λ v + + a n λ n Av n ) (a v + + a n v n ) = a λ v + + a nλ n A v n > Den siste ulikheten kommer av at v i >, λ i > for alle i, og at a i for minst en i. c) Her er beviset nesten som i forrige oppgave, men med noen endringer, så jeg skriver det opp for sikkerhets skyld. La A være positivt semidefinitt. La λ være en egenverdi for A, med tilhørende egenvektor x. Da vet vi at λx x = Ax x. Siden x x = x > (egenvektorer er per definisjon ulike nullvektoren), så må også λ. På den andre siden, anta at A er en symmetrisk n n-matrise med kun ikkenegative egenverdier λ,, λn (telt med multiplisitet). Da vet vi vi kan danne en ortogonal basis for R n bestående av egenvektorer til A, kall de v,, v n. La x være en vilkårlig vektor i R n. Da kan vi skrive x = a v + + a n v n. Ax x = A(a v + + a n v n ) (a v + + a n v n ) = (a Av + + a n Av n ) (a v + + a n v n ) = (a λ v + + a n λ n Av n ) (a v + + a n v n ) = a λ v + + a nλ n A v n Den siste ulikheten kommer av at for alle i er a i, v og λ i større enn eller lik null. d) Siden oppgave (b) sa noe om positive egenverdier, mistenker vi at det kanskje er en ide å vise at A er positivt definitt. La x R n være ulik nullvektoren. Se på Ax x = (C T Cx) T x = x T C T Cx = (Cx) T (Cx) = Cx 8. november 6 Side 5 av 7
6 Løsningsforslag Øving Siden C har rang n, så er Cx = hvis og bare hvis x =. Altså har vi at Cx > (siden x ble antatt å være ulik nullvektoren), og dermed er Ax x >. Da er A positivt definitt, og har i følge oppgave (b) bare positive egenverdier. Ta en kikk på oppgave 6.4. igjen for løsningsmetoden for de neste to oppgavene! Eksamen a) Det karakteristiske polynomet er gitt ved: [ 6 λ det = (6 λ) = 6 λ+λ = λ λ+5 = (λ 7)(λ 5). 6 λ Vi har altså egenverdiene λ = 7 og λ = 5, og regner nå ut egenvektorene. gir oss egenvektoren x = [, som norma- A 7I = [ liseres til v = A 5I = [ til v = [ R R [ R +R [ [ gir oss egenvektoren x = [, som normaliseres A = P ΛP T = [ [ [ 7 5 Eksamen 5 a) Det karakteristiske polynomet er gitt ved: [ λ 4 det = ( λ) 6 = 9 6λ+λ 6 = λ 6λ 7 = (λ+)(λ 7). 4 λ Vi har altså egenverdiene λ = og λ = 7, og regner nå ut egenvektorene. A + I = 4 4 v = [ 4 4 R R A 7I = [ 4 4 til v = [ 4 4 [ 4 4 gir oss egenvektoren x = [, som normaliseres til R +R [ 4 4 gir oss egenvektoren x = [, som normaliseres A = P ΛP T = [ [ [ 7 8. november 6 Side 6 av 7
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
DetaljerA 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:
5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.
DetaljerDiagonalisering. Kapittel 10
Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel
Detaljer16 Ortogonal diagonalisering
Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen
DetaljerLøsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet
DetaljerLøsningsforslag MAT 120B, høsten 2001
Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()
DetaljerTMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0
TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:
Detaljer12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)
Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er
Detaljer13 Oppsummering til Ch. 5.1, 5.2 og 8.5
3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne
DetaljerR: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og
EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva
DetaljerMA1202/MA S løsningsskisse
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ
DetaljerMinste kvadraters løsning, Symmetriske matriser
Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).
DetaljerMAT1120 Oppgaver til plenumsregningen torsdag 25/9
MAT1120 Oppgaver til plenumsregningen torsdag 25/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 5.1 Denisjon av egenverdier, egenvektorer, egenrom. Teorem 1 s. 306: Egenverdiene til en triangulær
DetaljerMA1201/MA6201 Høsten 2016
MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til
DetaljerLøsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i MA22/MA622 Lineær algebra med anvendelser våren 29 Oppgave a) Rangen til A er lik antallet
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................
Detaljer7.1 forts. Schur triangularisering og spektralteoremet
7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt
DetaljerEgenverdier og egenvektorer
Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon
DetaljerTMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:
TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og
DetaljerUNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
DetaljerUNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side).
UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: MAT 2 Lineær algebra Day of examination: 9. desember 2. Examination hours: 4.3 8.3. This problem set consists of 6 pages.
DetaljerLØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010
LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4
DetaljerEKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG
DetaljerLØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av
Detaljer= 3 11 = = 6 4 = 1.
MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at
DetaljerLineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
DetaljerEKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Hjelpemidler (kode C): Enkel kalkulator
DetaljerEksamensoppgave i TMA4115 Matematikk 3
Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand
DetaljerVi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på
Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske
DetaljerMA1201/MA6201 Høsten 2016
MA121/MA621 Høsten 216 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 2.3 1 b) c) d) 1 3 1 1 3 1 A I 2
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
DetaljerLineær algebra-oppsummering
Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:
DetaljerLøsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.
Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen
DetaljerDiagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1
Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med
DetaljerEksamensoppgave MAT juni 2010 (med løsningsforslag)
Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6
DetaljerTMA4110 Matematikk 3 Haust 2011
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4 Matematikk Haust Løysingsforslag Øving Oppgåver frå læreboka kap. 6., s. 7 u v = ( 7)+( 5) ( 4)+( ) 6 = u = +( 5) +( ) = v
DetaljerKap. 5 Egenverdier og egenvektorer
Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen
DetaljerKap. 7 Symmetriske matriser og kvadratiske former
Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.
DetaljerFasit til utvalgte oppgaver MAT1110, uka 13/4-16/4
Fasit til utvalgte oppgaver MAT0, uka /4-6/4 Øyvind Ryan oyvindry@i.uio.no April, 00 Oppgave 4.8. a Bytt om første og andre rad. b Legg til ganger rad til rad. c Bytt om første og andre rad. d Legg til
DetaljerMAT Prøveeksamen 29. mai - Løsningsforslag
MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av
DetaljerLøsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at
Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =
DetaljerTMA4110 Matematikk 3 Haust 2011
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA40 Matematikk 3 Haust 0 Løysingsforslag Øving Oppgåver frå læreboka kap 5, s 7-73 5 Eigenrommet som svarar til λ = 5 er det
Detaljer6.4 Gram-Schmidt prosessen
6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig
DetaljerKapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer
Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
Detaljer=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,
DetaljerEksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1
Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra
DetaljerØving 5 Diagonalisering
Øving 5 Diagonalisering En matrise A er diagonaliserbar dersom den er similær med en diagonalmatrise, dvs. det eksisterer en invertibel matrise P og diagonal matrise D slik at P.D.P -1. I øving 4 lærte
DetaljerEgenverdier for 2 2 matriser
Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier
DetaljerEKSAMEN I MATEMATIKK 3 (TMA4110)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven
Detaljer7 Egenverdier og egenvektorer TMA4110 høsten 2018
7 Egenverdier og egenvektorer TMA4 høsten 8 Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer. Hvis A er en m n-matrise, så gir A
DetaljerEKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet
DetaljerMAT UiO. 10. mai Våren 2010 MAT 1012
MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer
DetaljerLøsningsforslag øving 7
Løsningsforslag øving 7 8 Husk at en funksjon er injektiv dersom x y gir f(x) f(y), men her ser vi at f(3) 9 f( 3), eller generelt at f(z) z f( z) for alle z C, som betyr at f ikke er injektiv Vi ser også
DetaljerKap. 6 Ortogonalitet og minste kvadraters problemer
Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =
DetaljerMA1201/MA6201 Høsten 2016
MA20/MA620 Høsten 206 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med foreehold om feil Hvis du finner en ta kontakt med Karin Kapittel 2 a) ) A + B 2A B 2 + [ ] 3 3 7 7 c)
Detaljer15 Hovedprinsippet for vektorrom med et indre produkt
Hovedprinsippet for vektorrom med et indre produkt La oss minne Hovedprinsippet (Seksjon 8.): Alle (endelig dimensjonale dvs. de som har en endelig basis) vektorrom kan beskrives som R n der n dim V. Alle
Detaljer7.4 Singulærverdi dekomposisjonen
7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte
Detaljera) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er matrisen inverterbar når v T u 1.
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Oppgave 1 a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er
DetaljerLO510D Lin.Alg. m/graf. anv. Våren 2005
TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til
DetaljerEKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER
Detaljer5.8 Iterative estimater på egenverdier
5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til
DetaljerEKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:
EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet
DetaljerOppgaver til seksjon med fasit
Oppgaver til seksjon.6-. med fasit Oppgaver til seksjon.6. Skriv b som en lineærkombinasjon av a og a når a = ( ( a = og b =.. Skriv b som en lineærkombinasjon av a, a og a når a = a =, a = og b = 5. (.
DetaljerLineær uavhengighet og basis
Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c
DetaljerLøsningsforslag for eksamen i Matematikk 3 - TMA4115
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt
DetaljerGenerelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU
Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H & Rorres, C: Elementary Linear Algebra, 11 utgave Jonas Tjemsland 26 april 2015 4 Generelle vektorrom 41 Reelle
DetaljerPensum i lineæralgebra inneholder disse punktene.
Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise
DetaljerLøsningsforslag øving 6
Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en
DetaljerMA0002 Brukerkurs i matematikk B Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 06 Anbefalte øvingsoppgaver fra boken: 9.3 : 53, 6, 64, 7, 75. Det er bare oppgaven under
DetaljerMAT UiO mai Våren 2010 MAT 1012
200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)
DetaljerEKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerMA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
Detaljer5.5 Komplekse egenverdier
5.5 Komplekse egenverdier Mange reelle n n matriser har komplekse egenverdier. Vi skal tolke slike matriser når n = 2. Ved å bytte ut R med C kan man snakke om komplekse vektorrom, komplekse matriser,
DetaljerKap. 6 Ortogonalitet og minste kvadrater
Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og
DetaljerEKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Kontakt under eksamen Navn: Bawfeh Kingsley Kometa kontor: 7359975, mobil: 936 24 483) Sensur: 06.0.20 EKSAMEN I NUMERISK
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom
DetaljerInnlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9
Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også
DetaljerSIF5010 Matematikk 3. y 00, 2y 0 +5y = sin x 4A, 2B =0 4B +2A =1;
for fakultet E og F varen 998 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Lsningsforslag eksamen varen 998 Eksamen SIF5, mai 98 a) y, y +5y sin x P (r) r, r +5; r i Som
DetaljerGenerelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.
Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer
DetaljerRom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.
Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse
DetaljerMatriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009
Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen
DetaljerUniversitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!
Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:
DetaljerEksamensoppgave i TMA4110/TMA4115 Calculus 3
Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
Detaljer12 Projeksjon TMA4110 høsten 2018
Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,
DetaljerNorges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Mandag. desember Oppgave a) Karakteristisk polynom er + = ;
DetaljerKap. 5 Egenverdier og egenvektorer
Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen
DetaljerLineære likningssystemer og matriser
Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger
DetaljerSide av 5 fra matriseteori har vi at en symmetrisk matrise alltid er ortogonalt diagonaliserbar. Det vil si at X kan skrives på formen X = M M (6) der
Side av 5 Norges teknisk- naturvitenskapelige universitet Institutt for teknisk kybernetikk SIE38 Stokastiske og adaptive systemer Fasit til ving Oppgave Gitt at den stokastiske vektoren v er normalfordelt
DetaljerMA0002 Brukerkurs i matematikk B Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving Oppgaver fra boken: :, 9,,, 5, 9, 5, 67 Det er oppgavene i boldface som
DetaljerMA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer
MA5 Vårsemestre 9 Numeriske metoder for lineære systemer Introduksjon Vi vil approksimere løsningen av lineære systemet av n ligningene og n ukjente: a x + a x + + a n x n b a x + a x + + a n x n b ()
DetaljerEksamen i TMA4180 Optimeringsteori Løsningsforslag.
Eksamen i TMA48 Optimeringsteori Løsningsforslag. Oppgave :. ordens betingelse for minima gir oss f(x) = [ 2x 2x 2 + 2 2x 2 2x 2 ] [ = som er oppfylt for når x 2 = x +. I dette punktet er [ ] 2 2 2 f(x)
DetaljerDigital Arbeidsbok i ELE 3719 Matematikk
Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................
Detaljer