Løsningsforslag øving 7

Størrelse: px
Begynne med side:

Download "Løsningsforslag øving 7"

Transkript

1 Løsningsforslag øving 7 8 Husk at en funksjon er injektiv dersom x y gir f(x) f(y), men her ser vi at f(3) 9 f( 3), eller generelt at f(z) z f( z) for alle z C, som betyr at f ikke er injektiv Vi ser også at f er på formen z n for et heltall n, og vi vet fra tidligere at alle funksjoner z n w, for komplekse tall z og w og heltall n, ifølge algebraens fundamentalteorme har en løsning Dette betyr at for en gitt w så kan vi finne en z slik at f(z) w Dette betyr at f er surjektiv Til slutt observerer vi at f ikke er bijektiv fordi f ikke er injektiv, da en funksjon må være både injektiv og surjektiv for å være bijektiv 8 Vi vet at en lineærtransformasjon dersom T (ax + by) at (x) + bt (y) for alle skalarer a, b R og alle vektorer x, y R Vi sjekker om dette stemmer i hvert av punktene under I de tilfellene hvor T ikke er en lineærtransformasjon så er det godt nok å gi et moteksempel hvor T (x+y) T (x)+t (y) eller T (ax) at (x), enten generelt eller for noen utvalgte skalerer a og vektorer x og y a) Dette er ikke en lineærtransformasjon Vi ser at T ( ]) x + T y ( ]) z w tan(x) e y ] + ] tan(z + w) e z+w ( ]) x + z T y + w ] tan(z) e w b) Dette er en lineærtransformasjon Vi ser at at ( ( x z + bt a(x + y) + b(z + w) (ax) + (ay) + (bz) + (bw) ( x z T a + b y] Dermed går vi videre Standardmatrisen A til lineærtranformasjonen A T (e ) T (e ) ] ] For å finne kjernen til T så løser vi ligningssystemet T (v) Av, som gir oss at x + y, som] igjen a betyr at x y Det følger at ker T { a a R}, og dermed også at T ikke er injektiv Vi ser at bildet til et underrom av R Men spenner det ut hele R? Vi lar a være et vilkårlig element fra R, og sjekker om vi kan finne en vektor v slik at T (v) a Det kan vi, ved å for eksempel sette v a] Det følger at im T R, og dermed også at surjektiv c) Dette er ikke en lineærtransformasjon Vi ser at ( ( x z at + bt a(x + y ) + b(z + w ) (ax) + (ay) a + (bz) + (bw) b (ax + bz) + (ay + bw) (a + b) (ax + bz) + (ay + bw) ( x z T a + b y] Vi kan også se dette ved hjelp av et eksempel, hvor T ( ), og T ( ) 3, som gir at T ( ) 3 T ( ) d) Dette er ikke en lineærtransformasjon Vi ser at ( x at a(x + y ) ax + ay (ax) + (ay) ( ]) x T a y e) Dette er en lineærtranformasjon Vi ser at x u at y + bt v z w ] ] x 5y + 4z u 5v + 4w a + b y 6z v 6w ] ] ax 5ay + 4az bu 5bv + 4bw + ay 6az bv 6bw x u T a y + b v z w Dermed går vi videre Standardmatrisen A til lineærtranformasjonen A T (e ) T (e ) T (e 3 ) ] ] For å finne kjernen til T så løser vi lingingssystemet T (v) Av Vi ser at vi får en fri variabel,

2 og at v 6 6 er en løsning Det følger at ker T Sp{ 6 6 }, og dermed også at T ikke er injektiv Vi ser at bildet til et underrom av R Vi lar y a b være et vilkårlig element fra R, og sjekker om vi kan finne en vektor v x y z i R 3 slik at T (v) y Det kan vi, ved å for eksempel sette v a + 5b b Det følger at im T R, og dermed også at surjektiv f) Dette er en lineærtranformasjon Sjekk at beregningene stemmer Standardmatrisen A til lineærtranformasjonen A Kjernen til ker T Sp{ ] } T er dermed ikke injektiv Bildet til et underrom av R 4 Det er opplagt at T ikke er surjektiv ettersom første element i hver vektor i bildet til T må være, og vi kan dermed ikke finne noen v slik at Av a b c d for a og vilkårlige b, c, d R Vi observerer at tredje kolonne i A kan skrives som en lineærkombinasjon hvor vi summerer andre og fjerde kolonne og trekker fra første kolonne Alle kolonnene er parvis uavhengige, og vi kan dermed velge enhver kombinasjon bestående av tre av kolonnene til A for å lage en basis for bildet til A Bildet til A er altså isomorft med R 3, som et underrom av R 4 g) Dette er en lineærtranformasjon, og kan enkelt verifiseres på samme måte som i punkt b) Standardmatrisen A til lineærtranformasjonen T er A 3 4 ] Kjernen til ker T Sp{,, 3 } dermed ikke injektiv Bildet til et underrom av R Vi ser at for et vikårlig element a R, vi har at a T sendes til a Dermed er T surjektiv 83 Vi vet at en vilkårlig vektor x y kan skrives som en lineærkombinasjon xe + ye, og at en lineærtransformasjon Da vil løsningen kunne skrives på formen T (v) T ( x y ) xt (e ) + yt (e ) 4 9 Det følger at T (e ) 3 og at T (e ) 3 Vi løser dette systemet og får at x 5 og y 3 Løsningen er altså T ( 5 3 ) Ikke korrekt Lineærtransformasjonene R R er på formen T (x) ax (vi kan tenke på konstanten a som en -matrise) Dette kan vi se ved å sjekke om T (x + y) T (x) + T (y) Dette holder ikke generelt, og detfølger at må vi ha b, og dermed også at T (x) ax 85 a) Dette er standardbasisen, x og x Forklaring: Vi ønsker å skrive et vilkårlig andregradspolynom på formen p(x) p()f (x) + p ()f (x) + p () f 3 (x) Dette er akkurat hva f, f x og f 3 x tilfredstiller: Gitt p(x) a + bx + cx ser vi at p() a, p () b og p () c ved regning; dette er akkurat koeffisientene foran, x og x Alternativ løsning: For en mer systematisk fremgangsmåte kan du følge metoden som er beskrevet i del b) b) Vi må finne tre polynom e ( x), e (x) og e 3 (x) som utgjør en basis slik at et vilkårlig polynom kan skrives på formen p(x) p()e (x) + p()e (x) + p()e 3 (x) p() (da blir koordinatene p() ) Dette skjer akkurat p() dersom e (x) tilfredstiller e (x) tilfredstiller e 3 (x) tilfredstiller e () e () e (), e () e () e (), e 3 () e 3 () e 3 () (sett inn i likningen for p(x) uttrykt ved e i ene for å se dette) e : Polynomet kan skrives på formen a + a x + a x, og vi krever fra likningene for e ovenfor at a a + a + a a + a + 4a Dette er tre likninger med tre ukjente, og vi bruker radreduksjon for å se at løsningen er a, a 3 og a Polynomet er derfor e (x) 3 x + x Alternativ løsning: e () og e () betyr at (x ) og (x ) er faktorer av e Derfor må e (x) a(x )(x ) Kravet e () gir nå a ( ) ( ) slik at a Derfor er e (x) (x )(x ) Du kan gange ut for å se at dette er det samme polynomet som vi fant ovenfor e : Samme fremgangsmåte som for e med litt forskjellige likninger gir polynomet e (x) x x e 3 : Samme fremgangsmåte som for e med litt forskjellige likninger gir polynomet e 3 (x) x + x Vi har nå tre polynom e, e og e 3 som spenner P (det er konstruert slik at alle polynom kan skrives p(x) p()e (x) + p()e (x) + p()e 3 (x)) Det gjenstår kun å vise at de er lineært uavhengige Men dette følger også fra hvordan e i -ene er konstruert: Gitt en likning x e (x) + x e (x) + x 3 e 3 (x) kan du sette inn for x,, for å se at x, x og x 3 på grunn av likningene som definerer e i - ene c) Koordinatene til x : p() x ] B p (), p () p() x ] C p() p() 4

3 d) Husk at en 3 3-matrise er bestemt av hvordan den endrer standardbasisen i R 3 T : I koordinatene til standardbasisen for P har vi at ] B e, x] B e og x ] B e 3, hvor e i er den i-te standardbasisen for R 3, per definisjon av koordinater til en basis Fra kommentaren ovenfor må vi ha at T ] B ] C, T x] B x] C, T x ] B x ] C Basisen C er konstruert slik at første koordinat er evaluering i, andre koordinat er evaluering i og tredje koordinat er evaluering i Derfor har vi T ] T e T e T e 3 4 S: Samme fremgang som for T Husk at e (x) 3 x + x, e (x) x x og e 3 (x) x + x I koordinatene til B har vi da at e ] B, e ] B og e 3 ] B Dette gir S 3 Vi sjekker at matrisen gir riktig endring av koordinater for x : 3 4 Dette viser at S endrer koordinatene til x som ønsket Gjør tilsvarende regning for T Du kan også se at T og S er inverser, ved å multiplisere de sammen og få I 3 Vi har dermed at ethvert polynom representert i en av basisene kan oversettes til et polynom representert i den andre basisen, og så sendes tilbake til seg selv igjen 86 a) T θ ] T θ (e ) T θ (e ) ] ] cos(θ) sin(θ) sin(θ) cos(θ) b) Å bruke T θ to ganger svarer til å rotere med en vinkel θ to ganger: T θ T θ T θ På matriseform har vi derfor ] cos(θ) sin(θ) T θ ] sin(θ) cos(θ) Vi kan også regne ut dette produktet direkte: T θ ] cos (θ) sin ] (θ) cos(θ) sin(θ) cos(θ) sin(θ) cos (θ) sin (θ) Fra element (, ), eller (, ), ser vi at cos(θ) cos (θ) sin (θ) 87 Poenget med denne oppgaven er å se noen større sammenhenger i lineæralgebra Det er mange måter å vise disse sammenhengene, og det er viktig at implikasjonene går i begge retninger for hvert av punktene (I) a) f) Per definisjon i kapittel 8 om isomorfier er T en isomorfi hvis og bare hvis det finnes en invers S : C n C n slik at T S id C n og S T id C n La B være standardmatrisen til S Fordi standardmatrisen til id C n er I n får vi AB I n BA Det betyr at B må være den inverse matrisen A til A Og omvendt, dersom A er inverterbar, så definerer A en lineærtransformasjon S : C n C n som er invers til T (II) a) b) Dette følger fra teorem 6 Se bevis i notatene Merk at dette beviset kun er gyldig for A en n n matrise, og ikke generelt (III) b) c) Dette følger fra teorem 53 Se bevis i notatene (IV) b) d) Dette følger fra teorem 84 Bevis: La a, a,, a n være kolonnene i A, og anta at er lineært uavhengige Se på ligningssystemet Ax Husk at Ax x a + + x n a n Ettersom kolonnone er lineært uavhengige, så impliserer ligningen Ax x a + + x n a n at x x n Dette betyr at nullrommet til A kun består av nullvektoren Ettersom A er standardmatrisen til T så er nullrommet til A det samme som kjernen til T Vi vet så fra teorem 89 (se bevis i notatene) at en lineærtransformasjon er injektiv hvis og bare hvis kjernen kun består av nullvektoren Dermed følger det at injektiv hvis og bare hvis kolonnene i A er lineært uavhengige (V) c) e) Dette er resultatet i teorem 84 Bevis: (i) c) e) La a, a,, a n være kolonnene i A, og anta at de spenner ut hele C n La så u være et vilkårlig element i C n Fordi kolonnene i A spenner ut hele C n, så vet vi at ethvert element i C n kan skrives som en lineærkombinasjon av kolonnene i A Da må det eksistere skalarer c, c,, c n i C n, hvor ikke alle er lik null, slik at c a + c a + + c n a n u Det betyr at c a + + c n a n Ac u der vi skriver c for kolonnevektoren med koordinatene c,, c n Fordi A er standardmatrisen til T, har vi Ac T (c) Da har vi vist at T kan nå alle elementer i C n, og dermed er T surjektiv (ii) c) e) La T være surjektiv Da har vi at T kan nå alle elementer i C n Det betyr at hvis w er en vektor i C n, så finnes det en vektor u med T (u) w Ettersom A 3

4 er standardmatrisen til T så betyr dette at Au w Vi kan skrive dette igjen som Au u a + + u n a n w der a, a,, a n er kolonnene i A og u,, u n er koordinatene i u Dette betyr at kolonnene til A spenner ut hele C n Vi har dermed vist at alle påstandene er ekvivalente Merk at i dette tilfellet så er det også sant at injektiv hvis og bare hvis surjektiv ettersom vi går fra en et domene til et kodomene som har samme størrelse Dette er ikke sant på generell basis, som vi har sett i flere oppgaver i denne øvingen allerede Så dersom det for ethvert element w i kodomenet finnes et unikt element i domenet som sendes til w (injektiv), så må vi nødvendigvis treffe alle elementene i kodomenet (surjektiv), og motsatt Det følger da også at en isomorfi ettersom en isomorfi hvis og bare hvis både injektiv og surjektiv På samme måte er ikke nødvendigvis alle kolonnene i A lineært uavhengige dersom A ikke er en kvadratisk matrise, så det er et viktig kriterium her for at alt skal kunne kobles sammen Se figur på neste side for en oversikt over sammenhengene 88 a) T må være injektiv, og S må være surjektiv Merk at dette er sant for generelle funksjoner b) Vi får at dim U dim W siden U W, og dim V dim U siden injektiv (eller dim V dim W siden S er surjektiv) Rent intuitivt gir det mening at dersom vi går fra et lite rom til et stort rom, så kan vi ikke treffe alle elementene I tillegg, dersom vi går fra et stort rom til et lite rom så vil vi nødvendigvis treffe noen elementer flere ganger 4

5 A er inverterbar Thm 6 Kolonnene i A er lineært uavhengige Thm 53 Kolonnene i A utspenner C n Def en isomorfi Thm 84 injektiv Thm 84 surjektiv Figur : Sammenhengene mellom bevis av påstander i oppgave 87 5

Lineærtransformasjoner

Lineærtransformasjoner Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

9 Lineærtransformasjoner TMA4110 høsten 2018

9 Lineærtransformasjoner TMA4110 høsten 2018 9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en

Detaljer

8 Vektorrom TMA4110 høsten 2018

8 Vektorrom TMA4110 høsten 2018 8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.

Detaljer

Egenverdier og egenvektorer

Egenverdier og egenvektorer Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon

Detaljer

Diagonalisering. Kapittel 10

Diagonalisering. Kapittel 10 Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel

Detaljer

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010 LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4

Detaljer

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer? Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

Eksamensoppgave i TMA4115 Matematikk 3

Eksamensoppgave i TMA4115 Matematikk 3 Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

12 Lineære transformasjoner

12 Lineære transformasjoner 2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f

Detaljer

Obligatorisk innlevering 3 - MA 109, Fasit

Obligatorisk innlevering 3 - MA 109, Fasit Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

MA1201, , Kandidatnummer:... Side 1 av 5. x =.

MA1201, , Kandidatnummer:... Side 1 av 5. x =. MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3 NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis

Detaljer

MAT1120 Repetisjon Kap. 1, 2 og 3

MAT1120 Repetisjon Kap. 1, 2 og 3 MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger

Detaljer

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer 5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

7 Egenverdier og egenvektorer TMA4110 høsten 2018

7 Egenverdier og egenvektorer TMA4110 høsten 2018 7 Egenverdier og egenvektorer TMA4 høsten 8 Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer. Hvis A er en m n-matrise, så gir A

Detaljer

5.5 Komplekse egenverdier

5.5 Komplekse egenverdier 5.5 Komplekse egenverdier Mange reelle n n matriser har komplekse egenverdier. Vi skal tolke slike matriser når n = 2. Ved å bytte ut R med C kan man snakke om komplekse vektorrom, komplekse matriser,

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer

Detaljer

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017.

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017. Hint til oppgavene Fullstendige løsningsforslag finnes på emnesidene for 2017. Uke 34 Oppgave 1, 2, 3 og 4 kan alle løses ved å tegne sannhetstabeller, men i flere tilfeller kan man like gjerne manipulere

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

EKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid:

EKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid: EKSAMEN EMNE: MA6 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen Klasser: (div) Dato: mai Eksamenstid: Eksamensoppgaven består av følgende: Antall sider (ink forside): 5 Antall oppgaver: Antall vedlegg:

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Eksamensoppgave i TMA4110/TMA4115 Calculus 3

Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte

Detaljer

Eksamensoppgave i MA1201 Lineær algebra og geometri

Eksamensoppgave i MA1201 Lineær algebra og geometri Institutt for matematiske fag Eksamensoppgave i MA1201 Lineær algebra og geometri Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 05.10.2016 Eksamenstid (fra til): 08:15 09:45

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

tma4110 Matematikk 3 Notater høsten 2018 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland

tma4110 Matematikk 3 Notater høsten 2018 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland tma4 Matematikk Notater høsten 8 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland Innhold Introduksjon ii Lineære likningssystemer Gausseliminasjon 4 Vektor- og matriselikninger 8 4 Matriser

Detaljer

Løsningsforslag. Vedlegg C: Kapittel 2. e) Ingen løsning. f) Flere løsninger: x = 4 + 2t, y = t. c) x 1 = 2, x 2 = 3, x 3 = 1

Løsningsforslag. Vedlegg C: Kapittel 2. e) Ingen løsning. f) Flere løsninger: x = 4 + 2t, y = t. c) x 1 = 2, x 2 = 3, x 3 = 1 Vedlegg C: Løsningsforslag Kapittel. a x =, y = 3 b x =, y = 0 cx =, y = 5 d x =, y = 3 e Ingen løsning. f Flere løsninger: x = 4 + t, y = t. a x = 7, x = 6, x 3 = bx =, x =, x 3 = c x =, x = 3, x 3 =.3

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Hjelpemidler (kode C): Enkel kalkulator

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =

Detaljer

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009 Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

OBLIG 2 - MAT 1120 Høsten 2005

OBLIG 2 - MAT 1120 Høsten 2005 > with(linearalgebra): with(linalg):with(plots): Warning, the name GramSchmidt has been rebound Warning, the protected names norm and trace have been redefined and unprotected Warning, the name changecoords

Detaljer

LO510D Lin.Alg. m/graf. anv. Våren 2005

LO510D Lin.Alg. m/graf. anv. Våren 2005 TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 06 Anbefalte øvingsoppgaver fra boken: 9.3 : 53, 6, 64, 7, 75. Det er bare oppgaven under

Detaljer

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

Mer om lineære likningssystemer, vektorer og matriser

Mer om lineære likningssystemer, vektorer og matriser Kapittel Mer om lineære likningssystemer, vektorer og matriser I dette kapittelet tar vi utgangspunkt i lineære likningssystemer, som vi lærte om i MAT, og setter dette inn i et større rammeverk, kalt

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

Prøveeksamen i MAT 1100, H-03 Løsningsforslag Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan

Detaljer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Eksamen i MNFMA205/SIF5021, 19. mai 1999-Løsningsforslag a b Oppgave 2. (a) Vi skal vise at H = 0 a b under matrisemultiplikasjon. Vi har at det.

Eksamen i MNFMA205/SIF5021, 19. mai 1999-Løsningsforslag a b Oppgave 2. (a) Vi skal vise at H = 0 a b under matrisemultiplikasjon. Vi har at det. Eksamen i MNFMA205/SIF5021 19. mai 1999-Løsningsforslag { } Oppgave 2. a Vi skal vise at H 0 a C er en gruppe under matrisemultiplikasjon. Vi har at det aā + a 2 + 2 > 0 da enten a 0 eller 0. Dette fører

Detaljer

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i MA22/MA622 Lineær algebra med anvendelser våren 29 Oppgave a) Rangen til A er lik antallet

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100, 6/

Løsningsforslag til underveiseksamen i MAT 1100, 6/ Løsningsforslag til underveiseksamen i MAT 00, 6/0-008. ( poeng) Det komplekse tallet z har polarkoordinater r =, θ = 7π 6. Da er z lik: i + i i i + i Riktig svar: c) i. Begrunnelse: z = ( cos 7π 6 + i

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente. Oppvarming Her er et eksempel på et

Detaljer