MAT-1004 Vårsemester 2017 Prøveeksamen
|
|
|
- Hedda Ødegård
- 8 år siden
- Visninger:
Transkript
1 MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall Matriser og vektorer Tupler Fasit 6. Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave
2 Løsningsforslag. Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave Forord. Oppgavene nedenfor dekker nesten alle typer av oppgaver, som kan gis på eksamen. Prøveeksamenen er stor: den inneholder 4 deloppgaver (abc, abcdefghijk, abcd, 4abcdefg, abc, 6, 7, 8abcd), noen delt opp i enda mindre deloppgaver. Tilsvarende deloppgaver på eksamen vil bli lettere beregningsmessig. Betrakt derfor denne prøveeksamenen som en tredobbel eksamen.. En oppgave om komplekse matriser kan bli inkludert i eksamenen. Oppgave 8 er et typisk eksempel av en slik oppgave. Den ligner oppgave 4 fra eksamenen 6-6, men er litt vanskeligere. OPPGAVE Vi ser på et lineært system Ax b, der: A b 6a 4 4a + 8 a + a a + a., a) Finn determinanten det A. Resultatet er et polynom det A k + k a + k a. Du oppgir radvektoren [k, k, k i feltet a. b) For hvilke a R er systemet konsistent (dvs. at det har løsninger)? Svaret skal være på formen a s, der s er et rasjonalt tall. Du oppgir tallet s i feltet b.
3 c) For hvilke a R har systemet uendelig mange løsninger? Svaret skal være på formen a t, der t er et rasjonalt tall. Du oppgir tallet t i feltet c. Hint: se eksamensoppgaver -6-, -9-, -6- og -9-, samt Exercise.9,.7 og.8. OPPGAVE En del av oppgaven nedenfor er knyttet til Ch. 6 Inner Product Spaces. Vi betrakter vektorer fra R både som kolonnevektorer og radvektorer. Gitt matrisen A 4. 4 Betrakt systemet Ax b der x x x x x 4 x, b Lag en utvidet matrise [ A b, og bruk Gauss-Jordan for å få en annen matrise [ A b slik at A har en redusert trappeform (reduced row echelon form). Denne siste matrisen skal hjelpe deg til å løse alle deloppgaver nedenfor. Merknad. Istedenfor kolonnen b b b b b 4 b b b b 4. i den utvidede matrisen [ A b, kan du bruke en 4 4 identitetsmatrise. a) Finn en basis G (g, g,..., g s ) for radrommet (the row space) row (A). Svaret skal gis i formen av et s-tuppel av radvektorer (som i Seksjon 9.). b) Gitt vektoren u [ 8 4 row (A). Finn koordinatvektoren [u G til u mht basisen G du fant i deloppgave a. Svaret skal gis i formen av en kolonnevektor (som i Seksjon 9.) (u ; u ;...; u s )
4 der u u g + u g u s g s. Hint: hvis du skriver likningen u u g + u g u s g s koordinatvis, får du et system med likninger og s variabler. Du trenger ikke å bruke Gauss- Jordan på nytt for å løse systemet. Hvis du fikk basisen G ved hjelp av Gauss- Jordan, er den allerede god nok til å løse systemet med én gang. c) Finn en ortogonal basis for G (g, g,..., g s) for radrommet (the row space) row (A). Svaret skal gis i formen av et s-tuppel av radvektorer. la Hint: bruk Gram-Schmidt. d) For en vilkårlig kolonnevektor x x x x x 4 x R, T (x) proj row(a) (x) være projeksjonen til vektoren x på underrommet row (A) (orthogonal projection of x on row (A)). T er en lineær operator T : R R, derfor beskrives den som en matriseoperator T (x) Bx, der B er en matrise. Du oppgir matrisen B i svaret. Hint: se Oblig 6, oppgave f. e) Finn en basis J (j, j,..., j u ) for nullrommet (the null space) Null (A). Svaret skal gis i formen av et u-tuppel av kolonnevektorer (som i Seksjon 9.). 4
5 f) Gitt vektoren w 6 Null (A). Finn koordinatvektoren [w J til w mht basisen J du fant i deloppgave e. Svaret skal gis i formen av en kolonnevektor (som i Seksjon 9.) w w... w u der w w j + w j w u j u. Hint: hvis du skriver likningen w w j + w j w u j u koordinatvis, får du et system med likninger og u variabler. Du trenger ikke å bruke Gauss- Jordan på nytt for å løse systemet. Hvis du fikk basisen J ved hjelp av Gauss- Jordan, er den allerede god nok til å løse systemet med én gang. g) Finn en ortogonal basis J (j, j,..., j v) for det ortogonale komplementet row (A) til radrommet (the orthogonal complement of the row space). Svaret skal gis i formen av et v-tuppel av kolonnevektorer. Hint: se Oblig 6, Oppgave b. h) For en vilkårlig kolonnevektor x x x x x 4 x R, la S (x) proj row(a) (x) være projeksjonen til vektoren x på underrommet row (A) (orthogonal projection of x on row (A) ). S er en lineær operator S : R R,
6 derfor beskrives den som en matriseoperator S (x) Mx, der M er en matrise. Du oppgir matrisen M i svaret. i) Finn betingelsen for b for at systemet Ax b er konsistent, dvs. har minst én løsning x. Betingelsen skal oppgis som en radvektor av lengde 4. k b + k b + k b + k 4 b 4, k i R, [k, k, k, k 4 Hint: se på den siste linjen i den utvidede matrisen [ A b. j) Finn en basis H (h, h,..., h t ) for kolonnerommet (the column space) col (A). Svaret skal gis i formen av et t-tuppel av kolonnevektorer (som i Seksjon 9.). k) Gitt vektoren v 4 4 col (A). Finn koordinatvektoren [v H til v mht basisen H du fant i deloppgave d. Svaret skal gis i formen av en kolonnevektor (som i Seksjon 9.) v v... v t der v v h + v h v t h t. 6
7 OPPGAVE Gitt tre vektorer u, v, w i R. Operatoren er gitt ved formelen T : R R T (x) u (v x) der x R, og er kryssproduktet (the cross product). For eksempel, hvis x, er T (x) 8. a) Finn matrisen [T E til operatoren T med hensyn til standardbasisen E (i, j, k), (the matrix for T relative to the base E). Svaret skal oppgis som en matrise., b) Finn en basis for kjernen (the kernel) ker T. Svaret skal gis som et s-tuppel av kolonnevektorer. c) Finn en basis for bildet (the range) R (T ). Svaret skal gis som et t-tuppel av kolonnevektorer. d) Finn en vektor x som tilfredsstiller likningen T (x) w. Svaret skal gis som en kolonnevektor. 7
8 4 OPPGAVE La W M være mengden av antisymmetriske (X T X) matriser. For eksempel, matrisen er antisymmetrisk fordi mens er ikke antisymmetrisk fordi T T W er et underrom i Mat av dimensjon og har en basis G (g, g, g ),,., (du behøver ikke å sjekke at W er et underrom, eller at G er en basis for W ). La V P være rommet av polynomer av grad med standardbasisen Gitt også matrisen La E (, x, x, x ). B U : V W være en lineær transformasjon gitt ved formelen. U (f) f (B) f (B) T. (du behøver ikke å sjekke at U er lineær). For eksempel, hvis f + x x x, 8
9 er f (B) I + B B B + og U (f) (f (B)) (f (B)) T T 6 6. a) Finn matrisen [U G E (i læreboken betegnes som [U G,E ) til transformasjonen U mht basisene E og G. Svaret skal gis som i Seksjon 9.. b) Finn en basis for kjernen (the kernel) til U. Det påminnes om at ker U {v V U (v) }. Svaret skal gis som et s-tuppel (Seksjon 9.) av kolonnevektorer som tilsvarer polynomer på følgende måte: a a + a x + a x + a x a a. a c) Finn en basis for bildet (the range) R (U) til U. Det påminnes om at R (U) {U (v) v V }. Svaret skal gis som et t-tuppel (se Seksjon 9.) av matriser. d) Finn et polynom f slik at U (f)
10 Svaret skal gis som en kolonnevektor a a a, a som tilsvarer polynomet f a + a x + a x + a x. e) La oss betrakte en annen basis G for W : G (g, g, g ),,. Finn overgangsmatrisene (the transition matrices) P G G og P G G (i læreboken betegnes de som P G G og P G G ). f) La oss betrakte en annen basis E for V : E (, + x, x, x + x ). Finn overgangsmatrisene (the transition matrices) P E E og P E E (i læreboken betegnes som P E E og P E E ). g) Finn matrisene til U mht diverse basispar: [U G E, [U G E, og [U G E. Hint: bruk Teorem.7 og Korollar.9 på s. 96 i Kompendium. OPPGAVE Gitt matrisen A a) Finn det karakteristiske polynomet p (λ) til matrisen A. Hvis p (λ) a + a λ + a λ + a λ, skal svaret gis som en radvektor [ a a a a.
11 Merknad. Polynomet skal beregnes som i læreboka, dvs. p (λ) det (λi A). Det er tillatt å bruke metoden som var gitt på forelesningene, men husk å sette minus foran (fordi er et odde tall): p (λ) det (λi A) det (A λi). Du kan også bruke formlene fra Teorem.9 på s. i Kompendium. b) Finn en invertibel matrise P slik at P AP D der D er en diagonalmatrise med voksende diagonalelementene: D λ λ, λ λ λ. λ Både D og P skal oppgis i svaret. Hint: for å finne egenverdiene, bruk Ex.... c) Finn formelen for A m der m er et vilkårlig helt tall. Formelen skal se ut som A m b m B + c m C, der b og c er rasjonale tall, b < c, mens B og C er konstante (dvs. som ikke avhenger av m) matriser. Hint: A m ( P DP ) m P D m P. 6 OPPGAVE Gitt matrisen F Det karakteristiske polynomet q (λ) til matrisen F er lik q (λ) λ 9λ 9λ + 8 (λ + ) (λ ) (λ 9). Matrisen F er ortogonalt diagonaliserbar (hvorfor?). Finn en ortogonal matrise Q slik at Q F Q Q T F Q. 9.
12 7 OPPGAVE Gitt matrisen a b d A c e [ k k k f som inneholder 6 ukjente elementer a, b, c, d, e, f. Det er kjent at A er ortogonal, og at a >, b <, d <. Finn a, b, c, d, e, f (de er rasjonale tall), og oppgi den resulterende matrisen A i svaret. Hint: for å finne a, bruk betingelsen at kolonnen k har lengden ( k ) og at a >. For å finne b og c, bruk betingelsene k, k k, b <. For å finne d, e og f, bruk betingelsene k, k k, k k, d <. Se oppgave 7.7 fra læreboken og eksamensoppgave -9-b. 8 OPPGAVE a) Gitt den komplekse matrisen [ + (a + ) i ( + i) z A i der a R, og z b + ci C. Finn for hvilke verdier av a, b, c er A Hermitsk (A A). Du oppgir radvektoren [a, b, c i svaret., b) Gitt den komplekse matrisen [ 7a + + i ( i) z B 4i 6i,
13 der a R, og z b + ci C. Finn for hvilke verdier av a, b, c er B anti-hermitsk (B B). Du oppgir radvektoren [a, b, c i svaret. c) Gitt den komplekse matrisen [ a 4 C 7 i z i 7 der a R, a >, og z b + ci C. Finn for hvilke verdier av a, b, c er C unitær (C C I). Du oppgir radvektoren [a, b, c i svaret. 7 i, Hint: betrakt de to kolonnene som C består av: C [ k k. Bruk Th. 7..4(d) fra læreboka. Betingelsen k gir to mulige verdier til a. Velg a >. Betingelsen gir verdien til z. k k d) Gitt den komplekse matrisen [ i z D 4 + i i der z b + ci C. Finn for hvilke verdier av b, c er D normal (D D DD ). Du oppgir radvektoren [b, c i svaret.,
14 9 Formatering av svarene 9. Rasjonale tall Alle tall i svarene er enten hele eller rasjonale. Hele tall skal skrives på vanlig måte som,, - osv. Rasjonale tall skal skrives slik: -/ for, 4/7 for 4 7. Merknad. Tall på formen 7 eller 7 er ikke tillatt. Skriv -/ eller 4/7 i stedet. 9. Matriser og vektorer De settes i kvadratiske parenteser. Radene (rows) er separert med semikoloner ; mens elementene i radene er separert med kommaer, for eksempel matrisen 4 4 skal skrives som [,,-/,4;,-/4,,;/,,/,, radvektoren (the row vector) [ 4 skal skrives som [,,-/,4, og kolonnevektoren (the column vector) skal skrives som [;;/. Legg merke til semikoloner istedenfor kommaer! 9. Tupler Tuplene settes i runde parenteser. Leddene separeres med kommaer. For eksempel, hvis en basis G for R består av kolonnevektorer 6 7 G (g, g, g, g 4, g ) 4, 7 8 9,,, 8 9, 4
15 er G et -tuppel, og skal skrives ned som ([; ; ; 4;, [6; 7; 8; 9;, [; ; ; ;, [; ; ; ;, [7; 8; 9; ; ) Merknad 9. Legg merke til at leddene i kolonnevektorene er separert med semikoloner, mens leddene i -tuppelet er separert med kommaer.
16 Fasit. Oppgave a) [4,-4,-4 det A 4 4a 4a. s 9 4, t 6. b) -9/4 c) /6. Oppgave a) G (g, g, g ) ([, [, [ ). Rangen s rank (A), nulliteten t nullity (A). ([,,,,,[,,-,,,[,,,,-) b) [-;;- [u G. c) G (g, g, g ) ([, [ 8 7, [ 48 4 ). ([,,,,,[,,-8,,7,[48,,-,4,-) d) T (x) 6 x + x + 7 x + x x x + x 4 x + x 4 + x 7 x 4 x + 8 x 8 x 4 8 x x + x 8 x x 4 4 x 4 x + x 8 x 4 x x [6/,/,/7,/,4/;/,/,-/4,/,/;/7,-/4,/8,- /8,-/8; /,/,-/8,4/4,-/4;4/,/,-/8,-/4,9/4 x x x x 4 x Bx. 6
17 e) J ([-;;;;,[-;-;;;),. f) [-; [w J [. g) J (j, j ), 6 7. ([-;;;;,[-6;-7;;;) h) S (x) 9 x x 7 x x 4 4 x 7 x x + 4 x x 4 x 4 x 7 x + 8 x + 8 x x 8 x x x x x 8 x x 4 x + 4 x x [9/,-/,-/7,-/,-4/;-/,7/,/4,-/,-/;-/7,/4,/8,/8,/8; -/,-/,/8,99/4,/4;-4/,-/,/8,/4,/4 x x x x 4 x Mx. i) b b + b b 4. [,-/,,-/ eller [,-,,- j) H (h, h, h ) ([;;;,[;;;,[;4;; 4),,
18 k) [6;-;-7 [v H Oppgave a) x x y, z 7x y z 7 T (x) x y + 6z 6 x + y 4z 4 7 [T E A 6. 4 [-7,-,-;-,-,6;-,,-4 x y z, b) er en basis for ker T. ([-;;) c) En basis for bildet R (T ): ([-7;-;-,[-;-;) 7,. d) x y z t t t + t, 8
19 for eksempel: x y z x y z 8,. [-;; eller [-;8;.4 Oppgave a) [U (f) G E [,,,;,-,,-4;,,-,- b) En basis for ker U er 4 (, 4x x + x ).. ([;;;,[;-4;-;) c) En basis for R (U) er G (g, g ),. ([,,-;-,,;,,,[,,;-,,-;,,) d) [;-;-; f ( x x ) + s + t ( 4x x + x ). e) P G G P G G,. 9
20 4e_P_G_Gprime: [,,;,,;,,- 4e_P_Gprime_G: [,-,;,,;,,- f) P E E P E E,. 4f_P_E_Eprime: [,,,;,,,;,,,;,,, 4f_P_Eprime_E: [,-,,;,,,;,,,-;,,, g) [U G E [U G E [U G E 9 4, g_U_Gprime_E: [,,,9;,-,,-4;,,, 4g_U_G_Eprime: [,,,6;,-,,-4;,,-,-6 4g_U_Gprime_Eprime: [,,,;,-,,-4;,,,6.,. Oppgave a) [-,-,-, p (λ) λ λ + λ. b) D P.,
21 b_d: [-,,;,-,;,, b_p: [,,;,,;,, c) A m ( ) m 4??? c_b: -??? c_c: c_b: [-,,4;-,,;-,, c_c: [4,-,-4;,-,-;,-,- + m Oppgave Q [-/,/,/;-/,/,-/;/,/,/..7 Oppgave 4 A. [/,-4/,-/;/,-/,/;-/,-/,/.8 Oppgave a) a, z i, [ + i A i. [-/,7/,7/ b) a 7, z i, [ i 4i B 4i 6i.
22 [-/7,4/9,-/9 c) a 7, [/7,8/7,-/7 d) b 8 7, c 7, [ C i i i 7 7 i. b, c 4, [ i 4i D 4 + i i. [,-4
23 Løsningsforslag. Oppgave A b 6a 4 4a + 8 a + a a + a., a) det A blokk-diagonal 6a 4 4a + 8 ( 6a) (9 + 4a) 4 4a 4a. Vi skriver [4,-4,-4 i feltet a. bc) Setter sammen koeffi sientmatrisen og vektoren b: 6a 4 a + A a 4a + 8 a + a. Systemet Ax b har en entydig løsning Matrisen er invertibel det A ( 6a) (9 + 4a) a 9 4, 6.. Hvis a 9 4, blir den utvidede matrisen slik: og systemet er inkonsistent. G J. Hvis a 6, blir den utvidede matrisen slik: 6 4 G J. 7 74,,
24 og x x x x 4 t t t dvs. systemet vil ha uendelig mange løsninger. 4. Endelig: s 9 4, t 6. Du skriver -9/4 i feltet a, og /6 i feltet b.. Oppgave A 4 4 La oss lage den utvidede matrisen som består av matrisen A og kolonnevektorene b b b b, v 4. b 4 4 Man kan sette en 4 4 identitetsmatrisen I 4 istedenfor b, men vi inkluderer begge deler (både b og I 4 ). Bruker deretter Gauss-Jordan: b 4 b b 4 G J 4 b 4 4 G J., b + 4b b b 8b + b b + b b 4 7 b b + b b 4 a) De tre første radene i den reduserte matrisen A gir en basis for radrommet: G (g, g, g ) ([, [, [ ). Rangen s rank (A), nulliteten t nullity (A). Vi skriver ([,,,,,[,,-,,,[,,,,-) i feltet a. b) La u [ 8 4 u g + u g + u g u [ + u [ + u [ [ u u u u u u + u u.. 4
25 og Det er klart at Vi skriver [-;;- i feltet b. La oss kontrollere resultatet: u, u, u [u G [ + [ [ [ 8 4 u.. c) La oss bruke Gram-Schmidt: G (g, g, g ) ([, [, [ ). g g [, g g g g g g g [ [ [ T [ [ T [ [ [ [ 8 7. Vi kan bruke i stedet. g [ 8 7 [ 8 7 g g g g g g g g g g g g [ [ [ T [ [ T [ [ [ T 8 7 [ [ [ T [ [ ( ) ( 7 ) [ 8 7 4
26 Vi kan bruke g 4 [ 48 4 i stedet. Endelig: G (g, g, g ) [ [ 48 4 ([, [ 8 7, [ 48 4 ). Vi skriver ([,,,,,[,,-8,,7,[48,,-,4,-) i feltet c. d) La oss finne projeksjonen (se Th. 6..4a). Vi skal skrive vektorer g i både radvis og kolonnevis: T (x) x g g g g + x g g g T x x x x 4 g + x g g g g x [ [ T T x x x 8 x 4 x 7 [ [ T T x 48 x x x 4 4 x [ [ T ( x + x + ) x + + ( x + 4 x 8 x + 7 x 48 4 ) 8 7 6
27 6 ( + 4 x + 8 x 48 x + 4 x 4 ) 74 x x + x + 7 x + x x x + x 4 x + x 4 + x 7 x 4 x + 8 x 8 x 4 8 x x + x 8 x x 4 4 x 4 x + x 8 x 4 x x Vi skriver [6/,/,/7,/,4/;/,/,-/4,/,/;/7,-/4,/8,- /8,-/8; /,/,-/8,4/4,-/4;4/,/,-/8,-/4,9/4 i feltet d. dvs. e) Siden nullity (A), består basisen J av to vektorer J (j, j ). Å finne basisen er det samme som å løse systemet Ax. x s og x t er frie variable, og x s t x x x 4 s t s t s + t, x t J,. Vi skriver ([-;;;;,[-;-;;;) i feltet e. x x x x 4 x Bx. f) La 6 w w j + w j w + w w w w w w w w. 7
28 Det er klart at w, w, [w J [. Vi skriver [-; i feltet f. g) Vi vet (Th ) at row (A) Null (A), derfor er J, en basis for det ortogonale komplementet row (A). For å finne en ortogonal basis, bruker vi Gram-Schmidt: j j, j J j j j j j T T ( )
29 Vi kan bruke i stedet. Endelig: j 6 7 J (j, j ), Vi skriver ([-;;;;,[-6;-7;;;) i feltet g. h) La oss finne projeksjonen (se Th. 6..4a). x x x x 4 x T T S (x) x j j j j + x j j j j ( x x + ) x 9 + x x 7 x x 4 4 x 7 x x + 4 x x 4 x 4 x 7 x + 8 x + 8 x x 8 x x x x x 8 x x 4 x + 4 x x x x x x 4 x 6 7 T T ( + 8 x x 4 8 x + 4 x 4 + ) 4 x x x x x 4 x 6 7 Mx. Vi skriver [9/,-/,-/7,-/,-4/;-/,7/,/4,-/,-/;-/7,/4,/8,/8,/8; -/,-/,/8,99/4,/4;-4/,-/,/8,/4,/4 9
30 i feltet h. Merknad. Begge matrisene, M og C er symmetriske. Merknad. Sammenlign de to matrisene! Finnes det noen relasjon mellom dem? i) Det siste elementet i kolonne nr. 6 (eller de siste elementene i kolonnene nr. 7-) gir oss betingelsen for b for at systemet Ax b er konsistent: b b + b b 4. Vi skriver [,-/,,-/ i feltet i. stedet. Vi kunne godt skrive [,-,,- i j) Kolonnene nr, og 4 i den opprinnelige matrisen danner en basis for kolonnerommet: H (h, h, h ),, 4. 4 Vi skriver ([;;;,[;;;,[;4;; 4) i feltet j. k) Se på den siste kolonnen i den reduserte matrisen: 6 7. Den siste elementet er lik, derfor v virkelig tilhører kolonnerommet. De tre resterende elementene gir koordinatene mht basisen H: 6 [v H. 7 Vi skriver [6;-;-7 i feltet k.
31 . Oppgave u, v, w T (x) u (v x) a) Hvis er T (x) 7x y z x y + 6z x + y 4z x x y z x y z, x y z, y + z x + z x y dvs. der og A [T E A T T A 7 6 4, Vi skriver [-7,-,-;-,-,6;-,,-4 i feltet a. Lag den utvidede matrisen som består av A, kolonne a b b c og/eller identitetsmatrisen I, og kolonne w 9 9, 4.
32 og bruk Gauss-Jordan: 7 a 9 6 b 9 G J 4 c 4 G J 8b 6c b + 6 c 8 6 a b c. b) For å finne en basis for kjernen ker T, løs systemet Ax. z t er en fri variabel: x t y t t, z t dvs. er en basis for ker T. Vi skriver ([-;;) i feltet b. c) Kolonnene nr. og i den opprinnelige matrisen gir en basis for bildet R (T ): 7,. Vi skriver ([-7;-;-,[-;-;) i feltet c. d) Løser systemet Ax w: x t y t z t + t. Det er uendelig mange løsninger, for eksempel: x t, y z, t, x y z t t + t 8. Vi skriver [-;; eller [-;8; (eller en vektor som tilsvarer en annen verdi av t) i feltet d.
33 La oss kontrollere svarene: Oppgave G (g, g, g ) W M., V P, E (, x, x, x ). B U : V W,. U (f) f (B) f (B) T.,. a) Løsning. f a + a x + a x + a x, f (B) a I + a B + a B + a B a + a a a a + a a a a a + + a 4a a a a a 4a a + a + 4a + a a + a + a a + 4a a + a + a a + a + a + a a + a a + 8a 4a + 4a a + a U (f) U ( a + a x + a x + a x ) f (B) f (B) T + a a a 4a a a a 8a 4a.
34 dvs. a + 4a + a a + a + a a + 4a a + a + a a + a + a + a a + a a + 8a 4a + 4a a + a a + 4a + a a + a + a a + 4a a + a + a a + a + a + a a + a a + 8a 4a + 4a a + a [U (f) G a + a + a a 4a a a a a a a + 4a a + a a + a + a a 4a a a [U (f) G E 4 4 Vi skriver [,,,;,-,,-4;,,-,- i feltet 4a. Løsning. [U () G [ I I T G [U (x) G [ B B T G, G G. T. [ U ( x ) G [ B ( B ) T G T G G, a a a a T, G, T G 4
35 4 4 T Setter de 4 kolonnene i matrisen [ U ( x ) G [ B ( B ) T G [U (f) G E G G 4. T G b) Vi tar i betrakning matrisen fra deloppgave 4d, og setter sammen matrisen [U (f) G E, kolonnen a b c (eller identitetsmatrisen I ; vi setter begge), og kolonnen Bruker Gauss-Jordan: a 4 4 b c 6 La a a a a G G J Null ([U (f) G E ). a og a er frie variable. Det er klart at a s a a 4t t s a t + t 4 b c a + b + c 4..
36 Oversetter tilbake til P -språket: en basis for ker U er (, 4x x + x ). Vi skriver ([;;;,[;-4;-;) i feltet 4b. c) Bildet R (U) tilsvarer kolonnerommet til [U (f) G E. En basis for kolonnerommet består av kolonnene nr. og :,. Oversetter tilbake til matriser: en basis for R (U) er G (g, g ),. Vi skriver ([,,-;-,,;,,,[,,;-,,-;,,) i feltet 4c. d) U (f) Den siste kolonnen i den trappeformede matrisen sier at den generelle løsningen til systemet er a a a + s + t 4. a Vi kan velge s og t selv. Hvorfor ikke å sette s t : a a a, a og det ønskelige polynomet er Vi skriver [;-;-; i feltet 4d. Den generelle løsningen er x x.. f ( x x ) + s + t ( 4x x + x ). 6
37 La oss kontrollere resultatet: B B U ( x x ) U () I I T T T ,, 4B B + B 4 U ( 4x x + x ) + T., U (( x x ) + s + t ( 4x x + x )) + s + t e) G (g, g, g ), P G G [[g G, [g G, [g G P G G,,.. Vi skriver [,,;,,;,,- i feltet 4e_P_G_Gprime og [,-,;,,;,,- i feltet 4e_P_Gprime_G. f) 7
38 E (, + x, x, x + x ). P E E [ [ E, [ + x E, [ x E, [ x + x E P E E Vi skriver [,,,;,,,;,,,;,,, i feltet 4f_P_E_Eprime og [,-,,;,,,;,,,-;,,, i feltet 4f_P_Eprime_E. g) [U G E P G G [U G E [U G E [U G E P E E [U G E P G G [U G E P E E , ,, Vi skriver [,,,9;,-,,-4;,,, i feltet 4g_U_Gprime_E, [,,,6;,-,,-4;,,-,-6 i feltet 4g_U_G_Eprime, og [,,,;,-,,-4;,,,6 i feltet 4g_U_Gprime_Eprime.. Oppgave A
39 a) p (λ) a + a λ + a λ + a λ. a det A det a tr (A), a Vi skriver [-,-,-, i feltet a. b) P AP D p (λ) λ λ + λ. λ λ λ, 8 9,, λ λ λ. Siden a, er det bare 4 muligheter for egenverdiene (dvs. røttene til p (λ)): ± og ±. Det er enkelt å sjekke at og er to egenverdier. Siden er den resterende egenverdien tr (A) λ + λ + λ, ( ). Derfor er diagonalmatrisen D. Vi skriver [-,,;,-,;,, i feltet b_d. La oss finne egenvektorer:. λ, : A + I x x x s + t s t s G J + t,, s + t. 9
40 . λ : A I x x x t t t t G J, t., Setter de tre egenvektorene som kolonner i matrisen P : P, 8 6 P AP D. Vi skriver [,,;,,;,, i feltet b_p. c) A m b m B + c m C. A m ( P DP ) m P D m P P ( ) m ( ) m m ( ) m ( ) m m P 4 m ( ) m ( ) m m 4 ( ) m 4 m m ( ) m ( ) m m ( ) m m m ( ) m ( ) m m ( ) m m ( ) m 4 + m 4 4 ( ) m B + m C. Vi skriver - i feltet c_b, i feltet c_c, [-,,4;-,,;-,, i feltet c_b, og [4,-,-4;,-,-;,-,- i feltet c_c. 4
41 La oss kontrollere resultatet (f. eks. for m 7): ( ) 7 4 A m (( ) m B + m C) Oppgave F q (λ) λ 9λ 9λ + 8 (λ + ) (λ ) (λ 9). La oss finne egenvektorene:. λ :. λ : F + I x x x F I x x x t t t t t t t t G J G J,, t., t.,. λ 9: F 9I x x x t t t t G J, t., 4
42 De tre vektorene,, danner en ortogonal basis for R, men vi trenger en ortonormal basis. La oss normalisere vektorene, og sette dem som kolonner i matrisen:,,, Q Vi skriver [-/,/,/;-/,/,-/;/,/,/ i feltet d. La oss kontrollere resultatet: QQ T dvs. Q er en ortogonal matrise. Q T AQ T T, 9..7 Oppgave A a b d c e f AA T I, a >, b <, d <. [ k k k, Fiiner a: 4
43 k a k k, a +, a 4, a, siden a >. Finner b: k k, b c, b + c + 9, b c, k k, ( c ) ( + c +, ) 4 c + c + 6 9, 4 c + c + 7 9, Løsningen [ b 6 7, c 4 7 forkastes, siden b <, derfor b 4, c. Finner d, e og f. Vi kan godt løse systemet k k, k k, 4
44 og velge deretter løsningen som tilfredsstiller betingelsene d + e + f, d <. Men det er lettere å bruke kryssproduktet: d e f t t ±. 4 t t t, Siden er d + e + f, ( ) ( ) ( ) t + t + t, t, t (fordi d < ), og Endelig: d e f. 4 A Vi skriver [/,-4/,-/;/,-/,/;-/,-/,/ i feltet 6a...8 Oppgave a) A [ + (a + ) i ( + i) z i der z b + ci C. [ A + i (a + ) i (A T ) ( + i) z, [ i (a + ) + i ( i) z. Det er klart at a +, a, 44
45 og ( + i) z + i, z + i + i 7 + 7i ( + i) ( i) ( + i) ( i) i. A [ + (a + ) i ( + i) z i [ + i. i [ ( ( ) ) ( + + i ( + i) i) i Du oppgir [-/,7/,7/ i svaret. b) B der a R, og z b + ci C. B (B T ) [ 7a + + i ( i) z 4i 6i [ 7a + + i 4i ( i) z 6i, [ 7a + i + 4i ( + i) z 6i. Det er klart at og 7a +, a 7, ( i) z 4i, z 4i i i. B [ 7a + + i ( i) z 4i 6i [ i 4i. 4i 6i [ ( ) ( i ( i) 4 4i 6i 9 9 i) Du oppgir [-/7,4/9,-/9 i svaret. c) [ a 4 C 7 i z i i [ k k,
46 der a R, a >, og z b + ci C. Siden k, er ( a 4 ) ( 7 i a + 4 ) ( 7 i ) ( 7 i 7 8 ) 7 i a ,, Siden er ( a 4 ) 7 i a , a 89 7 >. ( z + k k, ( i ) ( 7 i ) i ), z i, z z i i 8 ( i Du oppgir [/7,8/7,-/7 i svaret i, ) i. d) der z b + ci C. D [ i z 4 + i i, [ D i + 4 i (D T ), z + i [ [ DD i z i + 4 i 4 + i i z + i [ zz + i z + iz, i z iz [ [ [ D i + 4 i i z D z + i 4 + i i z + iz z iz zz +. 46
47 og Siden DD D D, er zz z, Endelig: D DD DD i z + iz z + iz, z ( i) + i, z + i 4i. i [ i 4i, 4 + i i [ [ [ i 4i + i 4 i, 4 + i i + 4i + i [ [ [ + i 4 i i 4i, + 4i + i 4 + i i og D er normal. Du oppgir [,-4 i svaret. 47
MAT-1004 Vårsemester 2017 Prøveeksamen
MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av
Eksamensoppgave MAT juni 2010 (med løsningsforslag)
Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6
MAT-1004 Vårsemester 2017 Obligatorisk øving 6
MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE Hvordan å løse oppgaven? 4 Formatering av svarene 9. Rasjonale tall............................. 9. Matriser og vektorer.........................
MAT-1004 Vårsemester 2017 Obligatorisk øving 3
MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE OPPGAVE Hvordan løses oppgave? 5 4 Hvordan løses oppgave? 6 5 Formatering av svarene 8 5. Rasjonale tall............................. 8 5. Matriser
MAT-1004 Vårsemester 2017 Obligatorisk øving 2
MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene
EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:
EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet
EKSAME SOPPGAVE MAT-1004 (BOKMÅL)
EKSAME SOPPGAVE MAT-00 (BOKMÅL) Eksamen i : Mat-00 Lineær algebra. Dato : Torsdag 09. juni. Tid : 09.00 -.00. Sted: : Teorifagb., hus, plan. Tillatte hjelpemidler : Godkjent kalkulator, to A ark egne notater
10 Radrommet, kolonnerommet og nullrommet
Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For
12 Lineære transformasjoner
2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f
13 Oppsummering til Ch. 5.1, 5.2 og 8.5
3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne
16 Ortogonal diagonalisering
Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen
12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)
Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:
Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet
15 Hovedprinsippet for vektorrom med et indre produkt
Hovedprinsippet for vektorrom med et indre produkt La oss minne Hovedprinsippet (Seksjon 8.): Alle (endelig dimensjonale dvs. de som har en endelig basis) vektorrom kan beskrives som R n der n dim V. Alle
TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0
TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x
UNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG
Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010
LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4
1 Gauss-Jordan metode
Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller
Lineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
MA1202/MA S løsningsskisse
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ
Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i MA22/MA622 Lineær algebra med anvendelser våren 29 Oppgave a) Rangen til A er lik antallet
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
MA1201/MA6201 Høsten 2016
MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta
(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3
NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis
EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet
(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer
5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave
EKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Mat-004 Lineær algebra Dato: Torsdag. juni 207 Klokkeslett: 09.00-3.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator,
Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!
Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:
Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte
= 3 11 = = 6 4 = 1.
MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at
Lineær algebra-oppsummering
Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:
Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.
Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen
Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på
Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:
TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og
Løsningsforslag MAT 120B, høsten 2001
Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()
MA1201/MA6201 Høsten 2016
MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til
Diagonalisering. Kapittel 10
Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel
6.4 Gram-Schmidt prosessen
6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig
Minste kvadraters løsning, Symmetriske matriser
Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).
Kap. 6 Ortogonalitet og minste kvadraters problemer
Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =
Kap. 6 Ortogonalitet og minste kvadrater
Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og
Egenverdier for 2 2 matriser
Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier
Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU
Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H & Rorres, C: Elementary Linear Algebra, 11 utgave Jonas Tjemsland 26 april 2015 4 Generelle vektorrom 41 Reelle
Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1
Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra
Eksamensoppgave i TMA4115 Matematikk 3
Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand
Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015
Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c
Løsningsforslag for eksamen i Matematikk 3 - TMA4115
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt
4.2 Nullrom, kolonnerom og lineære transformasjoner
4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en
EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER
Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.
Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer
A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:
5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.
Basis, koordinatsystem og dimensjon
Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis
MAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom
7.1 forts. Schur triangularisering og spektralteoremet
7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt
Kap. 7 Symmetriske matriser og kvadratiske former
Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.
7.4 Singulærverdi dekomposisjonen
7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon
MAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
MAT Prøveeksamen 29. mai - Løsningsforslag
MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]
Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger
Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon
Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at
Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =
EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte
6.5 Minste kvadraters problemer
6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør
Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.
Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse
Diagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1
Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med
6.4 (og 6.7) Gram-Schmidt prosessen
6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en
Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.
Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre
Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort
3.9 Teori og praksis for Minste kvadraters metode.
3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:
Egenverdier og egenvektorer
Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon
Emne 7. Vektorrom (Del 1)
Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske
Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som
8 Vektorrom TMA4110 høsten 2018
8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.
Forelesning 14 Systemer av dierensiallikninger
Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som
MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.
MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom
Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?
Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke
Lineære likningssystemer og matriser
Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger
Et forsøk på et oppslagsverk for TMA4145 Lineære metoder
Et forsøk på et oppslagsverk for TMA4145 Lineære metoder Ruben Spaans May 21, 2009 1 Oppslagsverk Adjungert Ball, la (X, d) være et metrisk rom og la ɛ > 0. Da er for x 0 X: 1. B(x 0 ; ɛ) = {x x X d(x,
Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.
Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir
Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer
Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil
MAT1120 Oppgaver til plenumsregningen torsdag 18/9
MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Magnus Dahler Norling ([email protected]) September 2014 Oppgave 4.6.4 rank A = rank B = 5 (teorem 13+14). dim Nul A = n - rank A = 6-5 = 1 (teorem
MAT1120 Repetisjon Kap. 1, 2 og 3
MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger
Eksamensoppgave i TMA4110/TMA4115 Calculus 3
Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
Fasit til utvalgte oppgaver MAT1110, uka 13/4-16/4
Fasit til utvalgte oppgaver MAT0, uka /4-6/4 Øyvind Ryan [email protected] April, 00 Oppgave 4.8. a Bytt om første og andre rad. b Legg til ganger rad til rad. c Bytt om første og andre rad. d Legg til
EKSAMEN I MATEMATIKK 3 (TMA4110)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven
4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer
