Repetisjon: Om avsn og kap. 3 i Lay
|
|
- Kristoffer Finstad
- 7 år siden
- Visninger:
Transkript
1 Repetisjon: Om avsn og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert ved ] AB = [Ab 1 Ab 2 Ab p (Siden alle b j -ene er i R n, så er denne def. meningsful.) Det kan da sjekkes at AB s koeff. ij er gitt ved (AB) ij = A s rad nr. i ganget med B s kolonne nr. j, dvs. (AB) ij = n a ik b kj k=1 Mange bøker bruker dette som definisjon av produktet. 1 / 21
2 Vi har da videre at (AB)x = A(Bx), x R p. Dette viser at matriseprodukt svarer til sammensetning av de lineære transformasjonene knyttet til matrisene: T AB = T A T B. Teorem. For produkter som har mening holder: 1. A(BC) = (AB)C. 2. A(B + C) = AB + AC. 3. (B + C)A = BA + CA. 4. r(ab) = (ra)b = A(rB). 5. (r + s)a = ra + sa. 6. IA = AI = A. (der I = passende identitetsmatrise). MERK: generelt holder ikke AB = BA; hvis dette holder sier vi at A og B kommuterer. 2 / 21
3 Potens av kvadratisk matrise: A 2 = A A, osv: A k er A multiplisert med seg selv k ganger (for k N). Transponering av matrise A: lar rader bli kolonner i ny matrise, som betegnes A T. Teorem. 1. (A T ) T = A. 2. (A + B) T = A T + B T. 3. (ra) T = ra T. 4. (AB) T = B T A T (Merk rekkefølgen her!). 3 / 21
4 Den inverse av en matrise En n n matrise A kalles invertibel (eller inverterbar) dersom det finnes en n n matrise C slik at CA = AC = I der I er n n identitetsmatrisen. Kaller da C den inverse til A; betegnes med C = A 1. Så AA 1 = A 1 A = I. Den inverse er entydig bestemt (hvis den fins). Betegnelser man bør kunne: invertibel = ikkesingulær ikke invertibel = singulær 4 / 21
5 Teorem. Hvis [ a b c d og ad bc 0 (determinanten til A er ulik 0), så er A 1 = [ 1 ad bc ] d c b a ]. Teorem. Hvis A er en invertibel n n matrise, så har likningssystemet Ax = b en entydig løsning x for enhver b R n, og denne er x = A 1 b. 5 / 21
6 Teorem. 1. Hvis A er invertibel, er også A 1 invertibel og (A 1 ) 1 = A. 2. Hvis A og B er invertible, så er også AB invertibel og (AB) 1 = B 1 A Hvis A er invertibel, er også A T invertibel og (A T ) 1 = (A 1 ) T. Her kan egenskap 2 generaliseres til produkt av flere matriser. Dette teoremet kan f.eks. vises ved hjelp av følgende nyttige resultat: Teorem: Anta A og B er n n matriser som oppfyller AB = I. Da er både A og B invertible, og de er hverandres invers (dvs. A 1 = B og B 1 = A). 6 / 21
7 Litt mer (les selv): Elementære matriser: en slik matrise E fåes fra I ved en elementær radoperasjon. Hva blir da EA? Jo, samme som å anvende denne radoperasjonen på A!! Hvordan beregne A 1 (noe vi unngår hvis vi kan!!): Bruk radreduksjonsalgoritmen på [ A I ]. Kommer da frem til [ I A 1 ] når A er radekvivalent med I (dvs. A er invertibel). 7 / 21
8 Invertibel matrise teoremet (forkortes IMT) La A være en n n matrise. Følgende er da ekvivalent: 1. A er invertibel. 2. A er radekvivalent med identitetsmatrisen I. 3. A har n pivot elementer (ledende enere). 4. Ax = 0 har bare løsningen x = Kolonnene i A er lineært uavhengige. 6. Lin.avbildningen T A : x Ax er Ax = b er konsistent for enhver b R n. 8. Kolonnene i A utspenner R n. 9. Lin.avbildningen T A : x Ax er på R n. 10. Det fins en n n matrise C slik at CA = I. 11. Det fins en n n matrise D slik at AD = I. 12. A T er invertibel. 8 / 21
9 Invertible lineæravbildninger: En lineæravbildning T : R n R n kalles invertibel hvis det fins en funksjon S : R n R n slik at S(T (x)) = x (x R n ), T (S(y)) = y (y R n ). En slik S kalles den inverse til T. Man kan vise at S også er lineær. Teorem 9: Betrakt en lineæravbildning T : R n R n og la A være standardmatrisen for T. Da er T invertibel hvis og bare hvis A er invertibel. Og i så fall er den inverse S til T en lineæravb. med standardmatrise A 1. 9 / 21
10 Partisjonerte matriser Ofte er det naturlig å dele opp matriser i blokker. Kalles partisjonerte matriser. F.eks. A = = [ A11 A 12 A 13 A 21 A 22 A 23 Sier da også at A er en 2 3 blokk matrise. Generelt kan vi ha en m n partisjonert matrise. Slike matriser dukker f.eks. opp i Ax = b problemer der det er naturlig å dele opp både variablene og likningene i visse grupper. ] 10 / 21
11 Regneregler Multiplikasjon av konforme partisjonerte matriser, f.eks. [ A11 A 12 A 21 A 22 ] [ B11 B 12 B 21 B 22 ] [ A11 B = 11 + A 12 B 21 A 11 B 12 + A 12 B 22 A 21 B 11 + A 22 B 21 A 21 B 12 + A 22 B 22 ] Gjelder hvis dimensjonene stemmer (produktene har mening). Legg merke til likhet med vanlig matrisemultiplikasjon. Et annet eksempel: [ ] A11 [ B11 B 12 A 21 ] = [ A11 B 11 A 11 B 12 A 21 B 11 A 21 B 12 ] 11 / 21
12 Et nyttig resultat for oss er følgende: Teorem. ( Kolonne-rad ekspansjon av AB) Hvis A er m n matrise og B er n p, så er AB = [ col 1 (A) col 2 (A) col n (A) ] row 1 (B) row 2 (B). row n (B) = col 1 (A) row 1 (B) + + col n (A) row n (B). Det finnes også formler for den inverse av 2 2 partisjonerte matriser (som man kan slå opp ved behov!). 12 / 21
13 Determinanter Determinanten til en 1 1 matrise er tallet selv. For n 2 defineres determinanten til en n n matrise A induktivt ved det A = n ( 1) 1+j a 1j det A 1j j=1 Her er A 1j submatrisen (delmatrisen) man får fra A ved å slette rad 1 og kolonne j. Generelt: submatrisen A ij fremkommer fra A ved å slette rad i og kolonne j. Formelen over kalles kofaktorekspansjon langs første rad i A. Tallet ( 1) 1+j det A 1j kalles en kofaktor. 13 / 21
14 Det viser seg at man får samme tall ved andre kofaktorekspansjoner også! Teorem. Alle kofaktorekspansjoner for A gir samme tall. Så for alle rader k og for alle kolonner l har vi at det A = n j=1 ( 1)k+j a kj det A kj = n i=1 ( 1)i+l a il det A il. For triangulære matriser er det enkelt å beregne determinanten: Teorem. Hvis A er en triangulær matrise (øvre eller nedre triang.), så er det A lik produktet av diagonalelementene. 14 / 21
15 Egenskaper ved determinanter Hva skjer med determinanten når vi utfører radoperasjoner? Teorem. La A være en kvadratisk matrise. 1. Hvis vi adderer et multippel av en rad i A til en annen, så endres ikke determinanten. 2. Hvis B fremkommer fra A ved å bytte to rader, er det B = det A. 3. Hvis en rad i A mulipliseres med r og B er den nye matrisen, så er det B = r det A. Tilsvarende resultat gjelder for kolonneoperasjoner fordi: Teorem. det A T = det A. 15 / 21
16 Et viktig egenskap er: Teorem. En kvadratisk matrise A er invertibel hvis og bare hvis det A 0. Idéen bak dette resultatet kan skisseres slik: Ved å bruke kun radoperasjoner av typen bytte av to rader og legge til et mult. av en rad til en annen rad kan en kvadratisk matrise A alltid omformes til en øvre triangulær matrise U. Determinanten til A er da lik ( 1) r ganget med produktet av diagonalelementene i U, der r er antall ganger vi byttet to rader. Hvis A er invertibel, må alle diagonalelementene i U være forskjellige fra 0, og det gir da at det A 0. Hvis A er ikke invertibel, er minst en av diagonalelementene i U lik 0, og da er det A = / 21
17 Ved en lignende argumentasjon kan man vise følgende: Teorem. Hvis A og B er n n matriser, så er det(ab) = (det A)(det B). Generelt vil det(a + B) det A + det B. Men determinanten er lineær hvis vi holder fast alle kolonnene (eller alle radene) unntatt én. Mer presist kan dette formuleres slik for kolonner: La A være en n n matrise og x R n. La A j (x) betegne matrisen vi får fra A ved å erstatte j-te kolonne i A med vektoren x. F.eks. A 2 (x) = [ a 1 x a 3 a n ] La da T j : R n R være definert ved T j (x) = det ( A j (x) ). Da er T j lineær. 17 / 21
18 Teorem (Cramer s regel). Anta at A er en invertibel n n matrise og la b R n. Da har systemet Ax = b en entydig løsning x = (x 1,, x j,, x n ) gitt ved x j = det ( A j (b) ) (1 j n). det A Dette er en pen formel fordi den viser eksplisitt hvordan løsningen kan uttrykkes via determinanter. MEN: i praktiske beregninger brukes denne formelen nesten aldri! Det er raskere og numerisk mer stabilt å bruke f.eks. Gauss eliminasjon (eller andre iterative metoder). 18 / 21
19 Ved å bruke Cramer s regel flere ganger kan man også få en formel for den inverse til en (invertibel) matrise A : A 1 = 1 det A adj(a). Her er adj(a) en n n matrise som kalles den (klassisk) adjungerte til A. Elementet i posisjon (i, j) i adj(a) er kofaktoren gitt ved ( 1) i+j det A ji. NB! Legg merke til indeksen her: A ji er submatrisen som fremkommer fra A ved å slette rad j og kolonne i. Igjen: Hvis man virkelig vil beregne A 1 i praksis, bruker man ikke denne formelen, men benytter da andre metoder, f.eks. radreduksjon av [ A I ] eller SVD (singulær verdi dekomposisjonen) (kommer senere i kap. 7). 19 / 21
20 For 2 2 og 3 3 matriser er determinanten knyttet til areal/volum begrepene: Teorem. Hvis A er en 2 2 matrise er arealet til parallellogrammet utspent av kolonnene til A lik det A. Hvis A er en 3 3 matrise er volumet til parallellepipedet utspent av kolonnene til A lik det A. Teorem. Hvis T : R 2 R 2 er en lineæravb. med stand.matrise A og S er et parallellogram i R 2, så er Area T (S) = det A Area S. Hvis T : R 3 R 3 er en lineæravb. med stand.matrise A og S er et paralellepiped i R 3, så er Volume T (S) = det A Volume S. Disse resultatene er viktige bl.a. for variabelskifte-formelen for dobbelt/trippel...) integraler i kalkulus/analyse. 20 / 21
21 Neste uke: Begynner i kap. 4. Skal studere vektorrom mer abstrakt og se på underrom, eksempler osv. Godt tips: se på stoffet før forelesningene! 21 / 21
Repetisjon: om avsn og kap. 3 i Lay
Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet
DetaljerMAT1120 Repetisjon Kap. 1, 2 og 3
MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger
DetaljerDeterminanter til 2 2 og 3 3 matriser
Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =
DetaljerForelesning 10 Cramers regel med anvendelser
Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er
DetaljerInverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009
Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b
DetaljerForelesning i Matte 3
Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære
DetaljerGauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.
Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
Detaljer6 Determinanter TMA4110 høsten 2018
6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til
DetaljerMer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
DetaljerMer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
DetaljerMatriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009
Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen
Detaljer4 Matriser TMA4110 høsten 2018
Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere
DetaljerForelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2
Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
DetaljerElementær Matriseteori
Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start
DetaljerMatriser. Kapittel 4. Definisjoner og notasjon
Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper
DetaljerLineær algebra-oppsummering
Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:
DetaljerMAT1120 Repetisjon Kap. 1
MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer
DetaljerLineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning
Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable
Detaljer4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;
DetaljerRegneregler for determinanter
Regneregler for determinanter E.Malinnikova, NTNU, Institutt for matematiske fag 6. oktober, 2010 Triangulær matriser En kvadratisk matrise A = [a ij ] kalles øvre/nedretriangulær hvis a ij = 0 når i >
Detaljer1 Gauss-Jordan metode
Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller
DetaljerObligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006
Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en
DetaljerLineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som
DetaljerLineære likningssystemer
Lineære likningssystemer Mange fysiske problemer kan formuleres som lineære likningssystemer i vektorrommet, 1/19 Lu = f Lineær: betyr at virkningen av L på u + v er L(u + v) = Lu + Lv, og skaleres som
DetaljerLineære likningssystemer og matriser
Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger
DetaljerGenerelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.
Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer
Detaljer6.4 Gram-Schmidt prosessen
6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig
DetaljerLineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort
DetaljerFasit til utvalgte oppgaver MAT1110, uka 13/4-16/4
Fasit til utvalgte oppgaver MAT0, uka /4-6/4 Øyvind Ryan oyvindry@i.uio.no April, 00 Oppgave 4.8. a Bytt om første og andre rad. b Legg til ganger rad til rad. c Bytt om første og andre rad. d Legg til
DetaljerVær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
DetaljerMAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.
MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom
Detaljer4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer
DetaljerMAT1120 Notat 1 Tillegg til avsnitt 4.4
MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis
DetaljerMAT1120 Notat 1 Tillegg til avsnitt 4.4
MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n
DetaljerRang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015
Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c
DetaljerKap. 6 Ortogonalitet og minste kvadraters problemer
Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =
DetaljerLineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig
DetaljerØving 2 Matrisealgebra
Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=
Detaljer7.4 Singulærverdi dekomposisjonen
7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon
DetaljerI dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.
Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner
DetaljerØving 3 Determinanter
Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er
Detaljer10 Radrommet, kolonnerommet og nullrommet
Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For
DetaljerKap. 7 Symmetriske matriser og kvadratiske former
Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.
Detaljer8 Vektorrom TMA4110 høsten 2018
8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.
DetaljerVi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på
Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske
DetaljerElementære eliminasjonsmatriser
Elementære eliminasjonsmatriser Gitt en vektor a = [a 1,..., a n ] T, en matrise 1 0 0 0.......... M k = 0 1 0 0 0 a k+1 a k 1 0, a k 0,.......... 0 an a k 0 1 kalles elementære eliminasjonsmatriser eller
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
DetaljerDeterminanter. Kapittel 6. Determinanter for 2 2-matriser. La oss beregne arealet av dette parallellogrammet. Vi tegner på noen hjelpelinjer:
Kapittel 6 Determinanter En matrise inneholer mange tall og erme mye informasjon så mye at et kan være litt overvelene Vi kan konensere ne all informasjonen i en kvaratisk matrise til ett enkelt tall som
Detaljer100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)
ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med
Detaljer4.2 Nullrom, kolonnerom og lineære transformasjoner
4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en
DetaljerLineær algebra. H. Fausk
Lineær algebra H. Fausk 11.02.2016 Sjuende utkast Flere lineære likninger som samtidig skal oppfylles kalles lineære likningssystem. I prinsippet er løsing av lineære likningsystem enkelt, det benytter
DetaljerVektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?
Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke
DetaljerLineær algebra. H. Fausk
Lineær algebra H. Fausk 04.02.2016 Sjuende utkast Lineære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av lineære likningsystem enkelt, det benytter bare de
DetaljerHomogene lineære ligningssystem, Matriseoperasjoner
Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har
DetaljerGauss-eliminasjon og matrisemultiplikasjon
DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,
DetaljerLineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
DetaljerLineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler
Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom
DetaljerMatriser og Kvadratiske Former
Eivind Eriksen Matriser og Kvadratiske Former 15 mars 2012 Handelshøyskolen BI Innhold 1 Matriser og vektorer 1 11 Matriser 1 12 Matriseaddisjon 2 13 Matrisesubtraksjon 3 14 Skalarmultiplikasjon 3 15
DetaljerLineærtransformasjoner
Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
DetaljerBasis, koordinatsystem og dimensjon
Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis
DetaljerLineær uavhengighet og basis
Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c
Detaljer6.5 Minste kvadraters problemer
6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør
DetaljerPensum i lineæralgebra inneholder disse punktene.
Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise
DetaljerEksamensoppgave MAT juni 2010 (med løsningsforslag)
Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6
Detaljer3.9 Teori og praksis for Minste kvadraters metode.
3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:
Detaljerx 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder
4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes
DetaljerKap. 6 Ortogonalitet og minste kvadrater
Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og
DetaljerMA1201, , Kandidatnummer:... Side 1 av 5. x =.
MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =
DetaljerLineære ligningssystem og matriser
Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan
Detaljer9 Lineærtransformasjoner TMA4110 høsten 2018
9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
DetaljerMatriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles elementer. En matrise har rader (vannrett, horisontalt)
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................
DetaljerLøsningsforslag øving 6
Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en
DetaljerMAT-1004 Vårsemester 2017 Obligatorisk øving 2
MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av
DetaljerA 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:
5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.
DetaljerTMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0
TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
DetaljerLineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise
Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med
DetaljerLøsningsforslag øving 7
Løsningsforslag øving 7 8 Husk at en funksjon er injektiv dersom x y gir f(x) f(y), men her ser vi at f(3) 9 f( 3), eller generelt at f(z) z f( z) for alle z C, som betyr at f ikke er injektiv Vi ser også
DetaljerKap. 5 Egenverdier og egenvektorer
Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
DetaljerMA1201/MA6201 Høsten 2016
MA121/MA621 Høsten 216 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 2.3 1 b) c) d) 1 3 1 1 3 1 A I 2
DetaljerUNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
DetaljerUniversitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!
Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:
Detaljertma4110 Matematikk 3 Notater høsten 2018 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland
tma4 Matematikk Notater høsten 8 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland Innhold Introduksjon ii Lineære likningssystemer Gausseliminasjon 4 Vektor- og matriselikninger 8 4 Matriser
DetaljerEMNE 4. Determinanter
EMNE 4. Determinanter Gitt en kvadratisk matrise, A = ( n n ). determinant som angis som: Til alle kvadratiske matriser kan vi knytte en det Determinanten er i utgangspunktet bare en tallstørrelse (skalar),
Detaljer6.4 (og 6.7) Gram-Schmidt prosessen
6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en
DetaljerEgenverdier for 2 2 matriser
Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier
DetaljerLineære likningssett.
Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,
DetaljerDet matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 227 Numerisk lineær algebra Eksamensdag: 5. desember 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:
DetaljerMAT 1110: Bruk av redusert trappeform
Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,
Detaljer12 Lineære transformasjoner
2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f
Detaljer