EMNE 4. Determinanter

Størrelse: px
Begynne med side:

Download "EMNE 4. Determinanter"

Transkript

1 EMNE 4. Determinanter Gitt en kvadratisk matrise, A = ( n n ). determinant som angis som: Til alle kvadratiske matriser kan vi knytte en det Determinanten er i utgangspunktet bare en tallstørrelse (skalar), men vi kan gi den en fysisk tolkning i tilfelle ( 2 2 ) eller ( 3 3 ) matriser. For ( 2 2 ) matriser: det Jamfør kryssproduktet: Selv om det(a) er en skalar og n en vektor, er tallverdien den samme og tilsvarer arealet av parallellogrammet utspent av u og v. På samme vil for ( 3 3 ) matriser: det Sistnevnte produkt regnet vi ut i Vektoralgebra, del 1. Determinanten til en ( 3 3 ) matrise har altså samme verdi som volumet av parallellepipedet utspent av vektorene u, v og w 1

2 Beregne determinanter med cofaktormetoden Som nevnt: Determinanter kan knyttes til alle kvadratiske matriser. Om vi starter med A = ( n n ), men deretter stryker én rad og én kolonne sitter vi igjen med en kvadratisk undermatrise, (n 1) (n 1) Vi sier at denne matrisen har en underdeterminant (engelsk: minor), M ij. Eksempel: A ( 3 3) Om vi stryker f.eks. rad 2 og kolonne 1, sitter vi igjen med en (2 2) matrise og følgelig underdeterminanten: M Vi kan stryke hvilken som helst rad eller kolonne. Til hvert element a ij i A matrisen kan vi derfor knytte en tilhørende underdeterminant, M ij Cofaktorer, A ij A 1 M M, i j partall M, i j oddetall En cofaktor har altså samme absoluttverdi som tilsvarende underdeterminant, men fortegnet endres vekselvis, + /. Det betyr for eksempel at: A M, A M, A M Fortegnet er kanskje enklere å huske ut i fra sjakkmønsteret: 2

3 Sammenhengen mellom det(a) og cofaktorer er gitt som: det Hvor: i = vilkårlig valgt rad Alternativt: det Hvor: j = vilkårlig valgt kolonne Med andre ord: Vi har en kvadratisk matrise A. For å regne ut det(a) velger vi først ut en vilkårlig rad i ( eller kolonne j ). Hvert element i denne raden, { a i1, a i2, a i3,, a in }, multipliseres med tilhørende cofaktorer, { A i1, A i2, A i3,, A in }, og resultatet summeres. Om vi derimot kopler elementene i én rad eller kolonne med cofaktorene fra en annen rad/kolonne, blir resultatet alltid 0. Dvs.: 0, (Dette får vi også bruk for senere) 3

4 Talleksempel 1 A1 2 0 Det gir underdeterminantene og cofaktorene: M , A M 8 M , A M 4 M , A M 6 Videre: Og dermed: M , M , M M , M , M A 8, A 5, A 6, A 6, A 3, A 4 Vi behøver bare 3 cofaktorer for å bestemme det(a), men alle 9 når vi senere skal finne inversmatrisen A 1. For eksempel med utgangspunkt i rad 1: Eller ut i fra kolonne 2: det det Det er altså som tidligere nevnt vilkårlig hvilken rad eller kolonne vi tar utgangspunkt i. Derimot vil for eksempel elementene i rad 1 koplet med cofaktorene i rad 2 gi 0 som resultat:

5 Kommentar: Cofaktormetoden er forholdsvis enkel, men egner seg kun for små matriser eller når matrisen inneholder mange 0 elementer. Talleksempel A For litt større matriser kreves det alt for mye regnearbeid (selv for en datamaskin!). Det skyldes at en underdeterminant må splittes opp i stadig mindre enheter. Med for eksempel en ( ) matrise må vi først finne 10 stykk underdeterminanter av størrelse ( 9 9 ). Hver av disse må så splittes opp i ( 8 8 ) størrelse, deretter ( 7 7 ), osv. Determinanten til triangulærmatrise: Dersom vi har en ( n n ) triangulærmatrise får vi: det Vi behøver altså bare gange sammen elementene på hoveddiagonalen. Dette følger naturlig av cofaktormetoden, f.eks: 0 A

6 Determinanten til et matriseprodukt: Dersom A og B begge er ( n n ) matriser vil: det det det Talleksempel 3 A , B det A , det B det det B 21 2 det

7 Adjungert ( engelsk: adjoint ) Gitt en kvadratisk matrise, f. eks. A Vi kan samle tilhørende cofaktorer i en matrise C: C Transponering av C gir den adjungerte av A, dvs.: Multipliserer vi A med adj(a) får vi: adja C A A A Dette følger av likningene på side 3 Med andre ord: det Determinanten til dette igjen gir: det deta detdet Og dermed: det det 7

8 Finne inversmatrisen til A vha. cofaktormetoden Vi vet fra tidligere (EMNE 3. Matrisealgebra) at : å å : det : det det det : det Merk! Inversmatrisen eksisterer bare dersom det(a) 0 Talleksempel 4 Finn inversmatrisen til A Vi har allerede funnet determinanten og alle cofaktorene til denne i talleksempel Dvs: det 2 C Dermed: det det Som eventuell kontrollregning finner vi at 1 1 8

6 Determinanter TMA4110 høsten 2018

6 Determinanter TMA4110 høsten 2018 6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til

Detaljer

Regneregler for determinanter

Regneregler for determinanter Regneregler for determinanter E.Malinnikova, NTNU, Institutt for matematiske fag 6. oktober, 2010 Triangulær matriser En kvadratisk matrise A = [a ij ] kalles øvre/nedretriangulær hvis a ij = 0 når i >

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009 Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

Forelesning i Matte 3

Forelesning i Matte 3 Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære

Detaljer

Determinanter til 2 2 og 3 3 matriser

Determinanter til 2 2 og 3 3 matriser Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =

Detaljer

MAT1120 Repetisjon Kap. 1, 2 og 3

MAT1120 Repetisjon Kap. 1, 2 og 3 MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Lineær algebra. H. Fausk

Lineær algebra. H. Fausk Lineær algebra H. Fausk 11.02.2016 Sjuende utkast Flere lineære likninger som samtidig skal oppfylles kalles lineære likningssystem. I prinsippet er løsing av lineære likningsystem enkelt, det benytter

Detaljer

Lineær algebra. H. Fausk

Lineær algebra. H. Fausk Lineær algebra H. Fausk 04.02.2016 Sjuende utkast Lineære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av lineære likningsystem enkelt, det benytter bare de

Detaljer

Emne 6. Lineære transformasjoner. Del 1

Emne 6. Lineære transformasjoner. Del 1 Emne 6. Lineære transformasjoner. Del 1 Lineære transformasjoner kan sammenliknes med vanlig funksjonslære. X x 1 x 2 x 3 f Y Gitt to tallmengder X og Y. y 1 En funksjon f er her en regel som y 2 knytter

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =

Detaljer

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer

Detaljer

Øving 2 Matrisealgebra

Øving 2 Matrisealgebra Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=

Detaljer

Bytte om to rader La Matlab generere en tilfeldig (4 4)-matrise med heltallige komponenter mellom 10 og 10 ved kommandoen Vi skal underske hva som skj

Bytte om to rader La Matlab generere en tilfeldig (4 4)-matrise med heltallige komponenter mellom 10 og 10 ved kommandoen Vi skal underske hva som skj velse 2: Egenskaper ved determinanter av Klara Hveberg I denne velsen skal vi bruke Matlab til a studere hva elementre radoperasjoner gjr med determinanten til en matrise. Deretter skal vi se pa determinanten

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Determinanter. Kapittel 6. Determinanter for 2 2-matriser. La oss beregne arealet av dette parallellogrammet. Vi tegner på noen hjelpelinjer:

Determinanter. Kapittel 6. Determinanter for 2 2-matriser. La oss beregne arealet av dette parallellogrammet. Vi tegner på noen hjelpelinjer: Kapittel 6 Determinanter En matrise inneholer mange tall og erme mye informasjon så mye at et kan være litt overvelene Vi kan konensere ne all informasjonen i en kvaratisk matrise til ett enkelt tall som

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles elementer. En matrise har rader (vannrett, horisontalt)

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3 Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009 Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til eksamen i MAT 1100 H07 Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver

Detaljer

Forelesningsnotat i Diskret matematikk 27. september 2018

Forelesningsnotat i Diskret matematikk 27. september 2018 Kvadratiske matriser Hvis en matrise A er kvadratisk kan den multipliseres med seg selv. Vi skriver vanligvis A 2 istedenfor AA, A 3 istedenfor AAA, osv. Spesielt er A 1 = A. Enhetsmatriser, også kalt

Detaljer

Computational Geometry

Computational Geometry Computational Geometry Grafisk Databehandling 1. Convex hull konveks innhyling 2. Nærmeste par av punkter Convex hull La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

Pensum i lineæralgebra inneholder disse punktene.

Pensum i lineæralgebra inneholder disse punktene. Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise

Detaljer

Geometri. Kapittel 3. 3.1 Vektorproduktet

Geometri. Kapittel 3. 3.1 Vektorproduktet Kapittel 3 Geometri I dette kapitlet skal vi benytte den teorien vi utviklet i kapittel 1 og 2 til å studere geometriske problemstillinger. Vi skal se på kurver og flater, og vi skal også studere hvordan

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

Manual for wxmaxima tilpasset R2

Manual for wxmaxima tilpasset R2 Manual for wxmaxima tilpasset R Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Matriser og Kvadratiske Former

Matriser og Kvadratiske Former Eivind Eriksen Matriser og Kvadratiske Former 15 mars 2012 Handelshøyskolen BI Innhold 1 Matriser og vektorer 1 11 Matriser 1 12 Matriseaddisjon 2 13 Matrisesubtraksjon 3 14 Skalarmultiplikasjon 3 15

Detaljer

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

Først litt repetisjon

Først litt repetisjon Først litt repetisjon En relasjon er en mengde av verdipar, der første koordinaten a er fra mengden A og andrekoordinaten b er fra mengden B. Verdiparet beskriver en forbindelse (en relasjon) fra a til

Detaljer

Homogene lineære ligningssystem, Matriseoperasjoner

Homogene lineære ligningssystem, Matriseoperasjoner Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 2

MAT-1004 Vårsemester 2017 Obligatorisk øving 2 MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene

Detaljer

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006 Løsningsforslag til prøveeksamen i MAT, våren 6 Oppgave : a) Vi har C 5 3 II+( )I a + 3a 3a III+I 3 II 3 3 3 3 a + 3a 3a 3 a + 3a 3a III+II I+( ))II 3 3 3 a + 3a 3a 3 3 3 a + 3a 4 3 3a a + 3a 4 3 3a b)

Detaljer

Linjegeometri. Kristian Ranestad. 3. Januar 2006

Linjegeometri. Kristian Ranestad. 3. Januar 2006 3. Januar 2006 Konveksitet Hva er en konveks mengde med punkter? En punktmengde er konveks dersom alle linjestykkene med endepunkter i mengden er helt inneholdt i mengden. Eksempler: Et linjestykke (den

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Løsningsforslag til 1. obligatorisk oppgave i Diskret matematikk, høsten 2016

Løsningsforslag til 1. obligatorisk oppgave i Diskret matematikk, høsten 2016 Løsningsforslag til 1. obligatorisk oppgave i Diskret matematikk, høsten 2016 Oppgave 1 a) b) r = p q p q s = p q q p q p t = p q p q c) Vi ser av sannehetsverditabellen at uttrykkene (p q) r og p (q r)

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

OBLIG 2 - MAT 1120 Høsten 2005

OBLIG 2 - MAT 1120 Høsten 2005 > with(linearalgebra): with(linalg):with(plots): Warning, the name GramSchmidt has been rebound Warning, the protected names norm and trace have been redefined and unprotected Warning, the name changecoords

Detaljer

MA-132 Geometri Torsdag 4. desember 2008 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

MA-132 Geometri Torsdag 4. desember 2008 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator. Institutt for matematiske fag EKSAMEN i MA-1 Geometri Torsdag 4. desember 008 kl. 9.00-14.00 Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator. Bokmål Oppgave 1 Gitt et linjestykke.

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x =

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x = Prøve i FO99A - Matematikk Dato: 1. desember 014 Målform: Bokmål Antall oppgaver: 8 (0 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 11. desember 2015 Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Svarark,

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

Institutt for Samfunnsøkonomi

Institutt for Samfunnsøkonomi Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter

Detaljer

LO118D Forelesning 5 (DM)

LO118D Forelesning 5 (DM) LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

Relasjoner - forelesningsnotat i Diskret matematikk 2017

Relasjoner - forelesningsnotat i Diskret matematikk 2017 Relasjoner Utdrag fra avsnitt 9.1, 9.3, 9.4 og 9.5 i læreboka 9.1 - Relasjoner 9.3 - Operasjoner på relasjoner 9.4 - Utvidelser av relasjoner - tillukninger 9.5 - Ekvivalensrelasjoner og ekvivalensklasser

Detaljer

Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter.

Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Dersom man ofte ikke er intressert i å finne eksakte løsninger kun sikkre interval, er ulikheter

Detaljer

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5.

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5. Prøve i FO99A - Matematikk Dato: 3. desember 01 Målform: Bokmål Antall oppgaver: 5 (0 deloppgaver) Antall sider: Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

Matriser og matriseregning

Matriser og matriseregning og matriseregning Halvor Aarnes, UiO, 2014 Matriser Innhold Matriser... 1 Determinant... 6 Ligningsystemer... 8 Matriseaddisjon og matrisesubtraksjon... 11 Matrisemultiplisering... 11 Egenverdier og egenvektorer...

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis

Detaljer

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1 Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

Løsningsforslag til eksamen høst 2016

Løsningsforslag til eksamen høst 2016 Løsningsforslag til eksamen høst 2016 Hver oppgave tildeles maksimalt 10 poeng. Høyeste poengsum er 100 Karaterer: 90 A 75 B < 90 60 C < 75 50 D < 60 0 E < 50 F < 40 Oppgave 1 a) 3 poeng Ingen av de tre

Detaljer

Løsningsforslag til prøveeksamen i MAT1100, H-14 DEL 1

Løsningsforslag til prøveeksamen i MAT1100, H-14 DEL 1 Løsningsforslag til prøveeksamen i MT, H- DEL. ( poeng Hva er den partiellderiverte f y sin(xy cos(xy y sin(xy x sin(xy cos(xy xy sin(xy cos(xy y sin(xy + xy sin(xy når f(x, y = y cos(xy? Riktig svar:

Detaljer

MAT1120. Obligatorisk oppgave 1 av 2. Torsdag 20. september 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no).

MAT1120. Obligatorisk oppgave 1 av 2. Torsdag 20. september 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no). Innleveringsfrist MAT20 Obligatorisk oppgave av 2 Torsdag 20. september 208, klokken 4:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen for hånd og scanner besvarelsen

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

Matriser TI -86 F1 F2 F3 F4 F5 M1 M2 M3 M4 M5

Matriser TI -86 F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 13 Matriser Lage matriser... 204 Vise matriseelementer, rader og delmatriser... 207 Redigere matrisedimensjon og -elementer... 208 Slette en matrise... 209 Bruke en matrise i et uttrykk... 210 TI -86 M1

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n

Detaljer

Løsningsforslag C = B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB

Løsningsforslag C = B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB Innlevering ELFE KJFE MAFE Matematikk 000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 06. oktober 206 kl 6:00 Antall oppgaver: 6 Løsningsforslag Vi denerer noen matriser A [ 5 2 0 B [ 0 3

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer