Lineære likningssystemer
|
|
- Katrine Markussen
- 6 år siden
- Visninger:
Transkript
1 Lineære likningssystemer Mange fysiske problemer kan formuleres som lineære likningssystemer i vektorrommet, 1/19 Lu = f Lineær: betyr at virkningen av L på u + v er L(u + v) = Lu + Lv, og skaleres som L(αu) = αl(u), α R (eller α C). Lineære likninger på elige dimensjonale vektorrom kan alltid skrives som et lineært likningssystem Ax = b A er m n, x, b er n-dimensj. vektorer N.B. Vi antar at A er n n, x, b R n.
2 Eksempel: en elektrisk krets Gitt V og R, finn strømmen. R 1 2/19 V 1 V 3 R 2 R 5 V 2 Ohms lov: spenningsfallet gjennom en resistanse i strøm retning er ir Kirchhoffs regel: den totale spenningsfall i en lukket krets er 0 Vi finner: R 4 i 1 R 1 + (i 1 i 2 )R 2 V 3 + V 1 = 0 (i 2 i 1 )R 2 + (i 2 i 3 )R 5 V 2 = 0 (i 3 i 2 )R 5 + i 3 R 4 + V 3 = 0. Vi omskriver likningene i matrise/vektor form: R 1 + R 2 R 2 R 2 R 2 + R 3 R 5 R 5 R 4 + R 5 i 1 i 2 i 3 = V 1 + V 3 V 2 V 3
3 Eksempel: stasjonær varmelinking Gitt et område Ω og varmekilden f(x, y), finn løsning av varmelinkingen 3/19 u = f(x, y), u, f : R R R, hvor = 2 x y 2 og u(x, y) = 0 på randen av Ω. Vi setter h = x = y, og representerer u(i x, j y) u i,j. Vi approksimerer: Ω 2 x u 2 i,j u i 1,j 2u i,j + u i+1,j h 2 2 y u 2 i,j u i,j 1 2u i,j + u i,j+1 h 2 For alle (i, j) har vi u i 1,j + u i,j 1 4u i,j + u i,j+1 + u i+1,j = h 2 f i,j. (pluss BC) Omskriving u i,j, f i,j som lange vektorer u, f (kolonnevis) finner vi et lineært likningssystem Au = f,
4 hvor A = /19 Problemets løsning u finnes ved å løse systemet Au = f,
5 Eksistens og entydighet Er avhenging av om A er singulær eller ikke. En n n matrise A kalles ikke-singulær hvis en 5/19 av de følge ekvivalente antagelsene er oppfylt: A har invers, A 1, slik at AA 1 = A 1 A = I det(a) 0 A har n uavhengige rekker/kolonner (rank(a) = n) Ax = 0 bare hvis x = 0. Ellers, er A singulær.
6 Eksistens og entydighet av Ax = b er avhenging av om A er singulær eller ikke-singulær: A ikke-singulær: en eneste løsning, Ax = b x = A 1 b. A singulær: A 1 finnes ikke og, avhnenging av b, vi har b span(a): uelig mange løsninger b span(a): ingen løsning. 6/19 I 2 dimensjoner: x 2 x 2 x 2 Likn.1 Likn. 2 Likn.1 Likn. 2 Likn.1 Likn. 2 x 1 x 1 x 1
7 Elementære likningssystemer Hvilken likningssystem er lett å løse? 7/19 De meste elementære er diagonale systemer: d 1, d 2, d 3, d 4,4 x 1 x 2 x 3 x 4 = b 1 b 2 b 3 b 4 d 1,1 x 1 = b 1 d 2,2 x 2 = b 2 d 3,3 x 3 = b 3 d 4,4 x 4 = b 4 x 1 = b 1 /d 1,1 x 2 = b 2 /d 2,2 x 3 = b 3 /d 3,3 x 4 = b 4 /d 4,4 Algoritme: løsning av en diagonal system for i = 1 to n if d i,i = 0, stop x i = b i /d i,i % systemet er singulært
8 De nest enkleste er triangulære systemer Eksempel: l 1, l 2,1 l 2,2 0 0 l 3,1 l 3,2 l 3,3 0 l 4,1 l 4,2 l 4,3 l 4,4 x 1 x 2 x 3 x 4 = b 1 b 2 b 3 b 4 l 1,1 x 1 = b 1 l 2,1 x 1 + l 2,2 x 2 = b 2 l 3,1 x 1 + l 3,2 x 2 + l 3,3 x 3 = b 3 l 4,1 x 1 + l 4,2 x 2 + l 4,3 x 3 + l 4,4 x 4 = b 4 8/19 Dette system Lx = b kalles nedre triangulært siden l i,j = 0 for j > i. x 1 = b 1 /l 1,1 x 2 = 1 l 2,2 (b 2 l 2,1 x 1 ) x 3 = 1 l 3,3 (b 3 l 3,1 x 1 l 3,2 x 2 ) x 4 = 1 l 4,4 (b 4 l 4,1 x 1 l 4,2 x 2 l 4,3 x 3 ) Generelt, ( ) i 1 x 1 = b 1 /l 1,1, x i = b i l i,j x j /l i,i, i = 2, 3,..., n. j=1
9 ( ) i 1 x 1 = b 1 /l 1,1, x i = b i l i,j x j /l i,i, i = 2, 3,..., n. j=1 Algoritme a): rekkevis forlengs løsning av et nedre triangulært system Algoritme b): kolonnevis forlengs løsning av et nedre triangulært system 9/19 for i = 1 to n if l i,i = 0, stop % systemet er singulær x i = b i /l i,i % regner ut x i for j = 1 to i 1 b i+1 = b i+1 l i+1,j x j % oppdaterer b Denne algoritme beregner rekkevis og bruker sdot (inner produkt u T v). for i = 1 to n if l i,i = 0, stop % systemet er singulær x i = b i /l i,i % regner ut x i for j = i + 1 to n b j = b j l j,i x i % oppdaterer b Denne algoritme beregner kolonnevis og bruker saxpy (operasjoner lik αu + v). Hvilken av de to er beste er avhenging av maskinen/programmeringspråk
10 Tilsvare, for øvre triangulære systemer Ux = b, u i,j = 0 for i < j: Vi kan regne ut x baklengs x n = b n /u n,n, x i = u 1,1 u 1,2 u 1,3 u 1,4 0 u 2,2 u 2,3 u 2,4 0 0 u 3,3 u 3, u 4,4 ( b i n j=i+1 x 1 x 2 x 3 x 4 = b 1 b 2 b 3 b 4 u i,j x j ) /u i,i, i = n 1, n 2,..., 1. 10/19 Algoritme b): baklengs løsning av et øvre triangulært system med saxpy for i = n to 1 if u i,i = 0, stop x i = b i /u i,i for j = 1 to i 1 b j = b j u j,i x i % systemet er singulær % regner ut x i % oppdaterer b Tilsvare kan man definere en algoritme som bruker sdot operasjoner og looper gjennom rekker istedet av kolonner.
11 Gauss eliminasjon Vi ønsker å transformere Ax = b, til et nytt likningssystem som er elementært (diagonale, øvre/nedre triangulære). 11/19 Bruk transformasjons matriser: MAx = Mb M ikkesingulære, MA = B er D,U,L Slike matriser M finnes fordi: vi kan bytte rekker uten at løsningen x er forandret vi kan bytte ut en/flere rekker med deres lineær kombinasjoner med andre rekker uten å forandre x Eksempler er: permutasjoner, elementære eliminasjonsmatriser (Gauss transformasjoner).
12 Elementære eliminasjonsmatriser Gitt en vektor a = [a 1,..., a n ] T, en matrise M k = a k+1 a k 1 0, a k 0, an a k 0 1 kalles elementære eliminasjonsmatriser eller Gauss transformasjon. M k a 1. a k a k+1. a n a k kalles pivot. = a 1. a k /19 Fakta om M k : M k er nedre triangulær med 1-ere på diagonalen, derfor ikkesingulære M k = I me T k, m = [0,..., 0, m k+1,... m n ] T M 1 k = I + me T k = L k Hvis j > k, M j = I ue T j, da: M k M j = I me T k ue T j + me T k ue T j = I me T k ue T j, siden e T k u = et k n l=j+1 u le l = 0. Det samme for L k L j. Merk rekkefølge!
13 Gauss eliminasjon, LU faktorisering Ax = b Multiplisere begge sider med M 1, med a 1,1 som pivot, slik at [a 1,1, a 2,1,..., a n,1 ] T [a 1,1, 0,..., 0] T. 13/19 Mult. med M 2 så at elementene under diagonalen er sett til null i kolonne Etter n 1 skritt, vi har M n 1 M n 2 M 1 Ax = M n 1 M n 2 M 1 b hvor U = MA = M n 1 M n 2 M 1 A er øvre triangulære. Vi kan finne x by baklengs substitusjon i Ux = Mb. Denne prosessen kalles Gauss eliminasjon
14 Eksempel Regn ut Gauss eliminasjons metode for 14/19 2x 1 + 3x 2 + 4x 3 + 5x 4 = 5 x 1 + x 2 x 3 = 0 3x 1 x 2 + 3x 3 x 4 = 0 x 2 3x 3 + x 4 = 0.
15 Hvorfor kalles dette også LU? Vi har sett at MA = U A = M 1 U = LU M = M n 1 M 1 er nedre triangulære, og så inversen, 15/19 L = M 1 = (M n 1 M 1 ) 1 = M 1 1 M 1 n 1 = L 1 L n 1. Hvis vi antar at A = LU er gitt, først setter vi y = Ux og deretter løser vi Ly = b (forlengs substitusjon) Vi løser Ux = y (baklengs substitusjon) Merk at den midlertidig vektor y = L 1 b = Mb. Gauss eliminasjon og LU er to sider av den samme medalje. LU faktorisering kan implementeres uten å modifisere b LU faktorisering er anbefalt når man skal løse mange likningssystemer med samme A og forskjellige b.
16 Litt om implementasjon De superdiagonale elementer av U erstatter A sine elementer De underdiagonale elementer av A (som blir null) brukes til å lagre L sine elementer Denne prosedyren kalles factorization in place (faktorisering på plass). 16/19 Algoritme: LU faktorisering m/ Gauss eliminasjon Algoritme: på plass LU faktorisering m/ Gauss eliminasjon for k = 1 to n 1 if a k,k = 0, stop for i = k + 1 to n l i,k = a i,k /a k,k for j = k + 1 to n for i = k + 1 to n a i,j = a i,j l i,k a k,j for k = 1 to n 1 if a k,k = 0, stop for i = k + 1 to n a i,k = a i,k /a k,k for j = k + 1 to n for i = k + 1 to n a i,j = a i,j a i,k a k,j
17 Pivotering Hvis pivoten er null, da kan ikke Gauss eliminasjon utføres 17/19 a k,k = 0 m k+1 = a k+1,k,..., m n = a n,k a k,k a k,k og faktorisering må stoppes (selv om A er ikke-singulær) Et annet tilfelle er hvis pivoten a k,k er veldig liten, a k,k 1 ɛ er ikke definert m i = a i,k a k,k, i = k + 1,..., n, kan være veldig store og hvis de andre a i,j er av moderat størrelse, vi kan tape mange signifikante siffer Eksempler A = [ ] [ ɛ 1, A = 1 1 ],
18 Partial Pivoting I prinsippet: store pivoter små m k og derfor mindre feil Vi søker etter den største verdien under diagonalen i kolonne k (dermed kolonnevis pivoting ). Hvis denne er i rekke p, bytter vi ut rekker k og p og faktoriserer som vanlig. Merk at nå er m k 1 18/19 Husk: bytting av rekker permutasjoner MA = U, M = M n 1 P n 1 M 1 P 1 hver elementære eliminasjonsmatrise etterfølger en permutasjons matrise. La oss skrive P = P n 1 P 1 Gauss eliminasjonen m/ partial pivoting er ekvivalent til den LU faktorisering av P A: P A = LU L, U nedre/øvre triangulære. Ax = b Ly = P b, Ux = y. Obs. P er ikke kjent på forhand.
19 Algoritme: på plass LU faktorisering med Gauss eliminasjon og kolonnevis pivoting for k = 1 to n 1 find index p s.t. a p,k a i,k, for k i n if p k, bytt ut rekker p og k if a k,k = 0 continue with next k % hopper over denne kolonne, alle elementer er 0 allrede for i = k + 1 to n a i,k = a i,k /a k,k for j = k + 1 to n for i = k + 1 to n a i,j = a i,j a i,k a k,j 19/19
Elementære eliminasjonsmatriser
Elementære eliminasjonsmatriser Gitt en vektor a = [a 1,..., a n ] T, en matrise 1 0 0 0.......... M k = 0 1 0 0 0 a k+1 a k 1 0, a k 0,.......... 0 an a k 0 1 kalles elementære eliminasjonsmatriser eller
DetaljerRepetisjon: Om avsn og kap. 3 i Lay
Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert
DetaljerRang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015
Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c
DetaljerMAT1120 Repetisjon Kap. 1, 2 og 3
MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger
DetaljerRepetisjon: om avsn og kap. 3 i Lay
Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet
DetaljerNumerisk lineær algebra
Numerisk lineær algebra Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 29. Oktober 2007 Problem og framgangsmåte Vi vil løse A x = b, b, x R N,
DetaljerUNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
DetaljerLineære likningssystemer og matriser
Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger
DetaljerSensitivitet og kondisjonering
Sensitivitet og kondisjonering Gitt en lineær likningssystem Ax = b vi skal studere effekten av perturbasjoner av input data: 1/19 på output data: Man kan A, b x perturbere bare b perturbere b og A samtidig.
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
DetaljerLP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1
LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare
Detaljer7.4 Singulærverdi dekomposisjonen
7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon
DetaljerTMA4122/TMA4130 Matematikk 4M/4N Høsten 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis
DetaljerElementær Matriseteori
Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerGauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.
Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre
DetaljerLineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning
Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable
DetaljerØving 3 Determinanter
Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er
DetaljerLøsningsforslag øving 6
Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en
DetaljerMAT1120 Repetisjon Kap. 1
MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer
DetaljerForelesning 10 Cramers regel med anvendelser
Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er
DetaljerOpp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. Ax = b, f(x) = 0.
Interpolasjon Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. 1/9 Ax = b, f(x) = 0. Ved interpolasjon, er problemet det motsatte:
Detaljer6.4 Gram-Schmidt prosessen
6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig
Detaljer6.4 (og 6.7) Gram-Schmidt prosessen
6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en
DetaljerMer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
DetaljerLP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse
LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse matrisenotasjon simpleksalgoritmen i matrisenotasjon eksempel negativ transponert egenskap: bevis følsomhetsanalyse
DetaljerLøsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at
Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =
DetaljerMer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
DetaljerKap. 6 Ortogonalitet og minste kvadraters problemer
Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =
Detaljer6.5 Minste kvadraters problemer
6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør
DetaljerObligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006
Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Fagoppgave MET 1186 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.19 Kl. 9: Innlevering: 5.1.19 Kl. 1: For mer informasjon om formalia, se eksamensoppgaven.
DetaljerMA2501 Numeriske metoder
MA2501 Numeriske metoder Løsningsforslag, øving 7 Oppgave 1 a) Vi vet at r = Ae e = A 1 r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup
DetaljerMA2501 Numeriske metoder
MA250 Numeriske metoder Oppgave Løsningsforslag, øving 7 a) Vi vet at r = Ae e = A r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup Ax
DetaljerVær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
DetaljerTMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0
TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x
DetaljerLineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
DetaljerLineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som
DetaljerEmne 7. Vektorrom (Del 1)
Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske
DetaljerEgenverdier og egenvektorer
Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon
DetaljerOppgave P. = 2/x + C 6 P. + C 6 P. d) 12(1 x) 5 dx = 12u 5 1/( 1) du = 2u 6 + C = 2(1 x) 6 + C 6 P. Oppgave P.
Løsning MET 86 Matematikk for siviløkonomer Innleveringsfrist 5. mars 9 kl Vi benytter maksimal score 6p på hver deloppgave og 44p totalt, og grensen for å bestå er ca 86p. Du kan selv fylle ut tabellen
DetaljerDet matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 227 Numerisk lineær algebra Eksamensdag: 5. desember 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:
DetaljerLineær uavhengighet og basis
Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c
DetaljerLøsningsforslag for obligatorisk øving 1
TFY4185 Måleteknikk Institutt for fysikk Løsningsforslag for obligatorisk øving 1 Oppgave 1 a Vi starter med å angi strømmen i alle grener For Wheatstone-brua trenger vi 6 ukjente strømmer I 1 I 6, som
Detaljer6 Determinanter TMA4110 høsten 2018
6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til
Detaljerx 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder
4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes
DetaljerLP. Kap. 17: indrepunktsmetoder
LP. Kap. 17: indrepunktsmetoder simpleksalgoritmen går langs randen av polyedret P av tillatte løsninger et alternativ er indrepunktsmetoder de finner en vei i det indre av P fram til en optimal løsning
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 0.1.018 Kl. 09:00 Innlevering: 0.1.018 Kl. 14:00 For mer informasjon om formalia, se
DetaljerGauss-eliminasjon og matrisemultiplikasjon
DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,
DetaljerLineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig
DetaljerLO510D Lin.Alg. m/graf. anv. Våren 2005
TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte
DetaljerGENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type
Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.
DetaljerLineær algebra-oppsummering
Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:
Detaljer4 Matriser TMA4110 høsten 2018
Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere
Detaljer12 Lineære transformasjoner
2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f
Detaljer6.6 Anvendelser på lineære modeller
6.6 Anvendelser på lineære modeller Skal først se på lineær regresjon for gitte punkter i planet: det kan formuleres og løses som et minste kvadraters problem! I mere generelle lineære modeller er man
Detaljer8 Vektorrom TMA4110 høsten 2018
8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.
Detaljera) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er matrisen inverterbar når v T u 1.
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Oppgave 1 a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er
DetaljerLineære likningssett.
Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,
DetaljerEt forsøk på et oppslagsverk for TMA4145 Lineære metoder
Et forsøk på et oppslagsverk for TMA4145 Lineære metoder Ruben Spaans May 21, 2009 1 Oppslagsverk Adjungert Ball, la (X, d) være et metrisk rom og la ɛ > 0. Da er for x 0 X: 1. B(x 0 ; ɛ) = {x x X d(x,
Detaljer4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;
Detaljer4.2 Nullrom, kolonnerom og lineære transformasjoner
4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en
DetaljerMA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer
MA5 Vårsemestre 9 Numeriske metoder for lineære systemer Introduksjon Vi vil approksimere løsningen av lineære systemet av n ligningene og n ukjente: a x + a x + + a n x n b a x + a x + + a n x n b ()
DetaljerDeterminanter til 2 2 og 3 3 matriser
Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =
DetaljerIkke lineære likninger
Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerOppgave 1. e rt = 120e. = 240 e
Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e
DetaljerOppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A =
Løsning MET 803 Matematikk for siviløkonomer Dato 8. desember 07 kl 400-900 Oppgave. (a) Vi løser det lineære systemet for a = ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: 7 3 y = 9 6 7
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 29.05.2019 Kl. 09:00 Innlevering: 29.05.2019 Kl. 14:00 For mer informasjon om formalia,
DetaljerHvorfor er lineær algebra viktig? Linear
Lineær Algebra Hvorfor er lineær algebra viktig? Linear y = ax + b linje y = f(x) funksjon Taylor utvikling f(x) =f(x 0 )+f 0 (x 0 )(x x 0 )+ 1 2 f 00 (x 0 )(x x 0 ) 2 + f(x) f(x 0 )+f 0 (x 0 )(x x 0 )
DetaljerForelesning i Matte 3
Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære
DetaljerOppgave 1. f(2x ) = f(0,40) = 0,60 ln(1,40) + 0,40 ln(0,60) 0,0024 < 0
Løsning MET 80 Matematikk for siviløkonomer Dato 0. mai 07 kl 0900-400 Oppgave. (a) Vi lar p = 0,60 og q = 0,40, og skriver funksjonen som f() = p ln( + ) + q ln( ) for å forenkle skrivemåten. Funksjonen
DetaljerInverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009
Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b
DetaljerDAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3
Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
DetaljerOBLIG 2 - MAT 1120 Høsten 2005
> with(linearalgebra): with(linalg):with(plots): Warning, the name GramSchmidt has been rebound Warning, the protected names norm and trace have been redefined and unprotected Warning, the name changecoords
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 0. desember 205 Eksamenstid
DetaljerA 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:
5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.
DetaljerØving 2 Matrisealgebra
Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=
DetaljerPensum i lineæralgebra inneholder disse punktene.
Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise
Detaljer4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer
DetaljerOppgave 1 (25 %) - Flervalgsoppgaver
Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består
DetaljerFasit til utvalgte oppgaver MAT1110, uka 13/4-16/4
Fasit til utvalgte oppgaver MAT0, uka /4-6/4 Øyvind Ryan oyvindry@i.uio.no April, 00 Oppgave 4.8. a Bytt om første og andre rad. b Legg til ganger rad til rad. c Bytt om første og andre rad. d Legg til
DetaljerVektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?
Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke
DetaljerMA2501 Numerical methods
MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for
Detaljer1 Gauss-Jordan metode
Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller
DetaljerLO118D Forelesning 5 (DM)
LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en
Detaljer(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3
NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis
DetaljerBiseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt
Biseksjonsmetoden Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt biseksjonsmetode. Gitt en intervall [a, b] hvor f skifter fortegn, vi halverer [a, b] = [a, b + a 2 ]
DetaljerNorges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Mandag. desember Oppgave a) Karakteristisk polynom er + = ;
DetaljerMAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.
MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF-MAT 3370 Lineær optimering Eksamensdag: 3. juni 2008 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Ingen
DetaljerTMA4329 Intro til vitensk. beregn. V2017
Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver
DetaljerMAT Oblig 1. Halvard Sutterud. 22. september 2016
MAT1110 - Oblig 1 Halvard Sutterud 22. september 2016 Sammendrag I dette prosjektet skal vi se på anvendelsen av lineær algebra til å generere rangeringer av nettsider i et web basert på antall hyperlinker
DetaljerLP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden
LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden Dette emnet gir en innføring i lineær optimering og tilgrensende felt. hva er LP (lin.opt.=lin.programmering) mer generelt: matematisk optimering
DetaljerLineærtransformasjoner
Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
DetaljerLineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise
Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med
Detaljer3.9 Teori og praksis for Minste kvadraters metode.
3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:
Detaljer