MA2501 Numeriske metoder

Størrelse: px
Begynne med side:

Download "MA2501 Numeriske metoder"

Transkript

1 MA2501 Numeriske metoder Løsningsforslag, øving 7 Oppgave 1 a) Vi vet at r = Ae e = A 1 r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup Ax A x, x 0 x e x = A 1 r A 1 r x x = r A 1 A A x som var det vi skulle vise. A 1 A r Ax = A 1 A r r = κ(a) b b b) «Problem» Vi finner at [ ] [ ] r =, ẽ =, [ ] [ ] ˆr =, ê = Vi observerer altså at løsningen med størst residual ( r = ) har klart minst feil ( ẽ = 0.001). Dette skyldes at matrisen A er dårlig kondisjonert. Spesielt finner vi at κ (A) = A 1 A Videre er x = 1, ê = 0.913, ˆr = og b = Dermed er feilestimatet oppfylt for både ẽ og ê. Eksemplet viser altså at man må være forsiktig med å bruke residualet som eneste indikator på feilen hvis koeffisientmatrisen er dårlig kondisjonert. 1

2 n x x κ (A) Tabell 1: Feil og kondisjonstall for system basert på Hilbertmatrisen. n x x κ (A) Tabell 2: Feil og kondisjonstall for system basert på en tilfeldig matrise. c) Vi velger eksaktløsning x = [1, 1,..., 1] T. For n = 10 kan vi da løse problemet ved matlab-setningene n = 10; x = ones([n, 1]); A = hilb(n); b = A * x; xt = A \ b; e = norm(x - xt, inf) k = cond(a, inf) Resultatene er oppsummert i Tabell 1. De samme eksperimentene med utgangspunkt i en tilfeldig matrise av tilfeldige tall, definert i matlab som A = rand(n), gir derimot resultatene i Tabell 2. Dine egne resultater vil sannsynligvis variere noe fra disse. Dette viser imidlertid at kondisjonstallet for Hilbertmatrisen er ganske ekstremt. På den annen side vil vi normalt måtte forvente at kondisjonstallet vokser med økende dimensjon på matrisen. 2

3 Oppgave 2 Kincaid & Cheney, «Problem» Vi skal løse ligningssystemet 2x 1 + 3x 2 = 8 x 1 + 2x 2 x 3 = 0 3x 1 + 2x 3 = 9 ved help av Gausseliminasjon med skalert delvis pivotering. Denne metoden er beskrevet i boka på side 280 og utover. Vi skriver ligningssystemet på formen Ax = b og får x 1 x 2 x 3 8 = 0. (1) 9 Først beregner vi skaleringsfaktoren til hver rad i A. Skaleringsfaktoren er den største absoluttverdien i hver rad, det vil si s i = max 1 j n a ij for hver rad 1 i n. Skaleringsfaktorene beregnes kun én gang. Vi får s 1 = 3, s 2 = 2, s 3 = 3. I skritt k velger vi som pivotligning den rad i A der forholdet a ik / s i, i I er størst. I er her mengden av «gjenværende» pivotrader. I skritt 1 finner vi a 11 s 1 = 2/3, a 21 s 2 = 1/2, a 31 s 3 = 1, så vi velger ligning 3 som pivotrad. Ett skritt i Gaussprosessen gir da x x 2 = 0 3 4/3 0 x /3 x 2 = x x 3 9 I skritt 2 beregner vi for de gjenværende radene i I = {1, 2} a 12 s 1 = 9/2, 3 a 22 s 2 = 1

4 så vi velger rad 1 som pivotrad. Ett skritt i Gaussprosessen gir da 0 3 4/3 x /3 x /3 x 2 = /9 x 2 = 5/ x x 3 9 Den siste pivotraden som vi ikke gjør noe med blir rad 2. Vi gjør tilbakesubstituering i samme motsatt rekkefølge av den rekkefølgen vi fikk for pivotradene, altså 2, 1, 3. Det gir x 3 = 1 5/9 5/3 = 3, x 2 = 1 3 (4/ ) = 2, x 1 = 1 3 (9 2 3) = 1. Kincaid & Cheney, «Problem» Vi er gitt matrisen A = a) Vi skal vise at A ikke kan LU-faktoriseres, det vil si A kan ikke skrives som et produkt av en nedre enhetstriangulær matrise L og en øvre triangulær matrise U. En matrise kan LU-faktoriseres hvis og bare hvis naiv Gausseliminasjon ikke stopper opp på grunn av null som pivotelement (se forøvrig side 318 i C & K). Vi utfører et skritt med naiv Gausseliminasjon: / /2 Vi ser at a 22 = 0. Matrisen A har dermed ingen LU-faktorisering. b) Vi skal vise at vi ved å bytte om radene i matrisen A kan produsere en matrise som har en LU-faktorisering. Vi ser at problemet med A er at a 11 = a 12 og a 21 = a 22. Det betyr at eliminasjon av a 21 ved hjelp av a 11 også vil eliminere a 22 ved «hjelp» av a 12. Ved å bytte om radene som rad 2 1, rad 1 3 og rad 3 2 får vi da B =

5 Dermed gir ett skritt med Gausseliminasjon Matrisen B, oppnådd ved å permutere radene til A, har altså en LUfaktorisering. Oppgave 3 Kincaid & Cheney, «Problem» Vi har gitt en iterasjonsprosess av typen Qx (k) = (Q A)x (k 1) + b (2) og skal finne en tilstrekkelig betingelse for at prosessen skal konvergere for en vilkårlig startvektor x (0). Prosessen (2) er en fikspunktiterasjonsprosess. La x være fikspunktet i prosessen. Feilen e (k) kan skrives e (k) = x x (k). Dersom vi for feilnormen finner at e (k) < e (k 1) for alle k 1, så vil e (k) 0 når k. Det betyr at vi i dette tilfellet har x (k) x når k. Generelle egenskaper ved den avledete matrisenormen gir at e (k) I Q 1 A e (k 1) så for at vi skal ha e (k) < e (k 1) må I Q 1 A < 1. Svaret blir dermed alternativ d. Kincaid & Cheney, «Problem» For en vektornorm er den avledete matrisenormen gitt ved { A = sup Ax : x R n } x =1 for en matrise A R n n. Den avledete matrisenormen er en norm, så derfor er A + B A + B. 5

6 Videre finner vi på side 340 i C & K at det for avledete matrisenormer også gjelder at I = 1 Svaret blir dermed alternativ b. Ax A x AB A B. Kincaid & Cheney, «Problem» Betingelsen for at en matrise A R n n er diagonaldominant er at diagonalelementet på hver rad i absoluttverdi er større en summen av absoluttverdiene av de andre elementene på samme rad. Med andre ord at a ii > n a ij j=1 j i for alle i = 1,..., n. Svaret blir dermed alternativ e. Kincaid & Cheney, «Problem» Vi skal finne en nødvendig og tilstrekkelig betingelse for at iterasjonen skal konvergere mot en løsning av ligningen x (j) = Gx (j 1) + k (3) (I G)x = k. (4) Vi ser at et fikspunkt x i rekurrensrelasjonen (3) tilfredsstiller (4). Dersom (3) konvergerer vil prosessen følgelig konvergere mot en løsning av (4). For feilen har vi at e (j) = Ge (j 1). Vi krever at e (j) 0 når j som er ekvivalent med at e (j) < e (j 1). Som i «Problem» får vi et krav om at G < 1. Vi har videre at spektralradien ρ(g) G, så kravet er alternativ c. Kincaid & Cheney, «Problem» En tilstrekkelig betingelse for at Jacobi-metoden eller Gauss Seidel-metoden anvendt på ligningssystemet Ax = b skal konvergere er at A er diagonaldominant (teorem 2 på side 349 i C & K). Svaret blir alternativ b. 6

7 Kincaid & Cheney, «Problem» Se «Problem» Svaret blir alternativ a. Kincaid & Cheney, «Problem» Den suksessive overrelaksasjonsmetoden (SOR-metoden) med ω (0, 2) konvergerer mot løsningen av ligningssystemet Ax = b hvis og bare hvis A er symmetrisk og positiv definitt, det vil si at A T = A og x T Ax > 0 for alle x 0 (teorem 3 side 350). Svaret blir dermed alternativ c. Oppgave 4 Vi studerer systemet x x x 3 = 0 0. } {{ 21 x 4 }}{{} 0 }{{} A x b Vi vet fra resultatene «Theorem 2» i avsnitt 8.2 at et tilstrekkelig krav for konvergens av Jacobi og Gauss Seidel er at matrisen A er strengt diagonaldominant, dvs. a ii > n j=1 a ij for alle i = 1,..., n. I dette tilfellet er kravet j i oppfylt bortsett fra i nest siste rad. I tillegg har vi fra «Theorem 3» at SOR vil konvergere dersom matrisen har positive diagonalelementer (oppfylt), 0 < ω < 2 (oppfylt fra forutsetningene) og matrisen er positiv definitt. Fra det vi har lært er det imidlertid ikke lett å avjøre om denne matrisen er positiv definitt bare ved å studere elementene. I korthet vet vi derfor ikke umiddelbart om de iterative metodene vil konvergere eller ikke. På den annen side er systemet av liten størrelse så vi kan eksplisitt beregne iterasjonsmatrisen G = I Q 1 A for hver av de tre metodene og undersøke om ρ(g) < 1. Følgende matlab-setninger viser fremgangsmåten: sr = inline( max(abs(eig(m))), M ); % spektralradius A = [ 15, -2, - 6, 0; -2, 12, -4, - 1; , -4, 19, -9; 0, - 1, -9, 21]; CL = -tril(a, -1); CU = -triu(a, 1); D = diag(diag(a)); rho_j = sr(d \ (CL + CU)) rho_gs = sr((d - CL) \ CU) 7

8 Figur 1: Spektralradien ρ(g SOR ) som funksjon av ω for iterasjonsmatrisen i Oppgave 4. omega = linspace(0, 2, 1001); rho = zeros(size(omega)); for k = 1 : numel(omega), w = omega(k); rho(k) = sr((d - w*cl) \ (w*cu + (1 - w)*d)); end plot(omega, rho) Fra denne analysen finner vi at ρ(g J ) 0.70 < 1, ρ(g GS ) 0.49 < 1, ρ(g SOR ) < 1 for 0 < ω < 2 og vi kan konkludere med at alle iterasjonsmetodene vil konvergere for alle startvektorer x (0). Plottet i Figur 1 indikerer også at ω 1.2 vil gi optimal konvergensrate i SOR og derfor også færrest mulig SOR-iterasjoner. Test dette! Som et siste alternativ i analysen kan vi nevne at kriteriene fra «Theorem 2» kan slakkes litt og likevel gi konvergens for Jacobi og Gauss Seidel. Dette er ikke vist i C & K, men de slakkere kravene er nyttige i praksis og derfor 8

9 Metode Iterasjoner Tilnærmet løsning Jacobi 77 [ , , , ] T Gauss Seidel 39 [ , , , ] T SOR ω= [ , , , ] T Tabell 3: Approksimasjoner og iterasjonstall for ulike iterative metoder anvendt på «Computer Problem» nevnes de her. Hvis systemet Ax = b ikke kan dekomponeres i uavhengige undersystemer kun ved å bytte om rader og/eller kolonner i systemet, så vil Jacobis og Gauss Seidels metoder konvergere under den svakere betingelsen a ii n a ij j=1 j i for alle i = 1,..., n med streng ulikhet oppfylt for minst én i. Vi kan dessuten vise at hvis i tillegg a ii > 0 for alle i = 1,..., n og A T = A, så vil A være symmetrisk positiv definitt og SOR vil også konvergere. Under disse svakere betingelsene finner vi da at alle de tre metodene vil konvergere. Løsningen av systemet er x [ ] T. Oppgave 5 Kincaid & Cheney, «Computer Problem» Approksimasjoner og iterasjonstall for de ulike iterative metodene er gitt i Tabell 3. Kincaid & Cheney, «Computer Problem» Et plott av antall iterasjoner som funksjon av ω i intervallet [1, 2] er gitt i Figur 2. Plottet viser at ω = 1.4 gir minst antall iterasjoner for dette problemet. 9

10 Figur 2: Antall SOR-iterasjoner som funksjon av parameteren ω [1, 2] for «Computer Problem»

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA250 Numeriske metoder Oppgave Løsningsforslag, øving 7 a) Vi vet at r = Ae e = A r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup Ax

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

MA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer

MA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer MA5 Vårsemestre 9 Numeriske metoder for lineære systemer Introduksjon Vi vil approksimere løsningen av lineære systemet av n ligningene og n ukjente: a x + a x + + a n x n b a x + a x + + a n x n b ()

Detaljer

Numerisk lineær algebra

Numerisk lineær algebra Numerisk lineær algebra Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 29. Oktober 2007 Problem og framgangsmåte Vi vil løse A x = b, b, x R N,

Detaljer

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis

Detaljer

Sensitivitet og kondisjonering

Sensitivitet og kondisjonering Sensitivitet og kondisjonering Gitt en lineær likningssystem Ax = b vi skal studere effekten av perturbasjoner av input data: 1/19 på output data: Man kan A, b x perturbere bare b perturbere b og A samtidig.

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 227 Numerisk lineær algebra Eksamensdag: 5. desember 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Kontakt under eksamen Navn: Bawfeh Kingsley Kometa kontor: 7359975, mobil: 936 24 483) Sensur: 06.0.20 EKSAMEN I NUMERISK

Detaljer

f (x) = a 0 + a n cosn π 2 x. xdx. En gangs delvisintegrasjon viser at 1 + w 2 eixw dw, 4 (1 + w 2 ) 2 eixw dw.

f (x) = a 0 + a n cosn π 2 x. xdx. En gangs delvisintegrasjon viser at 1 + w 2 eixw dw, 4 (1 + w 2 ) 2 eixw dw. NTNU Institutt for matematiske fag Eksamen i TMA Matematikk M høsten 008 Løsningsforslag a Cosinusrekka til f blir av formen - 0 6 f (x a 0 + n0 a n cosn π x Vi har a 0 0, og a n R 0 f (xcosnπ xdx En gangs

Detaljer

Elementære eliminasjonsmatriser

Elementære eliminasjonsmatriser Elementære eliminasjonsmatriser Gitt en vektor a = [a 1,..., a n ] T, en matrise 1 0 0 0.......... M k = 0 1 0 0 0 a k+1 a k 1 0, a k 0,.......... 0 an a k 0 1 kalles elementære eliminasjonsmatriser eller

Detaljer

EKSAMEN I EMNET MAT160 Beregningsalgoritmer 1 Mandag 12 februar 2007 LØSNINGSFORSLAG

EKSAMEN I EMNET MAT160 Beregningsalgoritmer 1 Mandag 12 februar 2007 LØSNINGSFORSLAG Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 5 BOKMÅL EKSAMEN I EMNET MAT160 Beregningsalgoritmer 1 Mandag 12 februar 2007 LØSNINGSFORSLAG Tillatte

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA251 Numeriske metoder Løsningsforslag, Øving 3 Oppgave 1 a) Start med å tegne en skisse av funksjonen f(x) = x.99(e x 1). Vi oppdager fort at α må ligge svært nær, faktisk rundt.2. Newtons metode anvendt

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 30. mai 2017 Eksamenstid (fra

Detaljer

Lineære likningssystemer

Lineære likningssystemer Lineære likningssystemer Mange fysiske problemer kan formuleres som lineære likningssystemer i vektorrommet, 1/19 Lu = f Lineær: betyr at virkningen av L på u + v er L(u + v) = Lu + Lv, og skaleres som

Detaljer

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205) Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren 93064 EKSAMEN I NUMERISK LINEÆR ALGEBRA TMA405 Fredag 5 desember

Detaljer

Numerikk. TMA Matematikk 4N. Einar Baumann

Numerikk. TMA Matematikk 4N. Einar Baumann Numerikk TMA4125 - Matematikk 4N Einar Baumann 3. mai 2011 1 Forord Dette kompendiet er ment som en supplement til kompendiet i Matematikk 4 som selges på Tapir og ikke inneholder numerikkdelen i 4N og

Detaljer

Eksamen i TMA4122 Matematikk 4M

Eksamen i TMA4122 Matematikk 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk

Detaljer

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

Lineære ligningssystem og matriser

Lineære ligningssystem og matriser Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan

Detaljer

Eksamensoppgave i MA2501 Numeriske metoder

Eksamensoppgave i MA2501 Numeriske metoder Institutt for matematiske fag Eksamensoppgave i MA50 Numeriske metoder Faglig kontakt under eksamen: Trond Kvamsdal Tlf: 9305870 Eksamensdato: 3. mai 08 Eksamenstid (fra til): 09:00 3:00 Hjelpemiddelkode/Tillatte

Detaljer

a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er matrisen inverterbar når v T u 1.

a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er matrisen inverterbar når v T u 1. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Oppgave 1 a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

Eksamen i TMA4180 Optimeringsteori Løsningsforslag.

Eksamen i TMA4180 Optimeringsteori Løsningsforslag. Eksamen i TMA48 Optimeringsteori Løsningsforslag. Oppgave :. ordens betingelse for minima gir oss f(x) = [ 2x 2x 2 + 2 2x 2 2x 2 ] [ = som er oppfylt for når x 2 = x +. I dette punktet er [ ] 2 2 2 f(x)

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente. Oppvarming Her er et eksempel på et

Detaljer

MAT1110: Obligatorisk oppgave 2, V Løsningsforslag

MAT1110: Obligatorisk oppgave 2, V Løsningsforslag MAT1110: Obligatorisk oppgave 2, V-2015 Oppgave 1: a) Vi har Av 1 = ( 4 6 6 1 Løsningsforslag ) ( 3 2 ) = ( 24 16 ) = 8v 1, så v 1 er en egenvektor med egenverdi 8. Tilsvarende er ( ) ( ) ( ) 4 6 2 10

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Determinanter til 2 2 og 3 3 matriser

Determinanter til 2 2 og 3 3 matriser Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 28/4-2/5

Fasit til utvalgte oppgaver MAT1110, uka 28/4-2/5 Fasit til utvalgte oppgaver MAT1110, uka 8/4-/5 Tom Lindstrøm (lindstro@math.uio.no) 5..5 a) Alle punktene i B har avstand til origo større enn 1, så d(0, B) må være minst 1. Ved å velge punkter på x-aksen

Detaljer

EKSAMEN I TMA4180 OPTIMERINGSTEORI

EKSAMEN I TMA4180 OPTIMERINGSTEORI Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 4 Faglig kontakt under eksamen: Marte Pernille Hatlo 7359698 / 97537854 EKSAMEN I TMA48 OPTIMERINGSTEORI Fredag 2. juni

Detaljer

Numerikk. TMA Matematikk 4N. Einar Baumann

Numerikk. TMA Matematikk 4N. Einar Baumann Numerikk TMA4125 - Matematikk 4N Einar Baumann 19. mai 2011 1 Forord Dette kompendiet er ment som en supplement til kompendiet i Matematikk 4 som selges på Tapir og ikke inneholder numerikkdelen i 4N og

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A = Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA501 Numeriske metoder Vår 009 Øving 9 Oppgave 1 Bruk vedlagte matlab-program skyt.m til å løse randverdiproblemet x + e x = 0, x(0) = x(1) = 0 Oppgave Gitt startverdiproblemet x = t(x ), x(0) = 1, x

Detaljer

L(t 2 ) = 2 s 3, 2. (1. Skifteteorem) (s 2) 3. s 2. (Konvolusjonsteoremet) s 2. L 1 ( Z. = t, L 1 ( s 2 e 2s) = (t 2)u(t 2). + 1

L(t 2 ) = 2 s 3, 2. (1. Skifteteorem) (s 2) 3. s 2. (Konvolusjonsteoremet) s 2. L 1 ( Z. = t, L 1 ( s 2 e 2s) = (t 2)u(t 2). + 1 NTNU Institutt for matematiske fag Eksamen i TMA5 Matematikk D høsten 008 Løsningsforslag a i Lt s, Lt e t Skifteteorem s ii Z t L sinτsint τdτ 0 s Konvolusjonsteoremet + b i L s t, L s e s t ut ii L s

Detaljer

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et

Detaljer

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse matrisenotasjon simpleksalgoritmen i matrisenotasjon eksempel negativ transponert egenskap: bevis følsomhetsanalyse

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

Numerisk løsning av ikke-lineære ligninger

Numerisk løsning av ikke-lineære ligninger Numerisk løsning av ikke-lineære ligninger Anne Kværnø February 26, 2018 1 Problemstilling Vi vil først se på numeriske teknikker for å løse skalare ligninger (en ligning, en ukjent), for eksempel eller

Detaljer

Ortogonale polynom og Gauss kvadratur

Ortogonale polynom og Gauss kvadratur Ortogonale polynom og Gauss kvadratur Hans Munthe-Kaas 1. jaunar 2002 Sammendrag Dette notatet tar for seg minste kvadrat approksimasjoner, ortogonale polynom og Gauss kvadratur. Notatet er ment som et

Detaljer

TMA4215 Numerisk matematikk

TMA4215 Numerisk matematikk TMA45 Numerisk matematikk Høst 0 Løsningsforslag øving 7 Oppgave a Vi har Eksakt løsning: yt n+ = yt n + hφ t n, yt n ; h + d n+, Numerisk løsning: y n+ = y n + hφt n, y n ; h. Ta differensen mellom disse,

Detaljer

Numerisk lineær algebra for Poissons ligning

Numerisk lineær algebra for Poissons ligning Numerisk lineær algebra for Poissons ligning NTNU Brynjulf Owren Institutt for matematiske fag November 24, 2008 1 / 30 Innhold 1 Motivasjon, generelt om ligningsløsning 2 Poisson s ligning i 2 dimensjoner

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).

Detaljer

Løsning ved iterasjon

Løsning ved iterasjon Løsning ved iterasjon Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 17. September 2009 Problem Gitt problemet f (x) = 0 for en eller annen funksjon

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

6.4 (og 6.7) Gram-Schmidt prosessen

6.4 (og 6.7) Gram-Schmidt prosessen 6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

Homogene lineære ligningssystem, Matriseoperasjoner

Homogene lineære ligningssystem, Matriseoperasjoner Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA423/TMA425 Matematikk 4M/4N Vår 203 Løsningsforslag Øving 2 La y = yx være funksjonen som tilfredstiller differensialligningen

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

LP. Kap. 17: indrepunktsmetoder

LP. Kap. 17: indrepunktsmetoder LP. Kap. 17: indrepunktsmetoder simpleksalgoritmen går langs randen av polyedret P av tillatte løsninger et alternativ er indrepunktsmetoder de finner en vei i det indre av P fram til en optimal løsning

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 06 Anbefalte øvingsoppgaver fra boken: 9.3 : 53, 6, 64, 7, 75. Det er bare oppgaven under

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %

Detaljer

RF5100 Lineær algebra Leksjon 2

RF5100 Lineær algebra Leksjon 2 RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013 I. LINEÆRE SYSTEM SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på

Detaljer

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer? Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til

Detaljer

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Andreas Leopold Knutsen 4. oktober 2017 Problem og hovedidé Problem: Finn løsning(er) r på en ligning

Detaljer

Et forsøk på et oppslagsverk for TMA4145 Lineære metoder

Et forsøk på et oppslagsverk for TMA4145 Lineære metoder Et forsøk på et oppslagsverk for TMA4145 Lineære metoder Ruben Spaans May 21, 2009 1 Oppslagsverk Adjungert Ball, la (X, d) være et metrisk rom og la ɛ > 0. Da er for x 0 X: 1. B(x 0 ; ɛ) = {x x X d(x,

Detaljer

Klara Hveberg, 26 sylen under pivot-elementet, ma vi na bare trekke (3; 2)=(2; 2) = 8=2 = 4 ganger andre rad fra tredje rad >> k=(3,2)/(2,2); >> (3,:)

Klara Hveberg, 26 sylen under pivot-elementet, ma vi na bare trekke (3; 2)=(2; 2) = 8=2 = 4 ganger andre rad fra tredje rad >> k=(3,2)/(2,2); >> (3,:) Lab 2: Gauss-eliminasjon av Klara Hveberg I denne laboratorievelsen skal vi se pa hvordan vi kan lage Matlab-funksjoner som utfrer Gauss-eliminasjon pa matriser, dvs som bringer dem pa trappeform ved hjelp

Detaljer

Kap. 6 Ortogonalitet og minste kvadraters problemer

Kap. 6 Ortogonalitet og minste kvadraters problemer Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D: Løysing

Eksamensoppgave i TMA4135 Matematikk 4D: Løysing Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D: Løysing Faglig kontakt under eksamen: Morten Andreas Nome Tlf: Eksamensdato: 3 desember 27 Eksamenstid (fra til): 9:3: Hjelpemiddelkode/Tillatte

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 0. desember 205 Eksamenstid

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet

Detaljer

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt Biseksjonsmetoden Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt biseksjonsmetode. Gitt en intervall [a, b] hvor f skifter fortegn, vi halverer [a, b] = [a, b + a 2 ]

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

Numerisk løsning av PDL

Numerisk løsning av PDL Numerisk løsning av PDL Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 6. November 2007 Problem og framgangsmåte Fram til nå har vi sett på ordinære

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Eksamensdag: Torsdag 8. juni 07 Tid for eksamen: 09.00 3.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT-INF360

Detaljer

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006 Løsningsforslag til prøveeksamen i MAT, våren 6 Oppgave : a) Vi har C 5 3 II+( )I a + 3a 3a III+I 3 II 3 3 3 3 a + 3a 3a 3 a + 3a 3a III+II I+( ))II 3 3 3 a + 3a 3a 3 3 3 a + 3a 4 3 3a a + 3a 4 3 3a b)

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Lineærtransformasjoner

Lineærtransformasjoner Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 2. desember 204 Eksamenstid

Detaljer

LO118D Forelesning 5 (DM)

LO118D Forelesning 5 (DM) LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

Følger og rekker. Department of Mathematical Sciences, NTNU, Norway. November 10, 2014

Følger og rekker. Department of Mathematical Sciences, NTNU, Norway. November 10, 2014 Department of Mathematical Sciences, NTNU, Norway November 10, 2014 Forelesning (03.01.2014): kap 9.1 og 9.2 Beskrivelse av følger eksempler og definisjon Egenskaper med følger Grenseverdi for følger (og

Detaljer

Egenverdier og egenvektorer

Egenverdier og egenvektorer Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon

Detaljer

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva

Detaljer

Diagonalisering. Kapittel 10

Diagonalisering. Kapittel 10 Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A =

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A = Oblig - MAT Fredrik Meyer. september 9 Oppgave Linkmatrise: A = En basis til nullrommet til matrisen A I kan finnes ved å bruke MATLAB. Jeg kjører kommandoen rref(a-i) og får følge: >> rref(a-i). -.875.

Detaljer

6 Determinanter TMA4110 høsten 2018

6 Determinanter TMA4110 høsten 2018 6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF5045 NUMERISK LØSNING AV DIFFERENSIALLIGNINGER

LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF5045 NUMERISK LØSNING AV DIFFERENSIALLIGNINGER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Faglig kontakt under eksamen: Syvert P. Nørsett 7 59 5 45 LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF545 NUMERISK LØSNING

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

Regneregler for determinanter

Regneregler for determinanter Regneregler for determinanter E.Malinnikova, NTNU, Institutt for matematiske fag 6. oktober, 2010 Triangulær matriser En kvadratisk matrise A = [a ij ] kalles øvre/nedretriangulær hvis a ij = 0 når i >

Detaljer

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3 NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag. Side 1 av 6. Faglig kontakt under eksamen: Navn: Brynjulf Owren (93518)

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag. Side 1 av 6. Faglig kontakt under eksamen: Navn: Brynjulf Owren (93518) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (93518) EKSAMEN I NUMERISK LØSNING AV DIFFERENISALLIGNINGER (75316)

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer