Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise
|
|
- Ole-Kristian Stene
- 8 år siden
- Visninger:
Transkript
1 Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011
2 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan skrives: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b a m1 x 1 + a m2 x a mn x n = b m Vi vil finne alle løsninger (x 1,..., x n ). Ligningssystemet sies å være konsistent hvis det har minst én løsning og inkonsistent hvis det ikke har noen løsninger.
3 Eksempler Eksempel 1. Vi vil løse systemet: x 1 + 2x 2 = 5 2x 1 + 3x 2 = 4
4 Eksempler Eksempel 1. Vi vil løse systemet: Det er ekvivalent med systemet x 1 + 2x 2 = 5 2x 1 + 3x 2 = 4 + 2
5 Eksempler Eksempel 1. Vi vil løse systemet: Det er ekvivalent med systemet x 1 + 2x 2 = 5 2x 1 + 3x 2 = x 1 + 2x 2 = 5 7x 2 = 14
6 Eksempler Eksempel 1. Vi vil løse systemet: Det er ekvivalent med systemet x 1 + 2x 2 = 5 2x 1 + 3x 2 = x 1 + 2x 2 = 5 7x 2 = 14 Fra den nederste ligningen har vi x 2 = 2.
7 Eksempler Eksempel 1. Vi vil løse systemet: Det er ekvivalent med systemet x 1 + 2x 2 = 5 2x 1 + 3x 2 = x 1 + 2x 2 = 5 7x 2 = 14 Fra den nederste ligningen har vi x 2 = 2. Så gir den første ligningen x 1 = 2x 2 5 = 4 5 = 1.
8 Eksempler Eksempel 1. Vi vil løse systemet: Det er ekvivalent med systemet x 1 + 2x 2 = 5 2x 1 + 3x 2 = x 1 + 2x 2 = 5 7x 2 = 14 Fra den nederste ligningen har vi x 2 = 2. Så gir den første ligningen x 1 = 2x 2 5 = 4 5 = 1. Svar: x 1 = 2, x 2 = 1.
9 Eksempler Eksempel 2. 2x 1 x 2 + x 3 = 5 3x 1 + 2x 2 3x 3 = 4
10 Eksempler Eksempel 2. Eksempel 3. 2x 1 x 2 + x 3 = 5 3x 1 + 2x 2 3x 3 = 4 2x 1 x 2 = 5 4x 1 + 2x 2 = 4
11 Matriser Koeffisientmatrisen til ligningssystemet og høyresidevektoren er a 11 a a 1n b 1 A = a 21 a a 2n , b = b a m1 a m2... a mn b m Totalmatrisen til ligningssystemet er [A b] = a 11 a a 1n b 1 a 21 a a 2n b a m1 a m2... a mn b m
12 Gausseliminasjon Vi løser ligningssystemet ved å omforme totalmatrisen til en enkel matrise ved hjelp av radoperasjoner.
13 Gausseliminasjon Vi løser ligningssystemet ved å omforme totalmatrisen til en enkel matrise ved hjelp av radoperasjoner. Løsninger til ligningssystemet blir ikke forandret ved radoperasjoner!
14 Gausseliminasjon Vi løser ligningssystemet ved å omforme totalmatrisen til en enkel matrise ved hjelp av radoperasjoner. Løsninger til ligningssystemet blir ikke forandret ved radoperasjoner! Hva er radoperasjoner?
15 Gausseliminasjon Vi løser ligningssystemet ved å omforme totalmatrisen til en enkel matrise ved hjelp av radoperasjoner. Løsninger til ligningssystemet blir ikke forandret ved radoperasjoner! Hva er radoperasjoner? Hva mener vi med en enkel matrise?
16 Elementære radoperasjoner i en matrise 1. Addere et multiplum av en rad til en annen rad (R j + cr k )
17 Elementære radoperasjoner i en matrise 1. Addere et multiplum av en rad til en annen rad (R j + cr k ) 2. Bytte om to rader (SWAP(R j, R k ) / R j R k )
18 Elementære radoperasjoner i en matrise 1. Addere et multiplum av en rad til en annen rad (R j + cr k ) 2. Bytte om to rader (SWAP(R j, R k ) / R j R k ) 3. Multiplisere en rad med konstant c 0 (cr j )
19 Elementære radoperasjoner i en matrise 1. Addere et multiplum av en rad til en annen rad (R j + cr k ) 2. Bytte om to rader (SWAP(R j, R k ) / R j R k ) 3. Multiplisere en rad med konstant c 0 (cr j ) Radekvivalente matriser To matriser kalles radekvivalente hvis en kan omformes til andre ved hjelp av elementære radoperasjoner.
20 Elementære radoperasjoner i en matrise 1. Addere et multiplum av en rad til en annen rad (R j + cr k ) 2. Bytte om to rader (SWAP(R j, R k ) / R j R k ) 3. Multiplisere en rad med konstant c 0 (cr j ) Radekvivalente matriser To matriser kalles radekvivalente hvis en kan omformes til andre ved hjelp av elementære radoperasjoner. Teorem Dersom to ligningssystem har radekvivalente totalmatriser, så har ligningssystemene samme løsninger.
21 Echelonmatrise Første element i en rad som ikke er null kalles lederelementet.
22 Echelonmatrise Første element i en rad som ikke er null kalles lederelementet. En matrise kalles echelonmatrise hvis 1. Eventuelle nullrader står nederst. 2. Lederelementet i hver ikkenullrad står til høyre for lederelementer i raden over.
23 Echelonmatrise Første element i en rad som ikke er null kalles lederelementet. En matrise kalles echelonmatrise hvis 1. Eventuelle nullrader står nederst. 2. Lederelementet i hver ikkenullrad står til høyre for lederelementer i raden over. Anta at totalmtrisen til et ligningssystem er en echelonmatrise. Hver kolonne untatt den siste tilsvarer til en ukjent.
24 Echelonmatrise Første element i en rad som ikke er null kalles lederelementet. En matrise kalles echelonmatrise hvis 1. Eventuelle nullrader står nederst. 2. Lederelementet i hver ikkenullrad står til høyre for lederelementer i raden over. Anta at totalmtrisen til et ligningssystem er en echelonmatrise. Hver kolonne untatt den siste tilsvarer til en ukjent. En ukjent som tilsvarer til en kolonne med et lederelement kalles en ledende variabel. Andre ukjente kalles frie variabler.
25 Gausseliminasjon for ligningssystem Gausseliminasjon: 1. Omforme totalmatrisen a 11 a a 1n b 1 a 21 a a 2n b a m1 a m2... a mn b m til en echelonmatrise ved hjelp av elementære radoperasjoner. 2. Hvis echelonmatrisen inneholder en rad b med b 0 så har systemet ingen løsning. 3. Ellers kan vi løse systemet med tilbakesubstitusjon.
26 Redusert echelonmatrise Første element i en rad som ikke er null kalles lederelementet.
27 Redusert echelonmatrise Første element i en rad som ikke er null kalles lederelementet. En matrise kalles redusert echelonmatrise hvis 1. Eventuelle nullrader står nederst. 2. Lederelementet i hver ikkenullrad står til høyre for lederelementer i raden over. 3. Lederelementet i hver ikkenullrad er Hver lederelement er eneste element som ikke er lik 0 i sin kolonne.
28 Redusert echelonmatrise Første element i en rad som ikke er null kalles lederelementet. En matrise kalles redusert echelonmatrise hvis 1. Eventuelle nullrader står nederst. 2. Lederelementet i hver ikkenullrad står til høyre for lederelementer i raden over. 3. Lederelementet i hver ikkenullrad er Hver lederelement er eneste element som ikke er lik 0 i sin kolonne. 1-2: Echelonmatrise 1-4: Redusert echelon matrise
29 Gauss-Jordaneliminasjon for ligningssystem Gausse-Jordaneliminasjon: 1. Omforme totalmatrisen a 11 a a 1n b 1 a 21 a a 2n b a m1 a m2... a mn b m til en redusert echelonmatrise ved hjelp av elementære radoperasjoner. 2. Hvis redusert echelonmatrisen inneholder en rad så har systemet ingen løsning Ellers kan vi løse systemet med tilbakesubstitusjon.
30 Semesterprøve oppgaver, 2007 Oppgave Bestem redusert echelonform for matrisen A : C : B : D :
31 Semesterprøve oppgaver, 2007 Oppgave Hvilken av matrisene er på redusert echelon form? A : B : C : D :
32 Semesterprøve oppgaver, 2007 Oppgave Hvilken av matrisene er på redusert echelon form? A : B : C : D :
Lineære ligningssystem og matriser
Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan
DetaljerLineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler
Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1
DetaljerInverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009
Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b
DetaljerGauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.
Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre
DetaljerLineære ligningssystemer og gausseliminasjon
Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente. Oppvarming Her er et eksempel på et
DetaljerHomogene lineære ligningssystem, Matriseoperasjoner
Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har
DetaljerLineære ligningssystemer og gausseliminasjon
Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et
Detaljer(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3
NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis
DetaljerElementær Matriseteori
Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start
DetaljerDeterminanter til 2 2 og 3 3 matriser
Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =
DetaljerBasis, koordinatsystem og dimensjon
Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis
DetaljerLineære likningssystemer og matriser
Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger
DetaljerRegneregler for determinanter
Regneregler for determinanter E.Malinnikova, NTNU, Institutt for matematiske fag 6. oktober, 2010 Triangulær matriser En kvadratisk matrise A = [a ij ] kalles øvre/nedretriangulær hvis a ij = 0 når i >
DetaljerForelesning i Matte 3
Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære
DetaljerMAT1120 Repetisjon Kap. 1
MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer
DetaljerLineær algebra-oppsummering
Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:
DetaljerLineære likningssett.
Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,
DetaljerMatriser. Kapittel 4. Definisjoner og notasjon
Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper
DetaljerMatriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009
Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen
DetaljerMA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til
DetaljerTMA4122/TMA4130 Matematikk 4M/4N Høsten 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis
DetaljerForelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2
Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe
Detaljer4 Matriser TMA4110 høsten 2018
Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere
Detaljertma4110 Matematikk 3 Notater høsten 2018 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland
tma4 Matematikk Notater høsten 8 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland Innhold Introduksjon ii Lineære likningssystemer Gausseliminasjon 4 Vektor- og matriselikninger 8 4 Matriser
Detaljery(x) = C 1 e 3x + C 2 xe 3x.
NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks
DetaljerRang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015
Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c
DetaljerMAT1120 Repetisjon Kap. 1, 2 og 3
MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger
DetaljerVær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
DetaljerEKSAMEN I MATEMATIKK 3 (TMA4110)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven
Detaljer1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =
Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (
DetaljerLineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning
Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable
DetaljerEKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller
DetaljerHvorfor er lineær algebra viktig? Linear
Lineær Algebra Hvorfor er lineær algebra viktig? Linear y = ax + b linje y = f(x) funksjon Taylor utvikling f(x) =f(x 0 )+f 0 (x 0 )(x x 0 )+ 1 2 f 00 (x 0 )(x x 0 ) 2 + f(x) f(x 0 )+f 0 (x 0 )(x x 0 )
DetaljerLineær uavhengighet og basis
Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c
DetaljerJohn Haugan. Matematikk for ingeniørstudenter: Lineær algebra
John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg, 25-26 2 John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg,
DetaljerLO510D Lin.Alg. m/graf. anv. Våren 2005
TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til
Detaljer1 Gauss-Jordan metode
Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller
DetaljerEksamensoppgave i MA1201 Lineær algebra og geometri
Institutt for matematiske fag Eksamensoppgave i MA1201 Lineær algebra og geometri Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 05.10.2016 Eksamenstid (fra til): 08:15 09:45
DetaljerMA1201, , Kandidatnummer:... Side 1 av 5. x =.
MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =
DetaljerRepetisjon: Om avsn og kap. 3 i Lay
Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert
DetaljerGauss-eliminasjon og matrisemultiplikasjon
DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,
Detaljer10 Radrommet, kolonnerommet og nullrommet
Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For
DetaljerØving 3 Determinanter
Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er
DetaljerObligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006
Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en
DetaljerVektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?
Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke
DetaljerOppgave 1 (25 %) - Flervalgsoppgaver
Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består
DetaljerRF5100 Lineær algebra Leksjon 2
RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013 I. LINEÆRE SYSTEM SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på
DetaljerVektorligninger. Kapittel 3. Vektorregning
Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det
DetaljerEKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG
DetaljerLøsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)
DetaljerMer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
DetaljerMA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %
DetaljerRepetisjon: om avsn og kap. 3 i Lay
Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet
DetaljerMer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
Detaljer1. (a) Finn egenverdiene og egenvektorene til matrisen A =
1. (a) Finn egenverdiene og egenvektorene til matrisen A = ( ) 2 3. 1 4 Svar: λ = 5 med egenvektorer [x, y] T = y[1, 1] T og λ = 1 med egenvektorer [x, y] T = y[ 3, 1] T, begge strengt tatt med y 0. (b)
DetaljerTMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0
TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x
DetaljerEksamensoppgave MAT juni 2010 (med løsningsforslag)
Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6
DetaljerMa Linær Algebra og Geometri Øving 1
Ma0 - Linær Algebra og Geometri Øving Øistein Søvik 0. september 0 Excercise Set. = 4 x6 x x = x 6 4 x x = x 4 4 4 x x. In each part, determine whether the equation is linear in x, x and x Før vi begynner
DetaljerMAT-1004 Vårsemester 2017 Obligatorisk øving 2
MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene
Detaljer6 Determinanter TMA4110 høsten 2018
6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til
DetaljerAvdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge
Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde
DetaljerLineær algebra. Kurskompendium, Utøya, MAT1000. Inger Christin Borge
Lineær algebra Kurskompendium, Utøya, MAT1000 Inger Christin Borge 2006 Forord Dette er et kompendium skrevet til bruk i MAT1000-varianten av Utøyaseminarene, arrangert av Matematisk fagutvalg ved Matematisk
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 0.1.018 Kl. 09:00 Innlevering: 0.1.018 Kl. 14:00 For mer informasjon om formalia, se
DetaljerMinste kvadraters løsning, Symmetriske matriser
Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).
DetaljerOppgave P. = 2/x + C 6 P. + C 6 P. d) 12(1 x) 5 dx = 12u 5 1/( 1) du = 2u 6 + C = 2(1 x) 6 + C 6 P. Oppgave P.
Løsning MET 86 Matematikk for siviløkonomer Innleveringsfrist 5. mars 9 kl Vi benytter maksimal score 6p på hver deloppgave og 44p totalt, og grensen for å bestå er ca 86p. Du kan selv fylle ut tabellen
DetaljerLøsningsforslag for eksamen i Matematikk 3 - TMA4115
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt
Detaljer8 Vektorrom TMA4110 høsten 2018
8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.
DetaljerLøsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at
Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =
DetaljerObligatorisk innlevering 3 - MA 109, Fasit
Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert
DetaljerSIF5010 Matematikk 3. y 00, 2y 0 +5y = sin x 4A, 2B =0 4B +2A =1;
for fakultet E og F varen 998 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Lsningsforslag eksamen varen 998 Eksamen SIF5, mai 98 a) y, y +5y sin x P (r) r, r +5; r i Som
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerLineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som
Detaljerx 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder
4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes
DetaljerMA2501 Numeriske metoder
MA2501 Numeriske metoder Løsningsforslag, øving 7 Oppgave 1 a) Vi vet at r = Ae e = A 1 r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup
DetaljerMA2501 Numeriske metoder
MA250 Numeriske metoder Oppgave Løsningsforslag, øving 7 a) Vi vet at r = Ae e = A r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup Ax
DetaljerEKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid:
EKSAMEN EMNE: MA6 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen Klasser: (div) Dato: mai Eksamenstid: Eksamensoppgaven består av følgende: Antall sider (ink forside): 5 Antall oppgaver: Antall vedlegg:
DetaljerMA0002 Brukerkurs i matematikk B Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Løsningsforslag Øving 1 Kapittel 7.1: Substitusjon Teorem 1. Hvis u = g() så er f(g())g
DetaljerEksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1
Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra
DetaljerNorges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Mandag. desember Oppgave a) Karakteristisk polynom er + = ;
DetaljerForelesning 10 Cramers regel med anvendelser
Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Fagoppgave MET 1186 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.19 Kl. 9: Innlevering: 5.1.19 Kl. 1: For mer informasjon om formalia, se eksamensoppgaven.
DetaljerKlara Hveberg, 26 sylen under pivot-elementet, ma vi na bare trekke (3; 2)=(2; 2) = 8=2 = 4 ganger andre rad fra tredje rad >> k=(3,2)/(2,2); >> (3,:)
Lab 2: Gauss-eliminasjon av Klara Hveberg I denne laboratorievelsen skal vi se pa hvordan vi kan lage Matlab-funksjoner som utfrer Gauss-eliminasjon pa matriser, dvs som bringer dem pa trappeform ved hjelp
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
DetaljerEgenverdier og egenvektorer
Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon
DetaljerLøsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning
DetaljerEKSAMEN. 1 Om eksamen. EMNE: MA-109 FAGLÆRER: Svein Olav Nyberg, Turid Knutsen, Øystein Alvik
EKSAMEN EMNE: MA- FAGLÆRER: Svein Olav Nyberg, Turid Knutsen, Øystein Alvik Klasser: (div) Dato: mai Eksamenstid: Eksamensoppgaven består av følgende: Antall sider (ink forside): Antall oppgaver: Antall
DetaljerMA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +
DetaljerTMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:
TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og
DetaljerMa Linær Algebra og Geometri Øving 5
Ma20 - Linær Algebra og Geometri Øving 5 Øistein søvik 7. oktober 20 Excercise Set.5.5 7, 29,.6 5,, 6, 2.7, A = 0 5 B = 0 5 4 7 9 0-5 25-4 C = 0 5 D = 0 0 28 4 7 9 0-5 25 F = 6 2-2 0-5 25 7. Find an elementary
DetaljerUniversitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!
Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:
DetaljerMAT 1110: Bruk av redusert trappeform
Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................
DetaljerLineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort
DetaljerMAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430
MAT Vår Oblig Innleveringsfrist: Fredag 9februar kl 43 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7 etg i Niels Henrik Abels hus innen fristen Oppgaven vil
DetaljerLP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden
LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden Dette emnet gir en innføring i lineær optimering og tilgrensende felt. hva er LP (lin.opt.=lin.programmering) mer generelt: matematisk optimering
DetaljerMAT1120 Oppgaver til plenumsregningen torsdag 18/9
MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Magnus Dahler Norling (magnudn@math.uio.no) September 2014 Oppgave 4.6.4 rank A = rank B = 5 (teorem 13+14). dim Nul A = n - rank A = 6-5 = 1 (teorem
Detaljer6.4 (og 6.7) Gram-Schmidt prosessen
6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en
Detaljer