Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A =
|
|
- Lennart Ødegård
- 6 år siden
- Visninger:
Transkript
1 Løsning MET 803 Matematikk for siviløkonomer Dato 8. desember 07 kl Oppgave. (a) Vi løser det lineære systemet for a = ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: 7 3 y = z Deretter nner vi en trappeform ved å bruke elementære radoperasjoner: Vi ser at systemet har én løsning, og vi nner den ved baklengs substitusjon. Siste likning er 4z = 4, som gir z =. Andre likning er 4y + z = 4y + = 3, som gir 4y = 4 og y =. Første likning er + 7y + z = + 8 = 9, som gir =. Dermed er løsningen (,y,z) = (,,). (b) Når a =, så er matrisen A og kofaktormatrisen C A = 7 3 C = (C ij ) = Vi har at det(a) = (3 ) 7( + ) + ( + 3) =, og dermed er den inverse matrisen A = A CT = 6 3 = Løsningen av det lineære systemet ved bruk av den inverse matrisen er = A b = = = Vi ser at dette stemmer overens med svaret vi kk i (a). (c) Vi vet at systemet har eksakt én løsning hvis og bare hvis det(a) 0. Vi regner derfor ut A, og velger å utvikle A langs første rad: 7 a A = a 3 a = (3 ) 7(a + a) + a(a + 3a) = 4a a + Dermed er A = 0 når 4a a + = 0, og dette gir løsningene a = ± 4(4) = 8 8 ± og A 0 for alle andre verdier av a. Altså har systemet eksakt én løsning for a a, a med a = , a = (d) For a a, a har vi én løsning (,y,z), og y-koordinaten er følge Cramers regul y = A (b) A der det(a) = 4a a +. Vi regner ut determinanten A (b) : 9 a A (b) = a 6 a a = (6 a) 9(a + a) + a(a + 6a) = a 3 + 6a 9a + 6
2 Dermed får vi at y = A (b) A = a3 + 6a 9a + 6 4a a + Oppgave. (a) Vi løser dette integralet ved å bruke potensregelen: 3 3 d = 3 d = + C = 3 + C (b) Vi løser integralet ved å dele opp brøkuttrykket: e + e e d = ( + e ) d = ) ( + e + C = e 4 (c) Vi løser integralet ved substitusjonen u = ln, som gir du = u d med u = /. Dette gir ln u d = du / = u du = (ln u ) + C = + C + C Oppgave 3. (a) Vi har at f er denert for > 0. Vi regner ut den deriverte, og får at f () = (/) ln = ln Vi ser at f () = 0 når ln =, det vil si at = e. Siden f er voksende for e og f er avtagende for e, er = e et maksimumspunkt for f, med maksimumsverdi f maks = f(e) = ln(e) e Funksjonen har ikke noe minimumspunkt, siden = e er det eneste stasjonære punkt (og det er heller ikke andre kritiske punkt eller randpunkt). Derfor har f ingen minimumsverdi. (b) Vi vet at funksjonen vokser i intervallet (0,e], har et maksimum i = e, og avtar i intervallet [e, ). I = er verdien f() = ln / = 0. Når, vil f() 0. En skisse av grafen til f og området R er vist nedenfor. y = e R Arealet til området R er f() d = ln b ln d = lim b d Vi bruker det ubestemte integralet vi fant i Oppgave (c) ovenfor, og får at b [ ] ln (ln ) b d = (ln b) = og ser at det bestemte integralet går mot når b. Arealet av området R er ikke endelig. 3
3 (a) De første ordens deriverte blir Oppgave 4. f = y + y +, f y = y + og de andre ordens partielderiverte for f blir f = y, f y = 4y +, f yy = Hesse-matrisen H(f) til f er dermed y 4y + H(f) = 4y + (b) Nivåkurven f(,y) = har likning y + y + y =. Vi nner skjæringspunktene med linjen y = ved å sette inn y = i likningen, og får da 4 + =. Dette er en kvadratisk likning i u =, og vi får u + u = 0 u = ± 4( ) = ± 3 Dette gir u = = eller u = =. Vi ser at kun = er mulig, og det gir = ± og y =. Vi får dermed at (a,a) = (,), (b,b) = (, ) er de to skjæringspunktene. (c) Vi har at stigningstallet til tangentlinjen for nivåkurven f(,y) = i et punkt (,y) er y = y (,y) = f f y = y + y + y + I punktet (,) er derfor y (,) =, og tangenten har likning y = ( ) y = + 3 I punktet (, ) er y (, ) = /, og tangenten har likning y + = /( + ) y = 3 (d) Førsteordensbetingelsene er f = f y = 0, og dette gir likningene y + y + = 0, y + = 0 Vi kan skrive første likning som y(y + ) + = 0, og andre likning som (y + ) = 0. Løser vi begge likningene for y +, får vi y + = /y, y + = / Dermed er /y = /, eller y =. Vi sjekker = 0 og y = 0 siden vi dividerer på og y i regningen ovenfor. Men disse passer ikke i førsteordensbetingelsene, så y = er eneste mulige løsning. Setter vi dette inn i første likning, får vi 3 + = 0 Ved innsetting ser vi at = er en løsning, og polynomdivisjon gir faktoriseringen 3 + = ( + )( + ) = 0 Siden + = 0 ikke har noen løsninger, er = eneste løsning. Dette gir y = og det stasjonære punktet (,y) = (,) For å klassisere dette punktet, bruker vi annenderivert-testen. Hessematrisen H(f)(,) er y 4y + 3 H(f) = 4y + H(f)(,) = 3 Siden determinanten til Hesse-matrisen er 4 9 = 5 < 0, er punktet (,) et sadelpunkt. 4
4 Oppgave 5. (a) Vi gjenkjenner likningen + 4y = 4 som likningen til en ellipse med sentrum i (,y) = (0,0) og halvakser a = 4 = og b = =, siden den kan skrives 4 + y = Ellipsen er begrenset, fordi alle punkter (,y) på ellipsen tilfredsstiller og y. En skisse av ellipsen er vist nedenfor. y + 4y = (b) Lagrange-problemet har Lagrange-funksjon L(,y; λ) = y λ( + 4y ) Lagrange-betingelsene er de to førsteordensbetingelsene samt bibetingelsen, L = y λ = 0 L y = λ 8y = 0 + 4y = 4 Førsteordensbetingelsene gir y = λ og = 8λy = 8λ(λ) = λ, og dermed λ = ( λ ) = 0 Vi ser at = 0 eller λ =. Hvis = 0, så er y = λ = 0, og (0,0) passer ikke i bibetingelsen + 4y = 4. Dermed har vi at λ = λ = ± 4 Med λ = /4, får vi y = /, og innsatt i bibetingelsen gir dette + 4y = + = = 4 = ± og da er y = / = ± /. Dette gir to løsninger (,y; λ) av Lagrange-betingelsene, (,y; λ) = (, /; /4), (, /; /4) Med λ = /4, får vi y = /, og innsatt i bibetingelsen gir dette + 4y = + = = 4 = ± og i dette tilfellet er y = / = /. Dette gir to løsninger (,y; λ) av Lagrangebetingelsene, (,y; λ) = (, /; /4), (, /; /4) Totalt er det re løsninger av Lagrange-betingelsene. Vi legger merke til at de to første har f = y =, mens de to siste har f = y =. Kun de to siste er kandidater for minimum. (c) Siden mengden D = {(,y) : + 4y = 4} av tillatte punkter er ellipsen fra (a), så er den begrenset, og Lagrange-problemet har et minimum ved ekstremverdisetningen. De ordinære kandidatpunktene for minimum er punktene (,y; λ) = (, /; /4), (, /; /4) med f = y =. Vi sjekker om det er noen punkter med degenerert bibetingelse: Det ville være punkter på ellipsen g(,y) = + 4y = 4 med g = = 0 og g y = 8y = 0. Det eneste 5
5 punktet som oppfyller dette er (,y) = (0,0), som ikke er på ellipsen. Vi har derfor ingen tillatte punkter med degenerert bibetingelse, og minimumsverdien er f min =. (d) Skriver vi bibetingelsen g(,y) = a for en konstant a, og kaller minimumsverdien til Lagrangeproblemet min f(,y) når g(,y) = a for f (a), så kan vi tolke Lagrange-multiplikatoren λ som den marginale endringen i minimumsverdi ved en liten endring i a, det vil si at λ = df (a) da Når vi endrer verdien fra a = 4 til a = 5, får vi at f (5) f (4) + a df (a) da = + ( ) = =.5 Vi estimerer altså at den nye minimumsverdien er f (5).5. 6
MET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.017 Kl. 14:00 Innlevering: 18.1.017 Kl. 19:00 For mer informasjon om formalia,
DetaljerOppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A =
Løsning MET 80 Matematikk for siviløkonomer Dato 0. mai 07 kl 0900-400 Oppgave. (a) Vi løser det lineære systemet for a = ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: 0 y = 4 0 4 0 z 0 Deretter
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 0.1.018 Kl. 09:00 Innlevering: 0.1.018 Kl. 14:00 For mer informasjon om formalia, se
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 29.05.2019 Kl. 09:00 Innlevering: 29.05.2019 Kl. 14:00 For mer informasjon om formalia,
DetaljerOppgave 1. e rt = 120e. = 240 e
Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e
Detaljery(x + y) xy(1) (x + y) 2 = x(x + y) xy(1) (x + y) 3
Løsning Øvingsoppgaver Funksjoner i ere variabler MET 1180 Matematikk April 017 Oppgave 1. (a) Vi har at f = 3 og f = +. Hessematrisen blir dermed 6 (b) Ved kvotientregelen har vi at f = f = og de andreordens
DetaljerOppgave 1. f(2x ) = f(0,40) = 0,60 ln(1,40) + 0,40 ln(0,60) 0,0024 < 0
Løsning MET 80 Matematikk for siviløkonomer Dato 0. mai 07 kl 0900-400 Oppgave. (a) Vi lar p = 0,60 og q = 0,40, og skriver funksjonen som f() = p ln( + ) + q ln( ) for å forenkle skrivemåten. Funksjonen
DetaljerLøsning MET Matematikk Dato 03. juni 2016 kl
Løsning MET 803 Matematikk Dato 03. jni 206 kl 0900-400 Oppgave. (a) Vi løser det lineære sstemet for s 8 ved Gass-eliminasjon: 6 3 3 3 6 3 3 2 2 0 5 3 3 3 6 z 5 0 0 0 z 0 Vi ser at z er en fri variabel,
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Fagoppgave MET 1186 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.19 Kl. 9: Innlevering: 5.1.19 Kl. 1: For mer informasjon om formalia, se eksamensoppgaven.
DetaljerOppgave P. = 2/x + C 6 P. + C 6 P. d) 12(1 x) 5 dx = 12u 5 1/( 1) du = 2u 6 + C = 2(1 x) 6 + C 6 P. Oppgave P.
Løsning MET 86 Matematikk for siviløkonomer Innleveringsfrist 5. mars 9 kl Vi benytter maksimal score 6p på hver deloppgave og 44p totalt, og grensen for å bestå er ca 86p. Du kan selv fylle ut tabellen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte
Detaljerf =< 2x + z/x, 2y, 4z + ln(x) >.
MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt
DetaljerØvelse, eksamensoppgaver MAT 1050 mars 2018
Øvelse, eksamensoppgaver MAT 5 mars 8 Oppgave. La f være funksjonen gitt ved f (x) = x 8 x, x a) Finn alle kritiske punkter for funksjonen f. f (x) = 8 x + x 8 x ( x) = (8 8 x x x ) = (4 8 x x ) = gir
DetaljerNotater nr 9: oppsummering for uke 45-46
Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering
DetaljerHøyskolen i Buskerud. fx ( ) x x 2 = x 1. c) Løs ulikheten ( x 3) ( x + 1)
Høyskolen i Buskerud Eksamen i matematikk. års grunnutdanning Mandag den. desember 00 OPPGVE. Deriver funksjonene a) f ( ) 5 + -- f ( ) 5 + -- 5 + -- b) f ( ) f ( ) ---------- ----------------------------------------
DetaljerHøgskolen i Agder Avdeling for realfag EKSAMEN
Høgskolen i Agder Avdeling for realfag EKSAMEN Emnekode: MA 40 Emnenavn: Analyse Dato: 9. desember 999 Varighet: 09.00-5.00 Antall sider inklusivt forside: Tillatte hjelpemidler: Merknader: 2 Alle, også
DetaljerLøsningsforslag for MAT-0001, desember 2009, UiT
Løsningsforslag for MAT-1, desember 29, UiT av Kristian Hindberg Oppgave 1 a) Bestem grenseverdien e x 1 x lim x x 2 e x 1 x lim x x 2 = lim x e x 1 2x e = x lim x 2 = 1 2 b) Finn det ubestemte integralet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Lørdag 25. Mai 29. Tid for eksamen: :5 4:5. Oppgavesettet er på 7 sider. Vedlegg:
DetaljerLøsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at
Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =
DetaljerMatematikk for økonomi og samfunnsfag
Harald Bjørnestad Ulf Henning Olsson Svein Søyland Frank Tolcsiner Matematikk for økonomi og samfunnsfag 9. utgave Innhold Forord... 11 Kapittel 1 Grunnleggende emner 1.1 Tall og tallsystemer... 13 1.2
DetaljerInstitutt for samfunnsøkonomi. Eksamensdato: , kl Tillatte hjelpemidler:
Institutt for samfunnsøkonomi Flervalgseksamen i: MET 2403 Matematikk Eksamensdato: 20.2.07, kl 09.00-2.00 Tillatte hjelpemidler: Innføringsark: Alle Svarark Totalt antall sider: 7 Antall vedlegg: (eksempel
DetaljerMA0002 Brukerkurs i matematikk B. Eksamen 28. mai 2016 Løsningsforslag. Oppgave 1
MA000 Brukerkurs i matematikk B Eksamen 8. mai 06 Løsningsforslag Oppgave a) Viser at B = A ved å vise at AB = BA = I. Nedenfor er matrisemultiplikasjonen AB vist (du må vise at BA gir det samme). ( )
DetaljerFasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015
Fasit til eksamen i emnet MAT02 - Brukerkurs i matematikk II Mandag 2.september 205 Fasit. (a) Løs ligningssystemene. i) 5x + 7y = 4 3x + 2y = ii) 3x + 4y + z = 2 2x + 3y + 3z = 7 Svar: i) x = 85/, y =
Detaljer1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?
OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et
DetaljerNicolai Kristen Solheim
Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende
DetaljerInstitutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00
SENSORVEILEDNING MET 11803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 17.12.2014 Kl. 09:00 Innlevering: 17.12.2014 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave 1 Finn
Detaljerdg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerMatematikk for økonomer Del 2
Matematikk for økonomer Del 2 Oppgavedokument Antall oppgaver: 75 svar Antall kapitler: 10 kapitler Antall sider: 15 Sider Forfatter: Studiekvartalets kursholdere Kapittel 1 Derivasjon 1. f (x) = 2x 2
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske
DetaljerLøsningsforslag MAT102 Vår 2018
Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave
DetaljerForkurs, Avdeling for Ingeniørutdanning
Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende
Detaljer4 ( ( ( / ) 2 ( ( ( / ) 2 ( ( / 45 % + 25 ( = 4 25 % + 35 / + 35 ( = 2 25 % + 5 / 5 ( =
MA Brukerkurs i matematikk B Eksamen 8. mai 6 Løsningsforslag Oppgave a) Viser at! # $ ved å vise at #!!# ' (. Nedenfor er matrisemultiplikasjonen #! vist (du må vise at!# gir det samme). ( + + + / ( +
DetaljerInstitutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00
SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende
DetaljerLøsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er
DetaljerLøsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2
Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
DetaljerFasit til utvalgte oppgaver MAT1110, uka 11/5-15/5
Fasit til utvalgte oppgaver MAT0, uka /5-5/5 Øyvind Ryan (oyvindry@i.uio.no May, 009 Oppgave 5.0.a Ser at f(x, y = (, 3, og g(x, y = (x, y. g(x, y = 0 hvis og bare hvis x = y = 0, og dette er ikke kompatibelt
DetaljerHøgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014
Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014 ORDINÆR EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 7 sider (inkludert
Detaljer3x + 2y 8, 2x + 4y 8.
Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar
Detaljern=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c)
Eksamen i BYPE2000 - Matematikk 2000 Dato: 204 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene
DetaljerLøsningsforslag. e n. n=0. 3 n 2 2n 1. n=1
Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene
DetaljerMA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til
DetaljerTMA4105 Matematikk 2 Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,
DetaljerMAT feb feb feb MAT Våren 2010
MAT 1012 Våren 2010 Forelesning Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for
DetaljerUNIVERSITETET I BERGEN
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT - Grunnkurs i Matematikk II Torsdag 4. juni 05, kl. 09:00-4:00 Bokmål Tillatte hjelpemiddel: Enkel kalkulator i samsvar
DetaljerEivind Eriksen. Matematikk for økonomi og finans
Eivind Eriksen Matematikk for økonomi og finans # CAPPELEN DAMM AS 2016 ISBN 978-82-02-47417-1 1. utgave, 1. opplag 2016 Materialet i denne publikasjonen er omfattet av åndsverklovens bestemmelser. Uten
DetaljerOPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11
OPPGAVESETT MAT111-H16 UKE 44 Avsn. 5.5: 19, 41, 47 Avsn. 5.6: 9, 17, 47 Avsn. 5.7: 15 På settet: S.1, S.2. Oppgaver til seminaret 4/11 Oppgaver til gruppene uke 45 Løs disse først så disse Mer dybde Avsn.
DetaljerFasit MAT102 juni 2016
Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet
DetaljerPrøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
Detaljer. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.
MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f
DetaljerMA1410: Analyse - Notat om differensiallikninger
Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde
DetaljerMA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle
DetaljerOptimering av funksjoner av flere variable
Optimering av funksjoner av flere variable av Tom Lindstrøm Matematisk insitutt/cma Universitetet i Oslo Dette notatet gir en kortfattet innføring i maksimums- og minimumsproblemer for funksjoner av flere
DetaljerFaktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto
Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer
DetaljerLøsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I
Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(
DetaljerLøsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus
DetaljerRepetisjon i Matematikk 1: Derivasjon 2,
Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,
Detaljer1 Mandag 15. februar 2010
1 Mandag 15. februar 2010 Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av teorien vi har gjennomgått
Detaljer6 Vekstfart og derivasjon
Løsning til KONTROLLOPPGAVER 6 Vekstfart og derivasjon OPPGAVE 1 a) Økningen i snødybden fra den 10. desember til den 15. desember var S S(15) S(10) 47,5 cm 0 cm 17,5 cm Antall dager var 15 dager 10 dager
DetaljerBYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
DetaljerMAT 110A - VÅR 2001 OBLIGATORISK OPPGAVESETT
MAT 110A - VÅR 2001 OBLIGATORISK OPPGAVESETT 3 Skriftlige besvarelser skal innleveres til den gruppelæreren på den regneøvelsen hver enkel er påmeldt til, etter nærmere avtale. Innleveringsfristen er fredag
DetaljerMAT feb feb feb MAT Våren 2010
Våren 2010 Mandag 15. februar 2010 Forelesning Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av
DetaljerOppgaveløsninger for "Matematikk for økonomer - kort og godt".
Oppgaveløsninger for "Matematikk for økonomer - kort og godt". Kapittel 1 Oppgave 1.1 a) (x 2 9x 12)(3 3x) =3x 2 27x 36 3x 3 +27x 2 +36x = 3x 3 +30x 2 +9x 36. b) (2x y) 2 +2(x+y)(x y)+(x+4y) 2 =4x 2 4xy+y
DetaljerInstitutt for Samfunnsøkonomi
Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter
DetaljerEksamensoppgave i SØK1001 Matematikk for økonomer
Institutt for samfunnsøkonomi Eksamensoppgave i SØK1001 Matematikk for økonomer Faglig kontakt under eksamen: Hildegunn Stokke Tlf.: 97 19 94 54 Eksamensdato:. oktober 015 Eksamenstid (fra-til): 4 timer
DetaljerLøsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
DetaljerEksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1
Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra
Detaljer+ (y b) F y. Bruker vi det siste på likningen z = f(x, y) i punktet (a, b, f(a, b)) kan vi velge F (x, y, z) = f(x, y) z.
Vi husker fra sist Gradientvektoren F ( a) peker i den retningen u der den retningsderiverte D u F ( a) er størst, og der er D u F ( a) = u F ( a) = F ( a). Gradientvektoren er normalvektoren til (hyper)flata
Detaljer1 Mandag 8. februar 2010
1 Mandag 8. februar 2010 Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for funksjoner
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)
DetaljerLØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode
DetaljerI et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b:
OPPGAVE I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x 7 74 546 y 48 6 45 a) Plott Y ln y mot X ln x i et rettvinklet koordinatsystem. ) Finn en lineær sammenheng mellom
DetaljerNTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29
MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt
DetaljerFunksjonsdrøfting MAT111, høsten 2016
Funksjonsdrøfting MAT111, høsten 2016 Andreas Leopold Knutsen 11. oktober 2016 Den deriverte f Newton-kvotienten f (x+h) f (x) h er stigningen til sekantlinjen gjennom punktene (x, f (x)) og (x + h, f
DetaljerInnlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2
Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.
DetaljerHøgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012
Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012 EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 8 sider (inkludert formelsamling).
DetaljerLøsningsforslag, midtsemesterprøve MA1103, 2.mars 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven
DetaljerECON2200: Oppgaver til for plenumsregninger
University of Oslo / Department of Economics / Nils Framstad 9. mars 2011 ECON2200: Oppgaver til for plenumsregninger Revisjoner 9. mars 2011: Nye oppgavesett til 15. og 22. mars. Har benyttet sjansen
DetaljerEksamen R1, Våren 2015
Eksamen R1, Våren 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f( ) 3 3 b) g( ) ln( ) c) h
DetaljerSom vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.
NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerInnlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8
Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 017 kl 14:30 Antall oppgaver: 8 1 Deriver følgende funksjoner a) ( x) b) (3 5x) 6 c) x x + 3 d) x ln
DetaljerMatematikk for økonomer Del 2
Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at
DetaljerLineære likningssystemer og matriser
Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger
DetaljerForelesning 10 Cramers regel med anvendelser
Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er
DetaljerOppgave 1. (a) Mindre enn 10 år (b) Mellom 10 og 11 år (c) Mellom 11 og 12 år (d) Mer enn 12 år (e) Jeg velger å ikke besvare denne oppgaven.
Eksamen Prøve-eksamen for MET 11802 Matematikk Dato November 2015 - Alternativ 2 Oppgave 1. En bank-konto gir 3% rente, og renten kapitaliseres kontinuerlig. Vi setter inn 100.000 kr på denne kontoen.
DetaljerFunksjonsdrøfting MAT111, høsten 2017
Funksjonsdrøfting MAT111, høsten 2017 Andreas Leopold Knutsen 11. Oktober 2017 Strengt voksende funksjon (Def. 6 i Ÿ2.8) f er strengt voksende på intervallet I dersom x 1 < x 2 i I = f (x 1 ) < f (x 2
DetaljerEksamen, Matematikk forkurs, 24. mai 2017 LØSNINGSFORSLAG
Side av Eksamen, Matematikk forkurs,. mai 7 LØSNINGSFORSLAG Oppgave a) Forenkle uttrykket så mye som mulig: aa aa aa = aa aa 6 aa aa aa = aa + 6 = aa 9 6 + 6 6 6 = aa 6 6 = aa 6 b) Løs ulikheten: xx +
DetaljerEKSAMEN Løsningsforslag
5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk
DetaljerFigur 2: Fortegnsskjema for g (x)
Løsningsforslag Eksamen M00 Våren 998 Oppgave a) g) = e ) = e ) Figur : Fortegnsskjema for g) g) > 0 for < 0 og > og g) < 0 for 0 <
DetaljerMatematikk R1 Forslag til besvarelse
Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her
DetaljerOppgave Oppdatert svar Dato
Endringer fra versjon /86: Oppgave Oppdatert svar Dato.9a /06 8.6b [, ] /06 6.j + 6 /06 Ad y ( + y) /96 A4b /96 A9b + /96 A9c 4 /96 A9d + + + 6 /96 A9f 4 + + 4 + + /96 Kapittel Fasit betyr at det ikke
DetaljerTMA4100 Matematikk 1 Høst 2012
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 202 Løsningsforslag til teknostartøving a) Denisjonsmengden til f() = 3 er D f (, ), som gir at V f (,
DetaljerEksamen i MAT1100 H14: Løsningsforslag
Eksamen i MAT H4: Løsningsforslag Oppgave. ( poeng) Dersom f(x, y) x sin(xy ), er f y lik: A) sin(xy ) + xy cos(xy ) B) x cos(xy ) C) x y cos(xy ) D) sin(xy ) + x y cos(xy ) E) cos(xy ) Riktig svar: C):
DetaljerTid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) 3 f( ) 3 f 3 4 3 b) g( ) ln( ) Vi bruker kjerneregelen
DetaljerEksamen, høsten 13 i Matematikk 3 Løsningsforslag
Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed
Detaljer2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =
Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri
DetaljerOppgave 1. Oppgave 2
Midtveiseksamen i MET1180 1 - Matematikk for siviløkonomer 12. desember 2018 Oppgavesettet har 15 flervalgsoppgaver. Rett svar gir poeng, galt svar gir svaralternativ (E) gir 0 poeng. Bare ett svar er
DetaljerGAMLE EKSAMENSOPPGAVER I SVSØ 106 INNFØRING I MATEMATIKK FOR ØKONOMER
Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi GAMLE EKSAMENSOPPGAVER I SVSØ 106 INNFØRING I MATEMATIKK FOR ØKONOMER VÅR 00 Tillatte hjelpemidler: Flg formelsamling: Knut
DetaljerLøsningsforslag til underveisvurdering i MAT111 vår 2005
Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x
Detaljer