6.8 Anvendelser av indreprodukter
|
|
|
- Markus Hansen
- 9 år siden
- Visninger:
Transkript
1 6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner den vanlige normen i R m. Kvadrering gir SS(E) := y ŷ 2 = (y 1 ŷ 1 ) (y m ŷ m ) 2. I situasjoner der y er resultatet av målinger vil noen av y s komponenter kunne regnes som sikrere enn andre. Vi kan da vekte hvert feilledd y j ŷ j med en passende vekt w j > 0; de sikre komponentene gis da høyere vekt enn de usikre. Den vektede summen av kvadratene for feilene blir vektetss(e) := w 2 1 (y 1 ŷ 1 ) w 2 m(y m ŷ m ) 2. 1 / 16
2 Sett W = diag(w 1,..., w m ). Vi innfører det vektede indreproduktet i R m definert ved x, y W = (W x) (W y) = w 2 1 x 1 y w 2 m x m y m. Den assosierte vektede normen på R m er da gitt ved Dermed er x W = W x = ( w 2 1 x w 2 m x 2 m) 1/2. y ŷ 2 W = w 2 1 (y 1 ŷ 1 ) w 2 m (y m ŷ m ) 2 = vektetss(e), så vektetss(e) = y ŷ 2 W = W (y ŷ) 2. 2 / 16
3 Betrakt nå et inkonsistent likningssystem A x = y der A er en m n matrise og y R m. En vektet minste kvadraters løsning av dette systemet (med hensyn på vektmatrisen W ) er en vektor x R n som gir minimum for uttrykket y Ax W som en funksjon av x. Nå er y Ax W = W (y Ax) = W y (W A)x = ỹ Ãx der ỹ = W y og à = W A. Vi ser at x må være vanlig minste kvadraters løsning av systemet à x = ỹ, dvs. av W A x = W y. Så vektet minste kvad. løsning x av systemet A x = y kan bestemmes ved å løse de vektede normallikningene (W A) T (W A) x = (W A) T W y 3 / 16
4 Anta f.eks. at (x 1, y 1 ),..., (x m, y m ) er datapunkter i planet (der x i x j når i j) og at vi vekter disse punktene henholdsvis med vektene w 1,..., w m. Anta videre at vi har valgt en lineær modell med grunnfunksjoner f 1, f 2,..., f n og at den assosierte designmatrisen X har lineært uavhengige kolonner. Vi kan da beregne den unike vektet minste kvadraters løsning β = ( β 1, β 2,..., β n ) av systemet X β = y ved å løse de vektede normallikningene Grafen til funksjonen (W X ) T (W X ) β = (W X ) T W y. f = β 1 f 1 + β 2 f β n f n vil da gi den best mulig tilnærmingen til de gitte datapunktene i vektet minste kvadraters forstand. 4 / 16
5 Om Fourier rekker Fouriers idé var at (pene) funksjoner på et intervall bør kunne approksimeres ved hjelp av lineære kombinasjoner av rene harmoniske svingninger. For enkelhets skyld betrakter vi vektorrommet V = C[0, 2π] av kontinuerlige funksjoner på [0, 2π], med indreproduktet f, g = og den assosierte normen 2π 0 f (t)g(t) dt ( 2π ) 1/2 f = f (t) 2 dt. La n være et naturlig tall. Vi definerer 0 S n = { u 0, u 1,..., u n, v 1,..., v n } der u 0 (t) = 1, u k (t) = cos kt og v k (t) = sin kt for k = 1,..., n. 5 / 16
6 Vi setter nå W n = SpanS n. Et element g i W n er da på formen g(t) = a 0 + n ( ak cos kt + b k sin kt ) k=1 der a 0, a 1,..., a n, b 1,..., b n R. Så W n er underrommet av V som består av lineære kombinasjoner av rene harmoniske svingninger med frekvenser opptil n. Det kan sjekkes ved utregning at S n er ortogonal. Så S n er en ortogonal basis for W n. La f V. Den n-te ordens Fourier approksimasjonen av f er definert ved F n (f ) = Proj Wn (f ). Vi har da at F n (f ) = n k=0 f, u k u k, u k u k + n k=1 f, v k v k, v k v k. 6 / 16
7 Utregning gir for k 1. Videre er f, u k = Så vi får at u 0, u 0 = 2π og u k, u k = v k, v k = π 2π 0 f (t) cos kt dt, f, v k = 2π F n (f ) = a n ( ak cos kt + b k sin kt ) k=1 0 f (t) sin kt dt. der a k = 1 π b k = 1 π 2π 0 2π 0 f (t) cos kt dt, k 0 f (t) sin kt dt, k 1. 7 / 16
8 Teoremet om beste approksimasjon gir at F n (f ) er funksjonen i W n som tilnærmer f best mulig Et av hovedresultatene i Fourier-analyse er at f F n (f ) 0 når n. Dette beskrives ved å si at Fourier rekken til f, nemlig rekken a (a k cos kt + b k sin kt), k=1 konverger mot f m.h.p. når n. Det å beregne F n (f ) i praksis kan være arbeidskrevende, og er ofte umulig å gjøre eksakt. Problemet er å beregne alle integralene som inngår i Fourier-koeffisientene a 0,..., a n, b 0,..., b n. Ofte må disse integralene beregnes approksimativt ved hjelp av en numerisk integrasjonsmetode. 8 / 16
9 4.8 Anvendelse på differenslikninger Vi minner om at signalrommet S består av alle reelle følger av typen y = {y k } k= = (..., y 2, y 1, y 0, y 1, y 2,...) Vi vil som regel skrive y = {y k } for vektorer i S. Vektorromsoperasjonene i S er gitt ved x + y = {x k + y k }, cy = {c y k } Hva med lineær uavhengighet i S? Betrakt f.eks. tre signaler u = {u k }, v = {v k } og w = {w k } i S. Anta at c 1 u + c 2 v + c 3 w = 0, der c 1, c 2, c 3 R. Dette betyr at {c 1 u k + c 2 v k + c 3 w k } = 0, dvs at c 1 u k + c 2 v k + c 3 w k = 0 for alle k Z 9 / 16
10 For en gitt k Z kan vi bruke dette for k, k + 1 og k + 2 og får da likningssystemet u k v k w k c 1 0 u k+1 v k+1 w k+1 c 2 = 0 u k+2 v k+2 w k+2 c 3 0 Koeffisientmatrisen C k = u k v k w k u k+1 v k+1 w k+1 u k+2 v k+2 w k+2 til systemet ovenfor kalles Casorati matrisen nr. k til signalene u, v og w. Hvis det fins en k Z slik at C k er invertibel, vil systemet ovenfor bare ha den trivielle løsningen c 1 = c 2 = c 3 = 0, og vi kan da konkludere med at u, v og w er lineært uavhengige. 10 / 16
11 Eksempel. La r, s, t være tre forskjellige reelle tall. Betrakt signalene u = {r k }, v = {s k } og w = {t k }. Casorati-matrisen for k = 0 blir C 0 = r s t r 2 s 2 t 2 og en utregning gir at det(c 0 ) = (r s) (s t) (t r) 0. Så C 0 er invertibel. Dermed kan vi konkludere at signalene {r k }, {s k }, {t k } er lineært uavhengige i S. Merk: Man kan gå frem på tilsvarende måte for å undersøke lineær uavhengighet av et endelig antall gitte signaler i S. 11 / 16
12 Lineære differenslikninger En lineær differenslikning av orden n for en følge {y k } i S er en likning på formen a 0 y k+n + a 1 y k+n a n 1 y k+1 + a n y k = z k (k Z) der a 0, a 1,..., a n R med a 0 0, a n 0, og {z k } S. Ved å dele på a 0 kan vi likegodt anta at a 0 = 1. Hvis z k = 0 for alle k, kalles likningen for homogen. Merk: La T : S S være definert ved T ({y k }) = { y k+n + a 1 y k+n a n 1 y k+1 + a n y k }. Da er T lineær og likningen ovenfor kan skrives som T ({y k }) = {z k } I signalbehandling kalles T for et linært filter, mens a j -ene kalles filterkoeffisientene. 12 / 16
13 Underrommet av S gitt ved H = KerT = { y S T (y) = 0 } er løsningsmengden til den homogene differenslikningen y k+n + a 1 y k+n a n 1 y k+1 + a n y k = 0 (k Z) H består da av signalene som blir filtrert bort av T. Teorem 16: Anta at y 0, y 1,..., y n 1 er spesifiserte. Da har likningen y k+n + a 1 y k+n a n 1 y k+1 + a n y k = z k (k Z) nøyaktig en løsning. Teorem 17: Løsningsmengden H til en n-te ordens homogen likning y k+n + a 1 y k+n a n 1 y k+1 + a n y k = 0 er et n-dimensjonalt underrom av S. 13 / 16
14 Merk: Til en en homogen differenslikning som i Teorem 17 kan vi assosiere en polynomlikning x n + a 1 x n a n 1 x + a n = 0 ( ) som ofte kalles den karakteristiske likningen (jf. tidligere emner). Da gjelder bl.a.: Dersom r er en reell rot i ( ), så er følgen {y k } = {r k } med i H, dvs den er en løsning av den homogene likningen. Reelle røtter som er forskjellige gir lineært uavhengige følger i H. Vi kan dermed konkludere at hvis det fins n forskjellige reelle røtter r 1,..., r n for ( ), så er {r k 1 }, {r k 2 },..., {r k n } en basis for H. 14 / 16
15 Dersom z = ρe iθ er en kompleks rot i ( ), angitt på polar form, så er begge følgene {ρ k cos(kθ)} og {ρ k sin(kθ)} med i H (og disse er lineært uavhengige). Dersom en rot har multiplisitet større enn 1 vil den gi opphav til flere løsninger. Hvis f.eks. r er en rot med multiplisitet 2, så vil også følgen {kr k } være i H. Vi går ikke nærmere inn på det generelle tilfellet. Når n er lik 2 eller 3 vil løsningene av typen beskrevet ovenfor stort sett være nok til å kunne angi en basis for H. 15 / 16
16 Om ikkehomogene lineære differenslikninger Disse kan løses ved å finne en spesiell løsning; å finne den generelle løsningen av den tilhørende homogene likningen; Generell løsning blir da den spesielle + generell løsning av den homogene likningen. Dette er helt analogt med situasjonen for lineære likningsystemer. 16 / 16
6.6 Anvendelser på lineære modeller
6.6 Anvendelser på lineære modeller Skal først se på lineær regresjon for gitte punkter i planet: det kan formuleres og løses som et minste kvadraters problem! I mere generelle lineære modeller er man
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte
6.4 (og 6.7) Gram-Schmidt prosessen
6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en
Kap. 6 Ortogonalitet og minste kvadrater
Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og
6.5 Minste kvadraters problemer
6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
5.8 Iterative estimater på egenverdier
5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til
6.4 Gram-Schmidt prosessen
6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig
3.9 Teori og praksis for Minste kvadraters metode.
3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:
MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.
MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom
Kap. 6 Ortogonalitet og minste kvadraters problemer
Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:
TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:
TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og
4.2 Nullrom, kolonnerom og lineære transformasjoner
4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en
MAT1120 Oppgaver til plenumsregningen torsdag 18/9
MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Magnus Dahler Norling ([email protected]) September 2014 Oppgave 4.6.4 rank A = rank B = 5 (teorem 13+14). dim Nul A = n - rank A = 6-5 = 1 (teorem
Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;
MAT Prøveeksamen 29. mai - Løsningsforslag
MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
MAT1120 Oppgaver til plenumsregningen torsdag 18/9
MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Øyvind Ryan ([email protected]) September 2008 Oppgaver fra 4.8 Teorem 16 s. 282: y k+n + a 1 y k+n 1 + + a n 1 y k+1 + a n y k = z k har alltid en løsning
Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015
Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte
MAT1120 Notat 1 Tillegg til avsnitt 4.4
MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n
MAT1120 Repetisjon Kap. 1
MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer
Homogene lineære ligningssystem, Matriseoperasjoner
Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
MAT1120 Notat 1 Tillegg til avsnitt 4.4
MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis
MAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom
EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet
MAT UiO. 10. mai Våren 2010 MAT 1012
MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer
MAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type
Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.
MAT UiO mai Våren 2010 MAT 1012
200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)
A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:
5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.
Lineær uavhengighet og basis
Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c
MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430
MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.
4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer
Diagonalisering. Kapittel 10
Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel
UNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
Emne 9. Egenverdier og egenvektorer
Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller
5.5 Komplekse egenverdier
5.5 Komplekse egenverdier Mange reelle n n matriser har komplekse egenverdier. Vi skal tolke slike matriser når n = 2. Ved å bytte ut R med C kan man snakke om komplekse vektorrom, komplekse matriser,
TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0
TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x
MAT1120 Repetisjon Kap. 1, 2 og 3
MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger
MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse
MAT3000/4000 - Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt
Ortogonale polynom og Gauss kvadratur
Ortogonale polynom og Gauss kvadratur Hans Munthe-Kaas 1. jaunar 2002 Sammendrag Dette notatet tar for seg minste kvadrat approksimasjoner, ortogonale polynom og Gauss kvadratur. Notatet er ment som et
12 Projeksjon TMA4110 høsten 2018
Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,
Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
Komplekse tall. Kapittel 2. Den imaginære enheten. Operasjoner på komplekse tall
Kapittel Komplekse tall Oppfinnelsen av nye tallsystemer henger gjerne sammen med polynomligninger x + 4 0 har ingen positiv løsning, selv om koeffisientene er positive tall Vi må altså inn med negative
7.4 Singulærverdi dekomposisjonen
7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon
10 Radrommet, kolonnerommet og nullrommet
Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For
Egenverdier for 2 2 matriser
Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier
Løsningsforslag. og B =
Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi
Lineære likningssystemer og matriser
Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger
1 Mandag 1. februar 2010
Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette
Lineærtransformasjoner
Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
OBLIG 2 - MAT 1120 Høsten 2005
> with(linearalgebra): with(linalg):with(plots): Warning, the name GramSchmidt has been rebound Warning, the protected names norm and trace have been redefined and unprotected Warning, the name changecoords
= 3 11 = = 6 4 = 1.
MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at
LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x
LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)
EKSAMEN I MATEMATIKK 3 (TMA4110)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven
A.3.e: Ortogonale egenfunksjonssett
TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at
Kap. 7 Symmetriske matriser og kvadratiske former
Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.
Kap. 5 Egenverdier og egenvektorer
Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen
Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler
Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1
9 Lineærtransformasjoner TMA4110 høsten 2018
9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
Eksamensoppgave i TMA4115 Matematikk 3
Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand
MAT 110A - VÅR 2001 OBLIGATORISK OPPGAVESETT
MAT 110A - VÅR 2001 OBLIGATORISK OPPGAVESETT 3 Skriftlige besvarelser skal innleveres til den gruppelæreren på den regneøvelsen hver enkel er påmeldt til, etter nærmere avtale. Innleveringsfristen er fredag
3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)
Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.
Eksamensoppgave MAT juni 2010 (med løsningsforslag)
Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6
Lineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller
(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3
NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis
UNIVERSITETET I BERGEN
BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er
Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.
Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse
Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
8 Vektorrom TMA4110 høsten 2018
8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.
EKSAME SOPPGAVE MAT-1004 (BOKMÅL)
EKSAME SOPPGAVE MAT-00 (BOKMÅL) Eksamen i : Mat-00 Lineær algebra. Dato : Torsdag 09. juni. Tid : 09.00 -.00. Sted: : Teorifagb., hus, plan. Tillatte hjelpemidler : Godkjent kalkulator, to A ark egne notater
15 Hovedprinsippet for vektorrom med et indre produkt
Hovedprinsippet for vektorrom med et indre produkt La oss minne Hovedprinsippet (Seksjon 8.): Alle (endelig dimensjonale dvs. de som har en endelig basis) vektorrom kan beskrives som R n der n dim V. Alle
Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle.
Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget
Emne 7. Vektorrom (Del 1)
Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske
EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG
Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger
Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon
Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at
Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =
Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på
Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske
MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag
MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)
Løsningsforslag øving 6
Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en
Oppgave 14 til 9. desember: I polynomiringen K[x, y] i de to variable x og y over kroppen K definerer vi undermengdene:
HJEMMEOPPGAVER utgave av 8-12-2002): Oppgave 15 til 16 desember: La H være mengden av alle matriser på formen A = a 1 a 12 a 13 a 1n 0 a 2 0 0 0 0 a 3 0 0 0 a n der a 1 a 2 a n 0 Videre la SH være matrisene
Kap. 5 Egenverdier og egenvektorer
Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen
12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)
Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er
Løsningsforslag for eksamen i Matematikk 3 - TMA4115
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt
Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU
Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H & Rorres, C: Elementary Linear Algebra, 11 utgave Jonas Tjemsland 26 april 2015 4 Generelle vektorrom 41 Reelle
Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009
Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen
Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x
Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar
