MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse
|
|
- Solveig Ødegård
- 7 år siden
- Visninger:
Transkript
1 MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt fra lederen i kryptert form er: a) Finn ut hva passordet er. 141, 200, 96, 20. Siden 377 = er primtallsfaktoriseringen av 377 og (13 1) (29 1) = 336, er den private nøkkelen b assosiert med a = 269 bestemt ved at 269 b 1 (mod 336). Fra løsningen av punkt1 b) i Oblig 1 vet vi at kan vi velge b = 5. Dekryptering av den mottatte sekvensen (i Z/(377)) gir da sekvensen 141 5, 200 5, 96 5, 20 5 = 20, 18, 5, 24. Denne sekvensen gir tallet , som oversettes til passordet TREX. b) Du ønsker å svare med meldingen OK etterfulgt av initialene i ditt fornavn og etternavn (velg ett fornavn og ett etternavn dersom du har flere!). Hvilken kryptert sekvens sender du da til lederen? La oss si at vi f.eks. ønsker å svare OKEB til lederen. Dette svarer til tallet T = Siden N = 1829 har 4 siffre, skal vi først gruppere siffrene i T 3 og 3 av gangen (legger da til en 0 er til høyre, jf. konvensjonen i kryptografi-heftet). Det gir sekvensen 151, 105, 020. Vi skal derfor beregne sekvensen 151 7, 105 7, 20 7 (i Z/(1829)). Utregning gir følgende krypterte sekvens som sendes til lederen: 480, 520, Oppgave 2 La A = [ a ] z 1/z b der a, b R, z C, z 0. a) Begrunn at A alltid er diagonaliserbar. 1
2 Man finner at det karakteristiske polynomet p A til A har to forskjellige røtter, nemlig 1 ( a + b ± ) (a b) Dermed har 2 2 matrisen A to forskjellige egenverdier, så A er diagonaliserbar. b) Finn når A er Hermitisk. Angi en unitær matrise som diagonaliserer A når a = 2, b = 0 og z = i. Det er lett å finne ut at A = A z z = 1, dvs z = 1. Anta at a = 2, b = 0 og z = i. Vi vet da at A er Hermitisk, og a) gir at egenverdiene til A er 1 ± 2. Utregning gir at v 1 = (i, 2 1) er en egenvektor tilhørende 1 + 2, mens v 2 = ( i, 1 + 2) er en egenvektor tilhørende 1 2. Disse to vektorene er (automatisk) ortogonale (det kan lett sjekkes). Etter normalisering får vi at i/ 2(2 2) i/ 2(2 + 2) U = ( 2 1)/ 2(2 2) (1 + 2)/ 2(2 + 2) er en unitær matrise som diagonaliserer A. En omregning gir at U kan skrives som [ ] 1 (1 + 2)i i U = 2( ) som er noe penere, men strengt tatt ikke nødvendig. c) Begrunn at A er normal A er Hermitisk. Hvis A er Hermitisk er A nødvendigsvis normal (dette gjelder jo generelt). Omvendt, anta at A er normal, dvs at A A = AA. Utregning gir at da er 1/ z 2 = z 2, dvs z = 1. Dermed at A er Hermitisk ved b). Man kan også begrunne dette punktet ved å si at vi vet fra a) at A har bare reelle egenverdier, og at for slike matriser gjelder det at A er normal hvis og bare hvis A er Hermitisk (jf. oppgave 1.26). Oppgave 3 La K være R eller C og la A M n n (K). Betrakt lineæroperatoren T A på M n n (K) gitt ved T A (B) = AB, B M n n (K). a) Beskriv R(T A ) ved hjelp av Col (A) og N(T A ) ved hjelp av Nul (A). Sett V = M n n (K). 2
3 Anta at C R(T A ), dvs. C = T A (B) for en B V. Skriv B = [ b 1 b n ]. Da er C = T A (B) = AB = [ Ab 1 Ab n ]. Nå vet vi at Col(A)= { Ab b K n}. Vi ser derfor at alle kolonnene til C ligger i Col(A). Omvendt, anta C V er slik at alle dens kolonner ligger i Col(A), m.a.o. C = [c 1 c n ] V er slik at c j Col(A), j = 1,..., n. For hver j er da c j = Ab j for en b j K n. Setter vi B = [ b 1 b n ] er da TA (B) = AB = C, dvs. C R(T A ). Vi har dermed begrunnet at R(T A ) består av de matrisene i V der alle kolonnene ligger i Col(A), altsåat R(T A ) = { C = [c 1 c n ] V c j Col(A), j = 1,..., n }. Tilsvarende kan det begrunnes at N(T A ) = { B = [b 1 b n ] V b j Nul(A), j = 1,..., n }. Begge disse beskrivelsene er greie nok svar på oppgaven. Benytter vi at Col(A) og Nul(A) begge er underrom av V kommer vi frem til følgende alternative beskrivelser: R(T A ) = {C V Col(C) Col(A) }, N(T A ) = {B V Col(B) Nul(A) }. b) Begrunn at dim R(T A ) = n rang(a) og dim N(T A ) = n dim Nul(A). Man kan først begrunne den ene formelen, og deretter anvende dimensjonsteoremet for å utlede den andre. Men her er det like greit å begrunne følgende generelle påstand: Anta U er et underom av K n og la Ũ være underromet av V = M n n(k) gitt ved Da er dim Ũ = n dim U. Ũ = { C = [c 1 c n ] V c j U, j = 1,..., n }. Siden vi har sett i a) at Ũ = R(T A) når U = Col(A), mens Ũ = N(T A) når U = Nul(A), vil begge formlene da være bevist. La oss begrunne påstanden ovenfor. Hvis U = {0} er den opplagt sann. Så anta at U {0}. Da er dim U = p for en p mellom 1 og n og vi kan la {u 1,, u p } være en basis for U. Vi innfører følgende notasjon: hvis x K n og 1 k n lar vi [x] k betegne matrisen i V bestemt ved at dens kolonne nr. k er lik x mens alle de andre kolonnene er lik 0. Vi merker oss at hvis x U, så er [x] k Ũ for enhver k. Videre er det lett å sjekke at x [x] k er en lineæravbildning fra K n inn i V for enhver k. For hver 1 i p, 1 j n, definerer vi U i,j som matrisen i Ũ gitt ved U i,j = [u i ] j. Poenget nå er at U = {U i,j 1 i p, 1 j n} er en basis for Ũ: 3
4 Span U = Ũ: Siden alle U i,j -ene ligger i Ũ er det klart at Span U Ũ. Betrakt nå C = [c 1 c n ] Ũ. For hver j er da c j U, så det finnes c 1,j,..., c p,j K slik at c j = c 1,j u c p,j u p = c i,j u i. Vi får derfor at C = [c 1 ] 1 + [c j ] j + [c n ] n = [ p ] c i,1 u i + + [ p ] c 1 i,j u i + + [ p c j i,n u i ]n = [ ] c i,1 ui + + [ ] c 1 i,j ui = c i,1 U i,1 + + = n j=1 j + + c i,j U i,j + + c i,j U i,j. [ c i,n ui ]n c i,n U i,n Dette viser at C Span U. Dermed er Ũ Span U. Tilsammen har vi vist at Span U = Ũ, som ønsket. U er lineært uavhengig: Anta at n p j=1 c i,j U i,j = O der c i,j K for alle i, j. Fra utregningen ovenfor (baklengs) ser vi at da er p c i,j u i = 0 for alle j = 1,..., n. Siden u i -ene er lineært uavhengige må da c i,j = 0 for alle i, j. Dette viser at U i,j -ene er lineært uavhengige, som ønsket. Antall elementer i basisen U for U er p n. Det gir at dim Ũ = p n = n dim U, som vi skulle vise. Oppgave 4 La K være R eller C og la V være et vektorrom over K. La T : V V være en lineær operator. a) Begrunn at N(T ) og R(T ) er invariante under T. Anta at v N(T ). Da er T (v) = 0. Nå er 0 N(T ) siden N(T ) er et underrom. Dermed er T (v) N(T ). Dette viser at N(T ) er invariant under T. Anta at w R(T ). Da er T (w) R(T ) p.def. av R(T ). Dermed er R(T ) invariant under T. 4
5 Sett T 0 = I V (identitetsavbildningen) og T n = T T n 1, n N. La u V, u 0 og sett U = Span { T n (u) n Z +} der Z + = {0, 1, 2,...}. b) Begrunn at U er invariant under T. Anta v U. Da finnes en m Z + og c 0, c 1,..., c m K slik at m v = c 0 u + c 1 T (u) + + c m T m (u) = c j T j (u). Ved lineæriteten av T får vi at ( m ) T (v) = T c j T j (u) = m c j T ( T j (u) ) = m c j T j+1 (u) U. Dette viser at U er invariant under T. c) Anta at U er endeligdimensjonalt. Vis at det fins en k N slik at { u, T (u),..., T k 1 (u) } er en basis for U. Siden u 0 er U {0}, så dim U 1. For hver j N, sett B j = { u, T (u),..., T j 1 (u) }. Merk at B 1 = {u} er lineært uavhengig siden u 0. Merk også at hvis B j er lineært uavhengig, så består B j av j forskjellige elementer og da må j dim U. Vi kan derfor definere { } k = max j {1,..., dim U} B j er lineært uavhengig. Vi skal begrunne nedenfor at U = Span B k. Siden B k er lineært uavhengig vil det da være klart at B k er en basis for U, og dermed vil vi ha løst oppgaven. (Det viser også at k = dim U). Idéen er å vise at T n (u) Span B k for alle n k. Vi viser først at T k (u) Span B k : P. def. av k er B k lineært uavhengig, mens B k+1 er lineært avhengig. Det finnes da c 0, c 1,..., c k K ikke alle lik 0 slik at c 0 u + c 1 T (u) + + c k T k (u) = 0. Merk at c k 0, for hvis c k = 0, ville vi ha c 0 u + c 1 T (u) + + c k 1 T k 1 (u) = 0 og dermed også c 0 =... = c k 1 = 0 ved lineær uavhengigheten av B k. Vi kan derfor skrive T k (u) = c 0 c k u + c 1 c k T (u) + + c k 1 c k T k 1 (u). 5
6 Dette viser at T k (u) Span B k. Vi kan nå vise ved induksjon på j at påstanden P (j) : T (k 1)+j (u) Span B k holder for alle j N. P (1) sier at T k (u) Span B k, og det viste vi nettopp er oppfylt. Anta at P (j) er sann for en j N. For passende a 0,..., a k 1 K er da Det gir T (k 1)+j (u) = a 0 u + a 1 T (u) + + a k 1 T k 1 (u). T (k 1)+(j+1) (u) = T ( T (k 1)+j (u) ) = T ( a 0 u + a 1 T (u) + + a k 1 T k 1 (u) ) = a 0 T (u) + a 1 T 2 (u) + + a k 2 T k 1 (u) + a k 1 T k (u). De k 1 første leddene i summen rett ovenfor ligger opplagt i Span B k, mens det siste leddet a k 1 T k (u) ligger også i Span B k siden P (1) er sann. Siden Span B k er et underrom følger det at T (k 1)+(j+1) (u) ligger i Span B k, dvs at P (j + 1) er sann, som ønsket. Vi har dermed vist at T n (u) Span B k for alle n k. Merk at dette gir at T n (u) Span B k for alle n Z + (siden det er opplagt riktig for n = 0, 1,..., k 1). Men da er U = Span {T n (u) n Z + } Span B k. Samtidig er Span B k U. Dermed er U = Span B k, og beviset er ferdig. Vi skisserer også et alternativt bevis. Sett k = dim U 1. Siden B k = { u, T (u),..., T k 1 (u) } består av k vektorer er det nok å vise at B k er lineært uavhengig, for da må B k være en basis for U. Anta (for motsigelse) at B k er lineært avhengig. Da finnes det c 0, c 1,..., c k 1 K ikke alle lik 0 slik at c 0 u + c 1 T (u) + + c k 1 T k 1 (u) = 0. Sett da i = max { j {0, 1,..., k 1} c j 0 }. Vi har da at T i (u) Span { u, T (u),..., T i 1 (u) }. Ved induksjon på n kan man nå vise (tilsv. som i det første beviset) at da er T n (u) Span { u, T (u),..., T i 1 (u) } for alle n i. Som ovenfor medfører dette at U = Span { u, T (u),..., T i 1 (u) }. Det gir at k = dim U i k 1 < k og vi har fått frem en motsigelse. Dermed må B k være lineært uavhengig og beviset er ferdig. 6
= 3 11 = = 6 4 = 1.
MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
Detaljer6.4 Gram-Schmidt prosessen
6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig
Detaljer4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;
DetaljerMAT Prøveeksamen 29. mai - Løsningsforslag
MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]
DetaljerVi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på
Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske
DetaljerNotat2 - MAT Om matriserepresentasjoner av lineære avbildninger
Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon
DetaljerEKSAMEN I MATEMATIKK 3 (TMA4110)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
DetaljerUNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
DetaljerA 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:
5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte
DetaljerKap. 6 Ortogonalitet og minste kvadrater
Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og
Detaljer5.5 Komplekse egenverdier
5.5 Komplekse egenverdier Mange reelle n n matriser har komplekse egenverdier. Vi skal tolke slike matriser når n = 2. Ved å bytte ut R med C kan man snakke om komplekse vektorrom, komplekse matriser,
DetaljerOBLIG 2 - MAT 1120 Høsten 2005
> with(linearalgebra): with(linalg):with(plots): Warning, the name GramSchmidt has been rebound Warning, the protected names norm and trace have been redefined and unprotected Warning, the name changecoords
DetaljerMA1202/MA S løsningsskisse
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ
DetaljerRom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.
Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse
DetaljerLøsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet
Detaljer6.4 (og 6.7) Gram-Schmidt prosessen
6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en
DetaljerTMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0
TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x
Detaljer13 Oppsummering til Ch. 5.1, 5.2 og 8.5
3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne
DetaljerMAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.
MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
Detaljer12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)
Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
Detaljer5.8 Iterative estimater på egenverdier
5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til
DetaljerKap. 7 Symmetriske matriser og kvadratiske former
Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.
DetaljerGENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type
Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.
DetaljerEKSAME SOPPGAVE MAT-1004 (BOKMÅL)
EKSAME SOPPGAVE MAT-00 (BOKMÅL) Eksamen i : Mat-00 Lineær algebra. Dato : Torsdag 09. juni. Tid : 09.00 -.00. Sted: : Teorifagb., hus, plan. Tillatte hjelpemidler : Godkjent kalkulator, to A ark egne notater
DetaljerMAT1120 Notat 1 Tillegg til avsnitt 4.4
MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis
DetaljerMAT UiO. 10. mai Våren 2010 MAT 1012
MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer
DetaljerMAT1120 Notat 1 Tillegg til avsnitt 4.4
MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n
DetaljerEKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG
Detaljer16 Ortogonal diagonalisering
Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen
Detaljer7.4 Singulærverdi dekomposisjonen
7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon
Detaljer6.5 Minste kvadraters problemer
6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør
DetaljerKap. 5 Egenverdier og egenvektorer
Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerLØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010
LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:
Detaljer4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................
DetaljerLøsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i MA22/MA622 Lineær algebra med anvendelser våren 29 Oppgave a) Rangen til A er lik antallet
DetaljerEksamensoppgave MAT juni 2010 (med løsningsforslag)
Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6
DetaljerLineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
DetaljerLøsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.
Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen
DetaljerVær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av
Detaljer3.9 Teori og praksis for Minste kvadraters metode.
3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:
DetaljerMA1201, , Kandidatnummer:... Side 1 av 5. x =.
MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =
DetaljerDiagonalisering. Kapittel 10
Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel
DetaljerMA1201/MA6201 Høsten 2016
MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta
Detaljer4.2 Nullrom, kolonnerom og lineære transformasjoner
4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en
DetaljerEKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER
DetaljerEksamensoppgave i MA1202/MA6202 Lineær algebra med anvendelser
Institutt for matematiske fag Eksamensoppgave i Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 01. juni 2017 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte hjelpemidler:
DetaljerEgenverdier for 2 2 matriser
Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier
DetaljerR: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og
EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva
Detaljer6.8 Anvendelser av indreprodukter
6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner
DetaljerBasis, koordinatsystem og dimensjon
Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis
Detaljer10 Radrommet, kolonnerommet og nullrommet
Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For
DetaljerKap. 6 Ortogonalitet og minste kvadraters problemer
Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =
Detaljer7.1 forts. Schur triangularisering og spektralteoremet
7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt
DetaljerEmne 9. Egenverdier og egenvektorer
Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller
DetaljerEksamensoppgave i MA1201 Lineær algebra og geometri
Institutt for matematiske fag Eksamensoppgave i MA1201 Lineær algebra og geometri Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 05.10.2016 Eksamenstid (fra til): 08:15 09:45
DetaljerOppgave 14 til 9. desember: I polynomiringen K[x, y] i de to variable x og y over kroppen K definerer vi undermengdene:
HJEMMEOPPGAVER utgave av 8-12-2002): Oppgave 15 til 16 desember: La H være mengden av alle matriser på formen A = a 1 a 12 a 13 a 1n 0 a 2 0 0 0 0 a 3 0 0 0 a n der a 1 a 2 a n 0 Videre la SH være matrisene
DetaljerUNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side).
UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: MAT 2 Lineær algebra Day of examination: 9. desember 2. Examination hours: 4.3 8.3. This problem set consists of 6 pages.
DetaljerLøsningsforslag øving 6
Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en
DetaljerKap. 5 og Notat 2 Oppsummering
Kap. 5 og Notat 2 Oppsummering Vi lar A være en reell n n matrise, med mindre noe annet sies. x R n er en egenvektor for A tilh. egenverdien λ R betyr at A x = λ x og x 0. Hvis A er triangulær, er egenverdiene
DetaljerTMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:
TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
DetaljerRepetisjon: Om avsn og kap. 3 i Lay
Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert
Detaljer(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer
5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave
DetaljerEKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:
EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet
DetaljerMAT-1004 Vårsemester 2017 Obligatorisk øving 3
MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE OPPGAVE Hvordan løses oppgave? 5 4 Hvordan løses oppgave? 6 5 Formatering av svarene 8 5. Rasjonale tall............................. 8 5. Matriser
DetaljerLineær uavhengighet og basis
Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c
DetaljerVektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?
Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke
DetaljerMAT 1110: Bruk av redusert trappeform
Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,
Detaljer8 Vektorrom TMA4110 høsten 2018
8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.
DetaljerKapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer
Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil
Detaljer5.6 Diskrete dynamiske systemer
5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets
DetaljerMAT1120 Oppgaver til plenumsregningen torsdag 25/9
MAT1120 Oppgaver til plenumsregningen torsdag 25/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 5.1 Denisjon av egenverdier, egenvektorer, egenrom. Teorem 1 s. 306: Egenverdiene til en triangulær
DetaljerRang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015
Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c
Detaljer15 Hovedprinsippet for vektorrom med et indre produkt
Hovedprinsippet for vektorrom med et indre produkt La oss minne Hovedprinsippet (Seksjon 8.): Alle (endelig dimensjonale dvs. de som har en endelig basis) vektorrom kan beskrives som R n der n dim V. Alle
DetaljerLineær algebra-oppsummering
Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:
DetaljerLØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av
DetaljerMAT UiO mai Våren 2010 MAT 1012
200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)
DetaljerRepetisjon: om avsn og kap. 3 i Lay
Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet
DetaljerMAT1120 Oppgaver til plenumsregningen torsdag 18/9
MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Magnus Dahler Norling (magnudn@math.uio.no) September 2014 Oppgave 4.6.4 rank A = rank B = 5 (teorem 13+14). dim Nul A = n - rank A = 6-5 = 1 (teorem
DetaljerEKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet
DetaljerEksamensoppgave i TMA4115 Matematikk 3
Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand
Detaljer6.6 Anvendelser på lineære modeller
6.6 Anvendelser på lineære modeller Skal først se på lineær regresjon for gitte punkter i planet: det kan formuleres og løses som et minste kvadraters problem! I mere generelle lineære modeller er man
Detaljerx 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder
4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes
Detaljer9 Lineærtransformasjoner TMA4110 høsten 2018
9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
Detaljer