Kap. 5 og Notat 2 Oppsummering
|
|
- Birgitte Erna Arntzen
- 8 år siden
- Visninger:
Transkript
1 Kap. 5 og Notat 2 Oppsummering Vi lar A være en reell n n matrise, med mindre noe annet sies. x R n er en egenvektor for A tilh. egenverdien λ R betyr at A x = λ x og x 0. Hvis A er triangulær, er egenverdiene alle koeff. langs hoveddiagonalen. Anta at v 1, v 2,..., v p er egenvektorer for A som tilhører forskjellige egenverdier λ 1, λ 2,..., λ p. Da er v 1, v 2,..., v p lineært uavhengige. p A (t) = det(a t I ) kalles det karakteristiske polynomet til A. Har at λ er egenverdi for A p A (λ) = 0 Multiplisiteten til en egenverdi λ er multiplisiteten til λ som en rot i p A (t). E λ = Nul (A λi ) kalles egenrommet til A ass. med en egenverdi λ. Har alltid at dim E λ multiplisiteten til λ 1 / 9
2 To n n matriser A og B kalles similære hvis det fins en invertibel matrise P slik at P 1 AP = B (m.a.o. A = PBP 1 ). Similære matriser har samme karakteristiske polynom og derfor samme egenverdier (med samme multiplisitet). A kalles diagonaliserbar dersom A = PDP 1 for en invertibel matrise P og en diagonalmatrise D. Kolonnene til P er da en basis for R n som består av egenvektorer for A og diagonalkoeffisientene til D er de tilhørende egenverdiene. Omvendt, hvis v 1,..., v n er en basis for R n som består av egenvektorer for A tilhørende egenverdiene λ 1,..., λ n, så er A diagonaliserbar og diagonaliserer A. P = [v 1 v n ], D = diag(λ 1,..., λ n ) 2 / 9
3 Diagonalisering av A: - Bestem de forskjellige egenverdiene til A: λ 1,..., λ p. - For hver j bestem en basis B j for E j = Nul (A λ j ). - Dersom dim E j < mult. til λ j for en j er A ikke diag.bar. - Ellers er j dim E j = n og A er diagonaliserbar: P = [B 1... B p ] er da invertibel og P 1 A P der diagonalmatrisen med de tilh. λ j -ene langs diagonalen, gjentatt i henhold til deres multiplisitet. Spesielt, hvis A har n forskjellige egenverdier, så er A diag.bar. Man kan også betrakte komplekse egenverdier og egenvektorer for A ved å la den virke på C n. Anta A er reell 2 2 matrise med kompleks egenverdi λ = a bi (b 0) og tilhørende egenvektor z C 2. La P = [ Re z Imz ]. Da er P invertibel og [ ] a b A = P P 1. b a 3 / 9
4 La x 0 R n og sett x k+1 = A x k, k 0, så x k = A k x 0. Anta at A er diagonaliserbar. Skriv A = PDP 1 der P = [v 1 v n ], D = diag(λ 1,..., λ n ). Hvis x 0 = c 1 v c n v n er x k = c 1 λ k 1 v c n λ k n v n. Dette kan ofte brukes til å si noe om hva som skjer med x k når k. Kan også substituerere y k = P 1 x k, dvs x k = Py k. Får da y k = D k y 0 = diag(λ k 1,..., λk n) y 0. Dersom A har noen komplekse egenverdier og A er diagonaliserbar når den betraktes som en kompleks matrise, kan argumentasjonen ovenfor gjennomføres på essentielt samme måte, bortsett fra at P og D er nå komplekse matriser. 4 / 9
5 Betrakt et 1. ordens lin. diff. likn. system x (t) = A x(t), t R. Anta A er diagonaliserbar og skriv A = PDP 1 der P = [v 1 v n ], D = diag(λ 1,..., λ n ). Substitusjonen x(t) = Py(t) gir at x(t) = Py(t) = c 1 v 1 e λ 1t + + c n v n e λnt Dersom x(0) er oppgitt kan c 1,..., c n bestemmes ved å løse systemet man får ved å sette inn t = 0 ovenfor. Anta at A har en kompleks egenverdi λ = a + i b der b 0 og at v C n er en tilhørende egenvektor. Da er λ = a i b også en egenverdi med tilh. egenvektor v. Med e λt = e at (cos bt + i sin bt) blir z(t) = v e λt og z(t) = v e λt komplekse (konjugerte) løsninger av systemet. Realdel og imaginærdel av z(t) = v e λt gir to (lin.uavhengige) reelle løsninger av systemet x = A x. 5 / 9
6 Potensmetoden for å estimere en en strengt dominant egenverdi λ 1 til en diagonaliserbar matrise A. Velg en startvektor x 0 med med største element 1 (i abs.verdi). For k = 0, 1, 2,... Beregn A x k. La µk være en komponent i A x k som har størst absoluttverdi blandt alle komponentene. Beregn xk+1 = (1/µ k )A x k. For nesten alle valg av x 0 vil µ k konvergere mot λ 1 og x k konvergere mot en tilhørende egenvektor. Den inverse potensmetoden for å estimere en egenverdi λ til A (skisse) : Velg et estimat α i nærheten av λ; så (λ α) 1, som er en egenverdi til B = (A αi ) 1, blir stor (i abs. verdi). Forutsatt at (λ α) 1 er streng dominant, kjør potensmetoden på B til å finne et estimat µ for (λ α) 1 (og en estimert tilh. egenvektor x). Da blir α + 1/µ et estimat for λ (med tilh. estimert egenvektor x). I praksis kan det unngåes å regne ut B ovenfor. 6 / 9
7 Betrakt T : V W lineær der dim V = n og dim W = m. Anta at B = {b 1,..., b n } er en basis for V, og at C er en basis for W. Koordinatmatrisen til T relativt til B og C er m n matrisen M gitt ved [ M = [T (b 1 )] C [T (b n )] C ]. Vi har da at [T (v)] C = M [v] B for alle v V. Matrisen M og avb. T M : R n R m inneholder all informasjon om T. Vi har f.eks. at T er 1-1 T M er 1-1 Nul M = {0}. T er på W T M er på R m Col M = R m. T er en isomorfi m = n og T M er en isomorfi m = n og M er invertibel, og da er matrisen til T 1 relativt til C og B lik M 1. 7 / 9
8 Spesialtilfelle: T : V V (så W = V ) og C = B Matrisen M betegnes da ved [T ] B. Med andre ord: [ ] [T ] B = [T (b 1 )] B [T (b n )] B og vi har at [T (v)] B = [T ] B [v] B for alle v V. Videre har vi at T er 1-1 T er på V T er en isomorfi [T ] B er invertibel, og da er [T 1 ] B = ( [T ] B ) 1. Hvis B også er en basis for V, er [T ] B = P B B [T ] B P B B = P B B [T ] B (P B B) 1 Spesielt er [T ] B og [T ] B similære. 8 / 9
9 Eksempel. La A M n n og betrakt T A : R n R n gitt ved T A (x) = A x. Anta B = {v 1,..., v n } er en basis for R n. Sett P = [v 1 v n ], så P = P B B der B er stand.basisen for R n. Da er A = [T A ] = P [T A ] B P 1, m.a.o. [T A ] B = P 1 A P. Anta A er diagonaliserbar: A = P D P 1. La B være basisen for R n som består av kolonnene til P. Da er [T A ] B = D. Omvendt, anta at det finnes en basis B = {v 1,..., v n } for R n slik at [T A ] B er en diagonalmatrise D. Da er A diagonaliserbar: P = [v 1 v n ] gir P 1 A P = D. 9 / 9
Kap. 5 Egenverdier og egenvektorer
Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen
DetaljerKap. 5 Egenverdier og egenvektorer
Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen
DetaljerUtkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.
Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir
Detaljer5.8 Iterative estimater på egenverdier
5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til
DetaljerMAT UiO. 10. mai Våren 2010 MAT 1012
MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer
DetaljerA 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:
5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.
DetaljerDiagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1
Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med
Detaljer5.5 Komplekse egenverdier
5.5 Komplekse egenverdier Mange reelle n n matriser har komplekse egenverdier. Vi skal tolke slike matriser når n = 2. Ved å bytte ut R med C kan man snakke om komplekse vektorrom, komplekse matriser,
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom
DetaljerVi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på
Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
Detaljer5.6 Diskrete dynamiske systemer
5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
DetaljerØving 4 Egenverdier og egenvektorer
Øving Egenverdier og egenvektorer En egenvektor til en matrise A er løsning av likningen A.x = Λ x hvor Λ er en konstant. Det betyr at virkningan av å multiplisere en matirse med en vektor gir en ny vektor
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:
Detaljer13 Oppsummering til Ch. 5.1, 5.2 og 8.5
3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne
DetaljerKap. 7 Symmetriske matriser og kvadratiske former
Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.
DetaljerMAT Prøveeksamen 29. mai - Løsningsforslag
MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]
DetaljerOBLIG 2 - MAT 1120 Høsten 2005
> with(linearalgebra): with(linalg):with(plots): Warning, the name GramSchmidt has been rebound Warning, the protected names norm and trace have been redefined and unprotected Warning, the name changecoords
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
Detaljer6.4 Gram-Schmidt prosessen
6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig
Detaljer12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)
Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er
DetaljerØving 5 Diagonalisering
Øving 5 Diagonalisering En matrise A er diagonaliserbar dersom den er similær med en diagonalmatrise, dvs. det eksisterer en invertibel matrise P og diagonal matrise D slik at P.D.P -1. I øving 4 lærte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte
DetaljerDiagonalisering. Kapittel 10
Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel
DetaljerLineær algebra-oppsummering
Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:
DetaljerNotat2 - MAT Om matriserepresentasjoner av lineære avbildninger
Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon
DetaljerMAT1120 Oppgaver til plenumsregningen torsdag 25/9
MAT1120 Oppgaver til plenumsregningen torsdag 25/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 5.1 Denisjon av egenverdier, egenvektorer, egenrom. Teorem 1 s. 306: Egenverdiene til en triangulær
Detaljer16 Ortogonal diagonalisering
Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen
DetaljerKapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer
Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerMAT UiO mai Våren 2010 MAT 1012
200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)
DetaljerR: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og
EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva
DetaljerEksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra
Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra
DetaljerKap. 6 Ortogonalitet og minste kvadraters problemer
Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =
DetaljerMAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse
MAT3000/4000 - Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte
DetaljerLøsningsforslag. e n. n=0. 3 n 2 2n 1. n=1
Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene
DetaljerMatriser og Kvadratiske Former
Eivind Eriksen Matriser og Kvadratiske Former 15 mars 2012 Handelshøyskolen BI Innhold 1 Matriser og vektorer 1 11 Matriser 1 12 Matriseaddisjon 2 13 Matrisesubtraksjon 3 14 Skalarmultiplikasjon 3 15
DetaljerMAT 1001, Høsten 2009 Oblig 2, Løsningsforslag
MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerLøsningsforslag MAT 120B, høsten 2001
Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()
DetaljerLøsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet
DetaljerLøsningsforslag for eksamen i Matematikk 3 - TMA4115
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt
DetaljerMinste kvadraters løsning, Symmetriske matriser
Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).
DetaljerEKSAMEN I MATEMATIKK 3 (TMA4110)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven
DetaljerMA1202/MA S løsningsskisse
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ
DetaljerUNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side).
UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: MAT 2 Lineær algebra Day of examination: 9. desember 2. Examination hours: 4.3 8.3. This problem set consists of 6 pages.
Detaljer7.1 forts. Schur triangularisering og spektralteoremet
7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt
DetaljerVær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
DetaljerUNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
Detaljer= 3 11 = = 6 4 = 1.
MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at
DetaljerMA1201/MA6201 Høsten 2016
MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta
Detaljer4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;
DetaljerRom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.
Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse
DetaljerTiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.
Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk
DetaljerTMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0
TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x
DetaljerEgenverdier og egenvektorer
Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon
DetaljerEgenverdier for 2 2 matriser
Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier
DetaljerEKSAME SOPPGAVE MAT-1004 (BOKMÅL)
EKSAME SOPPGAVE MAT-00 (BOKMÅL) Eksamen i : Mat-00 Lineær algebra. Dato : Torsdag 09. juni. Tid : 09.00 -.00. Sted: : Teorifagb., hus, plan. Tillatte hjelpemidler : Godkjent kalkulator, to A ark egne notater
DetaljerLøsningsforslag til obligatorisk oppgave i MAT 1100, H-04
Løsningsforslag til obligatorisk oppgave i MAT 00, H-04 Oppgave : a) Vi har zw ( + i )( + i) + i + i + i i og + i + i ( ) + i( + ) z w + i + i ( + i )( i) ( + i)( i) i + i i i ( i ) ( + ) + i( + ) + +
DetaljerForelesning 14 Systemer av dierensiallikninger
Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som
DetaljerEKSAMEN Løsningsforslag
7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator
DetaljerEKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Mat-004 Lineær algebra Dato: Torsdag. juni 207 Klokkeslett: 09.00-3.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator,
DetaljerTMA4140 Diskret matematikk Høst 2011 Løsningsforslag Øving 7
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av?? TMA4140 Diskret matematikk Høst 011 Løsningsforslag Øving 7 7-1-10 a) Beløpet etter n 1 år ganges med 1.09 for å
DetaljerEKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:
EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet
DetaljerEKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet
Detaljer7.4 Singulærverdi dekomposisjonen
7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon
DetaljerLøsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.
Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen
DetaljerInstitutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00
SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende
DetaljerUiO MAT1012 Våren Ekstraoppgavesamling
UiO MAT1012 Våren 2011 Ekstraoppgavesamling I tillegg til eksamen og prøveeksamen fra våren 2010 inneholder denne samlingen en del oppgaver som er blitt gitt til eksamen i diverse andre emner ved UiO i
DetaljerEKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 11 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag. desember 214 Tid: 9: 14:
DetaljerLineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
DetaljerObligatorisk oppgave i MAT 1100, H-03 Løsningsforslag
Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe
DetaljerMAT 1110 V-06: Løsningsforslag til Oblig 1
MAT V-6: Løsningsforslag til Oblig Oppgave : a) Antall sykler i stativet X rett før påfyllingen i måned n + er lik 4% av antall sykler i X måneden før, pluss % av antall sykler i Y måneden før, pluss %
DetaljerLØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av
DetaljerEKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG
DetaljerEksamensoppgave i MA1202/MA6202 Lineær algebra med anvendelser
Institutt for matematiske fag Eksamensoppgave i Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 01. juni 2017 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte hjelpemidler:
Detaljerer et er et heltall. For eksempel er 2, 3, 5, 7 og 11 primtall, mens 4 = 2 2, 6 = 2 3 og 15 = 3 5 er det ikke.
. Primtall og primtallsfaktorisering Definisjon Et primtall p er et heltall, større enn, som ikke er delelig med andre tall enn og seg selv, altså bare delelig med og p (og egentlig også og p) At et tall
Detaljer4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer
DetaljerQED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 2 Tallenes hemmeligheter
QED 5 10 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Tallenes hemmeligheter Kapittel Oppgave 5. Nei Oppgave 7. Addisjon og multiplikasjon Oppgave 8. b) Hvis vi ser på hele tall er {1},
DetaljerMA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +
DetaljerTMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:
TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og
DetaljerEksamen 1T høsten 2015, løsningsforslag
Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =
DetaljerMAT 1120: Obligatorisk oppgave 2, H-09
MAT 1120: Obligatorisk oppgave 2, H-09 Innlevering: Senest fredag 30 oktober, 2009, kl1430, på Ekspedisjonskontoret til Matematisk institutt (7 etasje NHA) Du kan skrive for hånd eller med datamaskin,
DetaljerOppgave 14 til 9. desember: I polynomiringen K[x, y] i de to variable x og y over kroppen K definerer vi undermengdene:
HJEMMEOPPGAVER utgave av 8-12-2002): Oppgave 15 til 16 desember: La H være mengden av alle matriser på formen A = a 1 a 12 a 13 a 1n 0 a 2 0 0 0 0 a 3 0 0 0 a n der a 1 a 2 a n 0 Videre la SH være matrisene
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
DetaljerTMA4110 Matematikk 3 Haust 2011
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA40 Matematikk 3 Haust 0 Løysingsforslag Øving Oppgåver frå læreboka kap 5, s 7-73 5 Eigenrommet som svarar til λ = 5 er det
DetaljerEKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER
DetaljerEmne 9. Egenverdier og egenvektorer
Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller
DetaljerLØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010
LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4
DetaljerEksamensoppgave MAT juni 2010 (med løsningsforslag)
Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6
DetaljerTMA4240 Statistikk Høst 2012
TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................
DetaljerDigital Arbeidsbok i ELE 3719 Matematikk
Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................
DetaljerTMA4110 Matematikk 3 Haust 2011
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4 Matematikk Haust Løysingsforslag Øving Oppgåver frå læreboka kap. 6., s. 7 u v = ( 7)+( 5) ( 4)+( ) 6 = u = +( 5) +( ) = v
DetaljerFinn volum og overateareal til følgende gurer. Tegn gjerne gurene.
Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering Innleveringsfrist Fredag oktober 01 kl 1:00 Antall oppgaver: 16 Løsningsforslag 1 Finn volum og overateareal til følgende gurer Tegn
DetaljerEksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1
Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra
DetaljerLøsningsforslag til underveisvurdering i MAT111 vår 2005
Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x
DetaljerØving 12, ST1301 A: B:
Øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis testen oppfører
Detaljer