A.3.e: Ortogonale egenfunksjonssett

Størrelse: px
Begynne med side:

Download "A.3.e: Ortogonale egenfunksjonssett"

Transkript

1 TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at det for hver av de diskrete egenverdiene f n finnes bare én egenfunksjon ψ n. Fra regelen side 29 i Hemmer følger det da at alle disse egenfunksjonene må være ortogonale (siden de alle har forskjellige egenverdier). Dersom de også er normerte (til 1), har vi da et såkalt ortonormert egenfunksjonssett: ψ k ψ n dτ ψ k, ψ n = δ kn = { 1 for k = n, 0 for k n. Et eksempel er energiegentilstandene for den éndimensjonale boksen med lengde L, ψ n (x) = 2 L sin k nx, k n = nπ, n = 1, 2,, L (T2.1) som er egenfunksjoner til Hamilton-operatoren Ĥ = h2 med egenverdier E 2m x 2 n = n 2 h 2 π 2 /2mL 2. Et annet eksempel er energiegentilstandene for den éndimensjonale harmoniske oscillatoren, som vi skal komme tilbake til. I disse tilfellene er vi sikret ortogonalitet fordi energiegenverdiene er ikke-degenererte; vi har bare én egenfunksjonen for hver energi. Ortogonalisering vha Komplett sett av kommuterende operatorer Men som vi alle vet, det forekommer også at én eller flere av egenverdiene er degenerert, dvs at det finnes mer enn én egenfunksjon med den samme egenverdien f n. Da er det ikke fullt så enkelt å sikre seg ortogonalitet. Et eksempel er 1. eksiterte energinivå for hydrogenatomet, E 2 = 1 2 α2 mc 2 /4 : Det finnes fire lineært uavhengige energiegenfunksjoner med denne egenverdien, dvs vi har degenerasjonsgrad 4. Om vi får utlevert fire slike lineært uavhengige energiegenfunksjoner, ψ 1, ψ 2, ψ 3, ψ 4, behøver de slett ikke å være ortogonale. Regelen side 29 i Hemmer hindrer ikke at skalarproduktene ψ i, ψ j mellom dem kan være forskjellige fra null. I et slikt tilfelle vil vi ønske å skaffe oss fire ortogonale funksjoner; vi lærer oss etter hvert at dette er en stor fordel. Én måte å oppnå dette på er vha Gram- Schmidt-ortogonalisering. En annen måte, som er mer brukt i kvantemekanikk, er vha et såkalt komplett sett av kommuterende operatorer. Denne metoden kan vi illustrere vha hydrogenatomet. Degenerasjonen av energinivåene henger her delvis sammen med kulesymmetrien i dette problemet. Fra denne symmetrien følger det at Hamilton-operatoren Ĥ kommuterer ned dreieimpulsoperatoren ˆL og med kvadratet av denne. Samtidig kommuterer komponentene av ˆL med ˆL 2, men ikke med hverandre. Dette betyr at operator-settet Ĥ, ˆL2 og ˆL z kommuterer innbyrdes. Da vet vi (se avsnitt 4.1 i Hemmer) at det eksisterer et simultant egenfunksjonssett til disse tre operatorene. De bundne tilstandene (for E < 0) er det kjente egenfunksjonssettet ψ nlm (r, θ, φ) = R nl (r)y lm (θ, φ), 2

2 TFY4250/FY2045 Tillegg 2 2 som oppfyller egenverdiligningene Ĥ ˆL 2 ˆL z ψ nlm = E n h 2 l(l + 1) hm ψ nlm, n = 1, 2, 3,, l = 0, 1, 2,,, n 1, m = 0, ±1,, ±l. Her ser vi at energien er uavhengig av det magnetiske kvantetallet m, som for et gitt dreieimpulskvantetall l kan ta verdiene m = 0, ±1,, ±l, tilsammen 2l + 1 verdier. Dette er den såkalte m-degenerasjonen, som er felles for alle kulesymmetriske potensialer. Dessuten ser vi at energien er uavhengig av l, som for et gitt hovedkvantetall n kan ta verdiene l = 0, 1, 2,, n 1. Dette er den såkalte l-degenerasjonen, som er karakteristisk for 1/rpotensialet. 1 Den totale degenerasjonsgraden for energinivået E n blir dermed g n = n 1 l=0 2l + 1 = 1 + ( ) + ( ) + + (2 (n 1) + 1) = 1 2 n(1 + 2n 1) = n2, altså 4 for n = 2, 9 for n = 3, osv. Energinivåene og tilstandene kan illustreres vha følgende nivåskjema: Alle disse tilstandene er nå ortogonale. Det er nemlig bare én egenfunksjon ψ nlm for hver kvantetalls-kombinasjon nlm, og da følger det fra regelen side 29 i Hemmer at vi har et ortogonalt sett. Mer detaljert kan vi si at grunntilstanden ψ 100 er ortogonal til alle de eksiterte tilstandene fordi energiegenverdiene er forskjellige. Det samme kan vi si om hvilke som helst to energiegentilstander med forskjellige energier, som f.eks paret ψ 200 og ψ 300 og paret ψ 210 og ψ 310. Men hva med funksjoner som tilhører samme energinivå, f.eks 2s-tilstanden ψ 200 og 2ptilstandene ψ 21m, med m = 0, ±1? Svaret er at ψ 200 er ortogonal til tilstandene ψ 21m fordi egenverdiene til ˆL 2 er forskjellige (hhvis 0 og 2 h 2 ). Tilsvarende er de tre tilstandene ψ 211, ψ 210 og ψ 21 1 ortogonale fordi de er egenfunksjoner til ˆL z med forskjellige egenverdier (hhvis h, 0, og h). Moralen er at en kan sikre seg at de n 2 egenfunksjonene med energi E n blir ortogonale ved å forlange at de er simultane egentilstander til et passende sett av operatorer (her ˆL 2 og ˆL z ) i tillegg til Ĥ. Velger vi dette operatorsettet slik at vi finner bare én egenfunksjon for hver kombinasjon av egenverdier, så er vi sikret ortogonalitet. Vi sier da at operatorsettet 1 1/r-formen til potensialet innebærer i realiteten en skjult symmetri. Det er denne skjulte symmetrien som gjør at vi her får l-degenerasjon, i tillegg til m-degenerasjonen som er felles for alle kulesymmetriske potensialer.

3 TFY4250/FY2045 Tillegg 2 3 (her Ĥ, ˆL 2 og ˆL z ) er et komplett sett av kommuterende operatorer. Et annet valg (f.eks Ĥ, ˆL 2 og ˆL x ) ville også danne et slikt komplett sett av kommuterende operatorer, med simultane egenfunksjoner som er lineærkombinasjoner av det opprinnelige settet. (Moral: De g n egenfunksjonene med energi E n er ikke unike.) Merk også at settet Ĥ og ˆL 2 ikke er komplett. En liten utfordring: (1) Angi et komplett sett av kommuterende operatorer for den tredimensjonale isotrope harmoniske oscillatoren (med V = 1 2 mω2 r 2 ). (2) Tilsvarende for en todimensjonal kvadratisk boks. Bølgefunksjoner (og andre funksjoner) som vektorer Begrepene skalarprodukt ( f, g ) og ortogonalitet ( f, g = 0) mellom to funksjoner (f og g) er hentet fra teorien for (abstrakte) vektorrom. Bølgefunksjoner som skal beskrive fysisk realiserbare tilstander må være normerbare. Dvs de må høre til klassen av komplekse, kvadratisk integrerbare funksjoner. Slike funksjoner tilfredsstiller alle de kravene som stilles til vektorer i et vektorrom: Summen av to slike (kvadratisk integrerbare) funksjoner er selv en (kvadratisk integrerbar) funksjon. Addisjon av funksjoner er kommutativ og assosiativ [f + g = g + f; (f + g) + h = f + (g + h).] Det finnes en null-funksjon, f 0. Multiplikasjon med en kompleks konstant gir en ny funksjon, osv. Matematisk sett utspenner altså disse kvadratisk integrerbare funksjonene et komplekst vektorrom, betegnet som L 2 (, ) L 2, også kalt et Hilbert-rom. Dimensjonen av dette rommet er uendelig, fordi det finnes uendelig mange slike funksjoner som er lineært uavhengige. Som indreprodukt, eller skalarprodukt, for dette rommet bruker vi altså f, g f gdτ, analogt med skalarproduktet a, b a b a x b x + a y b y + a z b z for vanlige (komplekse) vektorer (som dere kanskje ikke har brukt?). Merk at skalarproduktet generelt er et komplekst tall, og at f, g = g, f. For å bli litt mer vant med å tenke på funksjoner som vektorer i et vektorrom, kan vi vise hvordan Gram-Schmidt-ortogonalisering kan gjennomføres i vektor-notasjon. Gram-Schmidt-ortogonalisering i vektor-notasjon (ikke pensum) Vi viser først hvordan to lineært uavhengige vektorer i et ordinært to-dimensjonalt vektorrom kan brukes til å skaffe seg to ortonormerte enhetsvektorer. Deretter bruker vi den samme teknikken på fire lineært uavhengige funksjoner.

4 TFY4250/FY2045 Tillegg 2 4 A. To-dimensjonalt, reelt vektorrom I figuren til venstre er a 1 og a 2 to lineært uavhengige (men ikke nødvendigvis ortogonale og normerte) vektorer. Disse utspenner et todimensjonalt vektorrom. Vi ønsker å finne to lineærkombinasjoner av disse som danner et ortonormert sett, altså to nye vektorer som er ortogonale og normerte (lengde 1). Dette gjør vi slik: (i) Vi starter med å finne lengden av a 1, også kalt normen, a 1 a 1, a 1 1/2 = a 1 a 1, der det eneste nye er notasjonen. Vi kan nå konstruere en ny vektor, â 1 = a 1 a 1. Denne har åpenbart lengde (norm) 1, og samme retning som a 1 ; se figuren til høyre. (ii) Så går vi løs på a 2 og dekomponerer denne, i en komponent a 2 langs â 1 og en komponent a 2 som er ortogonal på â 1 (se figuren). Lengden av parallell -komponenten er projeksjonen av a 2 på â 1 : a 2 = â 1, a 2 ( â 1 a 2 = a 2 cos α). Derfor er selve parallell -komponenten av a 2 gitt ved og komponenten ortogonal på â 1 er a 2 = â 1, a 2 â 1, a 2 = a 2 a 2 = a 2 â 1, a 2 â 1. (iii) Siste trinn i prosessen er å bruke a 2 til å konstruere den nye vektoren â 2 = a 2 a 2 = a 2 â 1, a 2 â 1 a 2 â 1, a 2 â 1, som åpenbart er både normert og ortogonal på â 1 (se figuren til høyre). De to nye vektorene danner altså et ortonormert sett (av enhetsvektorer), â i, â j = δ ij ; i, j = 1, 2, som er hva vi var ute etter. Merk at â 1 og â 2 (i prinsippet) begge er lineær-kombinasjoner av de opprinnelige vektorene a 1 og a 2. Merk også at vi like godt kunne ha startet med a 2. Vi ville også da ha kommet fram til to ortonormerte vektorer, â 1 og â 2, forskjellige fra de to første, men like gode som basis for det to-dimensjonale vektorrommet. I det hele tatt finnes det uendelig mange slike basis-sett, rotert med en vilkårlig vinkel i forhold til de to i figuren til høyre. Poenget med denne detaljerte gjennomgangen av en triviell problemstilling er at teknikken er direkte overførbar til funksjoner i rommet av kvadratisk integrerbare funksjoner:

5 TFY4250/FY2045 Tillegg 2 5 B. Ortogonalisering av egenfunksjoner for degenerert nivå Som et eksempel kan vi se på 1. eksiterte nivå i hydrogenatomet, med energi E 2 = 1 2 α2 mc 2 / ev. Dette nivået viser seg som nevnt å være degenerert, med degenerasjonsgrad 4. Med dette mener vi at Hamilton-operatoren Ĥ for H-atomet har 4 lineært uavhengige egenfunksjoner med samme egenverdi E 2. I utgangspunktet behøver ikke disse funksjonene, ψ 1, ψ 2, ψ 3, ψ 4, å være ortogonale, og heller ikke normerte. Men med teknikken ovenfor kan vi lett konstruere 4 lineær-kombinasjoner ˆψ 1, ˆψ 2, ˆψ 3, ˆψ 4, (av de opprinnelige funksjonene) som danner et ortonormert funksjonssett (og som blir analoge med enhetsvektorene ovenfor): (i) Vi starter med å finne normen av ψ 1 (med samme oppskrift som ovenfor), og kan da konstruere den nye funksjonen [ ψ 1 ψ 1, ψ 1 1/2 ψ ] 1/2 1 ψ 1 dτ, ˆψ 1 = ψ 1 ψ 1 (som er normert). (ii) Komponenten av ψ 2 langs ˆψ 1 ( parallell -komponenten) er ˆψ 1 multiplisert med projeksjonen av ψ 2 på ˆψ 1 (analog med â 1, a 2 â 1 ): ˆψ1, ψ 2 ˆψ1. Derfor er ˆψ 2 = ψ 2 ˆψ1, ψ 2 ˆψ1 ψ 2 ˆψ1, ψ 2 ˆψ1 både ortogonal til ˆψ1 og normert. (Om du føler deg utrygg, kan du kontrollere ortogonaliteteten ved å projisere ˆψ 2 på ˆψ 1.) (iii) Neste skritt er å ta for seg ψ 3, trekke fra komponentene langs ˆψ 1 og ˆψ 2, og normere det som blir igjen: ˆψ 3 = ψ 3 ˆψ1, ψ 3 ˆψ1 ˆψ2, ψ 3 ˆψ2 ψ 3 ˆψ1, ψ 3 ˆψ1 ˆψ2, ψ 3 ˆψ2. (iv) ˆψ 4 kan du nå sikkert klare på egen hånd. Resultatet er et ortonormert sett av egenfunksjoner: ˆψi, ˆψ j = δij ; i, j = 1, 2, 3, 4. Disse spenner ut det samme 4-dimensjonale under-rommet som de fire opprinnelige funksjonene. Selve denne Gram-Schmidt-prosedyren kommer vi antakelig aldri til å bruke, for som vi har sett finnes det andre metoder for å skaffe seg ortogonale egenfunksjoner. Men selve moralen er viktig: Det er mulig å skaffe seg ortogonale egenfunksjonssett. Når vi har degenerasjon, er ikke disse unike. Vi har den samme typen frihet i valg av basis som vi så i eksemplet ovenfor. Dette er viktig når vi skal prøve å forstå kvantemekanikken for systemer med degenerasjon, som f.eks H-atomet.

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 4 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

Oppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67 EKSAMEN I TFY415

Detaljer

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67, eller 970155 EKSAMEN

Detaljer

A.5 Stasjonære og ikke-stasjonære tilstander

A.5 Stasjonære og ikke-stasjonære tilstander TFY4250/FY2045 Tillegg 4 - Stasjonære og ikke-stasjonære tilstander 1 Tillegg 4: A.5 Stasjonære og ikke-stasjonære tilstander a. Stasjonære tilstander (Hemmer p 26, Griffiths p 21) Vi har i TFY4215 (se

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

TFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator

TFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator TFY4215 - Øving 7 1 Oppgave 20 ØVING 7 -dimensjonal isotrop harmonisk oscillator Vi har tidligere studert egenfunksjonen (orbitalen) for grunntilstanden i hydrogenlignende atomer, og skal senere sette

Detaljer

FY1006/TFY Øving 7 1 ØVING 7

FY1006/TFY Øving 7 1 ØVING 7 FY1006/TFY4215 - Øving 7 1 Frist for innlevering: 5. mars kl 17 ØVING 7 Den første oppgaven dreier seg om den tredimensjonale oscillatoren, som behandles i starten av Tillegg 5, og som vi skal gå gjennom

Detaljer

TFY Øving 8 1 ØVING 8

TFY Øving 8 1 ØVING 8 TFY4215 - Øving 8 1 ØVING 8 Mye av poenget med oppgave 2 er å øke fortroligheten med orbitaler, som er bølgefunksjoner i tre dimensjoner. Fordi spørsmålene/oppdragene er spredt litt rundt omkring, markeres

Detaljer

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige

Detaljer

2. Fundamentale prinsipper

2. Fundamentale prinsipper FY1006/TFY4215 Tillegg 2 1 Dette notatet skal leses parallelt med kapittel 2 i Hemmer. TILLEGG 2 2. Fundamentale prinsipper Kapittel 2 i dette kurset Fundamentale prinsipper dekkes av Tillegg 2, som du

Detaljer

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk ppgave Løsningsforslag Konte-eksamen 3. august SIF8 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, ) mω/π h exp( mωx / h) er symmetrisk med hensyn på origo, er forventningsverdien

Detaljer

Hermiteske og ikke-hermiteske operatorer, kommutatorer,

Hermiteske og ikke-hermiteske operatorer, kommutatorer, TFY4250/FY2045 Tillegg 1 1 Tillegg 1: Hermiteske og ikke-hermiteske operatorer, kommutatorer, etc a. Reelle forventningsverdier krever Hermiteske operatorer I avsnitt 2.2 i Hemmer kan du først se hvordan

Detaljer

TFY Løsning øving 7 1 LØSNING ØVING 7. 3-dimensjonal isotrop harmonisk oscillator

TFY Løsning øving 7 1 LØSNING ØVING 7. 3-dimensjonal isotrop harmonisk oscillator TFY415 - Løsning øving 7 1 Løsning oppgave a. Med z = r cos θ har vi at LØSNING ØVING 7 3-dimensjonal isotrop harmonisk oscillator ψ 1 = C C 1 e mωr / h r cos θ, som er uavhengig av asimutvinkelen φ, dvs

Detaljer

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

B.1 Generelle egenskaper til energiegenfunksjoner

B.1 Generelle egenskaper til energiegenfunksjoner TFY4250/FY2045 Tillegg 6 - Generelle egenskaper til energiegenfunksjoner 1 Tillegg 6: Noe av stoffet i dette Tillegget er repetisjon fra Tillegg 3 i TFY4215. B.1 Generelle egenskaper til energiegenfunksjoner

Detaljer

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK

Detaljer

ψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at

ψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at Det er mulig å oppnå i alt 80 poeng på denne eksamen. Oppgave er inspirert av en tidligere eksamensoppgaver gitt ved NTNU, laget av Ingjald Øverbø og Jon Andreas Støvneng. Oppgave 1 En-dimensjonal harmonisk

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a. FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)

Detaljer

2. Fundamentale prinsipper

2. Fundamentale prinsipper TFY4215 Tillegg 2 1 Dette notatet leses med fordel parallelt med kapittel 2 i Hemmer. TILLEGG 2 2. Fundamentale prinsipper Kapittel 2 i dette kurset Fundamentale prinsipper dekkes av Tillegg 2, som du

Detaljer

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS40 Kvantefysikk Eksamensdag: 6. august 03 Tid for eksamen: 4.30 (4 timer) Oppgavesettet er på 5 (fem) sider Vedlegg:

Detaljer

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I Eksamen FY045/TFY450 0. desember 0 - løsningsforslag Oppgave Løsningsforslag Eksamen 0. desember 0 FY045/TFY450 Kvantemekanikk I a. For x < 0 er potensialet lik null. (i) For E > 0 er da ψ E = (m e E/

Detaljer

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er

Detaljer

LØSNING EKSTRAØVING 2

LØSNING EKSTRAØVING 2 TFY415 - løsning Ekstraøving 1 Oppgave 9 LØSNING EKSTRAØVING hydrogenlignende atom a. For Z = 55 finner vi de tre målene for radien til grunntilstanden ψ 100 vha formlene side 110 i Hemmer: 1/r 1 = a =

Detaljer

TFY løsning øving 9 1 LØSNING ØVING 9

TFY løsning øving 9 1 LØSNING ØVING 9 TFY4215 - løsning øving 9 1 LØSNING ØVING 9 Løsning oppgave 25 Om radialfunksjoner for hydrogenlignende system a. (a1): De effektive potensialene Veff(r) l for l = 0, 1, 2, 3 er gitt av kurvene 1,2,3,4,

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3

FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3 FY16/TFY4215 Innføring i kvantefysikk 26. mai 216 Side 1 av 3 FLERVALGSOPPGAVER TRENING TIL EKSAMEN En partikkel med masse m beskrives av den stasjonære tilstanden Ψ(x,t) = ψ(x)e iωt, med e ikx + 1 3i

Detaljer

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl BOKMÅL Side 1 av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK FYSIKK

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.

Detaljer

NORSK TEKST Side 1 av 5

NORSK TEKST Side 1 av 5 NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 97 0 55 Jon Andreas Støvneng, tel. 7 59 6 6,

Detaljer

FY1006/TFY Øving 9 1 ØVING 9

FY1006/TFY Øving 9 1 ØVING 9 FY1006/TFY4215 - Øving 9 1 Frist for innlevering: 2. mars, kl 16 ØVING 9 Opgave 22 Om radialfunksjoner Figuren viser de effektive potensialene Veff(r) l for l = 0, 1, 2, for et hydrogenlignende atom, samt

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast

Detaljer

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ

Detaljer

Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018

Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018 Løsningsforslag for FYS40 Kvantemekanikk, Tirsdag 9. mai 08 Oppgave : Fotoelektrisk effekt Millikan utførte følgende eksperiment: En metallplate ble bestrålt med monokromatisk lys. De utsendte fotoelektronene

Detaljer

Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger

Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger Eksamen FY1004 Innføring i kvantemekanikk Tirsdag. mai 007 Løsninger 1a Et hydrogenlikt atom har ett elektron med masse m og ladning e som er bundet til en atomkjerne med ladning Ze. Siden kjernen har

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 8 1 LØSNING ØVING 8

FY2045/TFY4250 Kvantemekanikk I, løsning øving 8 1 LØSNING ØVING 8 FY045/TFY450 Kvantemekanikk I, løsning øving 8 1 Løsning oppgave 8 1 LØSNING ØVING 8 Koherente tilstander for harmonisk oscillator a. Utviklingen (3) er en superposisjon av stasjonære tilstander for oscillatoren,

Detaljer

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1 TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet

Detaljer

Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY4215 27. mai 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk a. For en energiegenfunksjon med energi E V 1 følger det fra

Detaljer

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019 Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet

Detaljer

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59

Detaljer

FY1006/TFY4215 -øving 10 1 ØVING 10. Om radialfunksjoner for hydrogenlignende system. 2 ma. 1 r + h2 l(l + 1)

FY1006/TFY4215 -øving 10 1 ØVING 10. Om radialfunksjoner for hydrogenlignende system. 2 ma. 1 r + h2 l(l + 1) FY1006/TFY4215 -øving 10 1 ØVING 10 Oppgave 25 Om radialfunksjoner for hydrogenlignende system De generelle formlene for energiene og de effektive potensialene for et hydrogenlignende system kan skrives

Detaljer

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK

Detaljer

11 Harmonisk oscillator og dreieimpuls vha operatoralgebra

11 Harmonisk oscillator og dreieimpuls vha operatoralgebra TFY4250/FY2045 Tillegg 11 - Harmonisk oscillator og dreieimpuls operatoralgebra 1 TILLEGG 11 11 Harmonisk oscillator og dreieimpuls vha operatoralgebra I Tillegg 3 er den harmoniske oscillatoren gitt en

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 42 Ingjald Øverbø, tel. 7 59 18 67, eller 9701255

Detaljer

Pensum og kursopplegg for FY1006/TFY4215 Innføring i kvantefysikk

Pensum og kursopplegg for FY1006/TFY4215 Innføring i kvantefysikk FY1006/TFY4215 våren 2012 - pensum og kursopplegg 1 Pensum og kursopplegg for FY1006/TFY4215 Innføring i kvantefysikk våren 2012 Litt om de to emnene De to emnene FY1006 og TFY4215 er identiske både når

Detaljer

(θ,φ) er de sfæriske harmoniske. Disse løsningene har energiene 1. = nm, (4) x = rsinθcosφ, (6) y = rsinθsinφ, (7) z = rcosθ, (8) 1 r 2 sinθ

(θ,φ) er de sfæriske harmoniske. Disse løsningene har energiene 1. = nm, (4) x = rsinθcosφ, (6) y = rsinθsinφ, (7) z = rcosθ, (8) 1 r 2 sinθ Oppgave 1 Variasjoner over hydrogen Løsningen av den tidsuavhengige Schrødingerligningen for potensialet til hydrogenatomet Vr) = k ee r, 1) er som kjent ψ nlm r,θ,φ) = R nl r)yl m θ,φ), ) hvor R nl r)

Detaljer

Løsningsforslag Eksamen 8. august 2009 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 8. august 2009 TFY4250 Atom- og molekylfysikk Eksamen TFY425 8. august 29 - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august 29 TFY425 Atom- og molekylfysikk a. For β = har vi en ordinær boks fra x = til x = L. Energiegenfunksjonene har formen

Detaljer

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige

Detaljer

FY1006/TFY Løsning øving 8 1 LØSNING ØVING 8. a. (a1): Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.

FY1006/TFY Løsning øving 8 1 LØSNING ØVING 8. a. (a1): Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene. FY16/TFY415 - Løsning øving 8 1 Løsning oppgave 3 Vinkelfunksjoner, radialfunksjoner og orbitaler for hydrogenlignende system LØSNING ØVING 8 a. (a1: Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.

Detaljer

Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY415 13. august 011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 13. august 011 FY1006/TFY415 Innføring i kvantefysikk a. Fra den tidsuavhengige Schrödingerligningen har vi for

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag

Detaljer

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk Eksamen TFY450 4. auguast 008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 4. august 008 TFY450 Atom- og molekylfysikk a. I områdene x < a og x > a har vi (med E V 0 ) at ψ m h [V (x) E ]ψ 0.

Detaljer

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;

Detaljer

FY1006/TFY Øving 12 1 ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l = 0, 1, ; m = l,, l.

FY1006/TFY Øving 12 1 ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l = 0, 1, ; m = l,, l. FY1006/TFY4215 - Øving 12 1 Frist for innlevering: Tirsdag 28. april kl.1700 Oppgåve 1 system ØVING 12 Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande For ein partikkel som bevegar

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne

EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne EKSAMENSOPPGAVE Eksamen i: FYS-000 Kvantemekanikk Dato: Mandag 6. september 016 Tid: Kl 09:00 1:00 Sted: Auditorium Maximum, Administrasjonsbygget Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling

Detaljer

Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.

Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons. Oppgave 1 Franck-Hertz eksperimentet Med utgangspunkt i skissen i figuren under, gi en konsis beskrivelse av Franck-Hertz eksperimentet, dets resultater og betydning for kvantefysikken. [ poeng] Figur

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk, - Ekstraøving 2 1. Ekstraøving 2. = 1 2 (3n2 l 2 l), = 1 n 2, 1 n 3 (l ), 1 n 3 l(l + 1.

FY1006/TFY4215 Innføring i kvantefysikk, - Ekstraøving 2 1. Ekstraøving 2. = 1 2 (3n2 l 2 l), = 1 n 2, 1 n 3 (l ), 1 n 3 l(l + 1. FY006/TFY45 Innføring i kvantefysikk, - Ekstraøving Frist for innlevering (Til I.Ø.): 7. mai kl 7 Oppgave 9 hydrogenlignende atom Ekstraøving I denne oppgaven ser vi på et hydrogenlignende atom, der et

Detaljer

5. Kulesymmetriske potensialer

5. Kulesymmetriske potensialer TFY415/FY1006 Tillegg 5 1 TILLEGG 5 5. Kulesymmetriske potensialer Kapittel 5 i pensum i FY1006/TFY415 Kulesymmetriskee potensialer dekkes av avsnittene 5.1 og 5.4 5.7 i Hemmers bok, sammen med dette tillegget.

Detaljer

Kursopplegg for TFY4250 og FY2045

Kursopplegg for TFY4250 og FY2045 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten 2007 - kursopplegg 1 Kursopplegg for TFY4250 og FY2045 (under utarbeidelse) Pensum-litteratur PC Hemmers Kvantemekanikk er et must. En annen god

Detaljer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk

Detaljer

NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk

NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk øysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

Kursopplegg for FY2045 og TFY4250 KVANTEMEKANIKK I

Kursopplegg for FY2045 og TFY4250 KVANTEMEKANIKK I FY2045/TFY4250 Kvantemekanikk I, kursopplegg 1 Kursopplegg for FY2045 og TFY4250 KVANTEMEKANIKK I Pensum-litteratur PC Hemmers Kvantemekanikk er et must. En annen god bok er Quantum Mechanics, av B.H.

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Kursopplegg for TFY4250 og FY2045

Kursopplegg for TFY4250 og FY2045 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten 2004 - kursopplegg 1 Kursopplegg for TFY4250 og FY2045 Felles undervisning i to emner De to emnene TFY4250 Atom- og molekylfysikk for teknologistudiet,

Detaljer

2. Postulatene og et enkelt eksempel

2. Postulatene og et enkelt eksempel FY619 Moderne fysikk 1 Dette notatet kan leses parallelt med deler av kapitlene 2 og 3 i Hemmer; fortrinnsvis delkapitlene 3.1, 3.2 og 2.1. NOTAT 2 2. Postulatene og et enkelt eksempel I kapittel 2 i Hemmer

Detaljer

Eksamen FY1006/TFY mai løsningsforslag 1

Eksamen FY1006/TFY mai løsningsforslag 1 Eksamen FY1006/TFY415 7. mai 009 - løsningsforslag 1 Løsningsforslag, Eksamen 7. mai 009 FY1006 Innføring i kvantefysikk/tfy415 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. For E > V 0 har vi for store

Detaljer

13 Addisjon av dreieimpulser

13 Addisjon av dreieimpulser TFY450/FY045 Tillegg 13 - Addisjon av dreieimpulser 1 TILLEGG 13 13 Addisjon av dreieimpulser (8.4 i Hemmer, 6.10 i B&J, 4.4 i Griffiths) Begrepet Addisjon av dreieimpulser kommer inn i bildet når vi ser

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 EKSAMEN I TFY4215 KJEMISK FYSIKK

Detaljer

EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator

EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator FAKUTET FOR NATURVITENSKAP OG TEKNOOGI EKSAMENSOPPGAVE Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl 09.00-13.00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: Formelsamlinger i matematikk

Detaljer

FY1006/TFY Løsning øving 9 1 LØSNING ØVING 9

FY1006/TFY Løsning øving 9 1 LØSNING ØVING 9 FY1006/TFY415 - Løsning øving 9 1 Løsning oppgave Numerisk løsning av den tidsuavhengige Schrödingerligningen LØSNING ØVING 9 a. Alle leddene i (1) har selvsagt samme dimensjon. Ved å dividere ligningen

Detaljer

Tidsuavhengig perturbasjonsteori

Tidsuavhengig perturbasjonsteori TFY425/FY245 Tillegg 15 1 TILLEGG 15 Tidsuavhengig perturbasjonsteori Innledning Som vi også var inne på i Tillegg 14, er det relativt få problemstillinger i kvantemekanikk som er eksakt løsbare. Tidsuavhengig

Detaljer

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0, BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

5. Kulesymmetriske potensialer

5. Kulesymmetriske potensialer TFY415 Tillegg 5 1 TILLEGG 5 5. Kulesymmetriske potensialer Kapittel 5 i pensum i FY1006/TFY415 Kulesymmetriske potensialer dekkes av avsnittene 5.1 og 5.4 5.7 i Hemmers bok, sammen med dette tillegget.

Detaljer

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand FY006/TFY45 - Løsning øving 3 Løsning oppgave 8 LØSNING ØVING 3 Ikke-stasjonær bokstilstand a. For 0 < x < L er potensialet i boksen lik null, slik at Hamilton-operatoren har formen Ĥ = K + V (x) = ( h

Detaljer

TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner

TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen

Detaljer

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8

FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8 FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8 I. FLERVALGSOPPGAVER (Teller 2.5% 30 = 75%) En fri partikkel med masse m befinner seg i det konstante potensialet V = 0 og beskrives

Detaljer

Kursopplegg for TFY4250 og FY2045

Kursopplegg for TFY4250 og FY2045 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk, høsten 2008 - kursopplegg 1 Kursopplegg for TFY4250 og FY2045 Pensum-litteratur PC Hemmers Kvantemekanikk er et must. En annen god bok er Quantum Mechanics,

Detaljer

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Eksamen FY1006/TFY4215, 29. mai 2010 - løsningsforslag 1 Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. I punktene x = 0 og x

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl. 09.00-13.00 Tillatte

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en

Detaljer

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og

Detaljer

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015 Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit Kontekesamen TFY415/FY16 Innføring i kvantefysikk 15 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU August 15 kl. 9.-13.

Detaljer

Løsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk

Løsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk Eksamen TFY450/FY045 4. desember 007 - løsningsforslag Løsningsforslag Eksamen 4. desember 007 TFY450 Atom- og molekylfysikk/fy045 Kvantefysikk Oppgave a. For tilfellet α 0 har vi et ordinært bokspotensial

Detaljer

9 Kulesymmetrisk boks. Sylindersymmetriske

9 Kulesymmetrisk boks. Sylindersymmetriske TFY4250/FY2045 Tillegg 9 - Kulesymmetrisk boks. Sylindersymmetriske systemer 1 TILLEGG 9 9 Kulesymmetrisk boks. Sylindersymmetriske systemer I dette Tillegget starter vi med en gjennomgang av det kulesymmetriske

Detaljer

Lineærtransformasjoner

Lineærtransformasjoner Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245/TFY425 KVANTEMEKANIKK

Detaljer

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 26. mai 2008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten

Detaljer