RF5100 Lineær algebra Leksjon 12
|
|
- Ask Solberg
- 8 år siden
- Visninger:
Transkript
1 RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013
2 I. GAUSS-ELIMINASJON
3 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z = 1 3z = 2 GAUSS-ELIMINASJON 2y 2z = 2 y + 2z = Utgangspunkt /2 1/2 1/ Eliminerer x Eliminerer y / /3 Eliminerer z /3 Løsning: x = 2/3, y = 2/3, z = 2/3
4 EKSEMPLER Per, Ola og Kari har til sammen 10 epler. Per og Kari har til sammen dobbelt så mange epler som Ola. Hvis Per gir ett eple til Kari, så har Per og Kari like mange epler. Grafen til polynomet p(x) = a 0 +a 1 x+a 2 x 2 går gjennom punktene (0, 0), (0, 1), (2, 1). Bestem a 0, a 1, a 2. Bestem b 1, b 2, b 3 -koordinatene til punktet (1, 1, 3) når 2 b 1 = 2, 3 b 2 = 5, 1 b 3 =
5 II. HOMOGENE KOORDINATER
6 HOMOGENE KOORDINATER Punkter 4-vektoren [x, y, z, w] som representant for punktet (x/w, y/w, z/w) Vanlig representasjon: (x, y, z) [x, y, z, 1]. Vektorer 4-vektoren [x, y, z, 0] som representant for vektoren [x, y, z]. Vanlig representasjon: [x, y, z] [x, y, z, 0].
7 4 4-MATRISER I Affine transformasjoner: x xa + b Kan formuleres slik: [ ] A 0 [x, y, z, 1] [x, y, z, 1] b 1 Affine transformasjoner og vektorer: [ ] A 0 [x, 0] = [x, y, z, 0] [x, 0] b 1 = [xa, 0] Dette svarer til den lineære transformasjonen x aa. Den lineære delen av den affine transformasjonen.
8 AFFINE OG LINEÆRE TRANSFORMASJONER Punkter og affine transformasjoner hører sammen. Punktenes plassering i forhold til origo er avgjørende. Vektorer og lineære transformasjone hører sammen. Vektorer bryr seg ikke om hvor origo ligger. 4 4-matriser transformerer punkter/vektorer på riktig måte: Vektorer berøres kun av den lineære delen.
9 SENTRALPROJEKSJON View Frustrum (x, y, z) [x, y, z, 1] Clip-matrise Clip koordinater (C x, C y, C z ) [x, y, z, w ] N x = Zx x z et.c N x = C x et.c Normaliserte skjerm-koordinater (N x, N y ) dev x = wc x + wresx 2 N x et.c. Fysiske skjerm-koordinater (phys x, phys y )
10 PROJEKSJONSMATRISEN zoom x zoom y f+n f n 1 2n f n 0 (x, y, z) CC [x, y, z, 1] zoom x x zoom y y f+n f n z 2n z f n w ( zoomx x, zoom ) y y z z NS CC: Camera Coordinates, NS: Normalized screen coordinates. Praktisk fortolkning av w: Variabelen w lagrer et tall som vi skal dividere med.
11 III. LITT OM PROJEKSJONER
12 ORNORMALITET PROJEKSJONER B = (b 1,..., b k ) er et ortonormalt system dersom { 1 i = j b i b j = 0 i j proj B x = (b 1 x)b 1 + (b 2 x)b (b k x)b k proj B x b i for i = 1, 2,..., k proj B x x v x for alle v = Σ i α i b i. Denne ulikheten er en likhet hvis og bare hvis v = proj B x.
13 UTNYTTELSE Projeksjon i geometri Analyse av data Komprimering av data. Billdekomprimering: Bilde deles opp i biter på 8 8 piksler. Disse delene analyseres ved hjelp av et ortonormalt system.
14 IV. STIKKORD TIL PENSUM:
15 VEKTORREGNING Vektorroperasjoner: Addisjon, subtraksjon, skalarmultiplikasjon Skalarprodukt: Norm, vinkler, avstand, projeksjoner Kryssprodukt: Areal, vinkler, normalvektorer
16 MATRISEREGNING Matriseprodukt: Matrise-matrise, radvektor-matrise, kolonnevektormatrise Ortogonale matriser: Inversjon = Transponering, Sammenheng med ortogonale basiser Projeksjonsmatriser: Nyttig bruk av homogene koordinater Homogene matriser: Affine transformasjoner Determinant: Er matrisen inverterbar?
17 PROJEKSJONER Projeksjon på vektor: proj u v = u v u u u Projeksjon på ortonormalt system B = (b 1, b 2,..., b k ): proj B v = k i=1 (b i v)b i Spørsmål: Hva er b 1, b 2, b 3 -koordinatene til x? Svar: (b 1 x, b 2 x, b 3 x) x = (b 1 x)b 1 + (b 2 x)b 2 + (b 3 x)b 3
18 ROTASJON OG ORIENTERING Konkrete vektorberegninger: Matriser Beskrivelse for mennekser: Eulervinkler Rotasjonskinematikk: Rotasjonsvektorer. Interpolasjon, rotasjonsberegninger: Kvaternioner
19 V. PRAKTISK BRUK
20 SJONGLERING MELLOM ULIKE KOORDINATER Sjonglering mellom ulike valg av origo: Slagord 1: Posisjonsvektor = forflytningsvektor i forhold til origo O. Slagord 2: Koordinater = Vektorenes komponenter i forhold til orientering b 1, b 2, b 3. Modellkoordinater Globale koordinater Kamerakoordinater Clip-koordinater Normaliserte skjermkoordinater Vinduskoordinater.
21 INTERPOLASJON Slerp: Sfærisk lineær interpolasjon. Polynominterpolasjon: Polynom av grad n som interpolerer n + 1 datapunkter. Splines: Stykkevis polynominterpolasjon. Interpolasjon i trekanter: Barysentriske koordinater. Interpolasjon av farger. Interpolasjon av normalvektorer. Interpolasjon av teksturkoordinater. Objekter som støtter vektoroperasjoner støtter interpolasjon.
22 LYSBEREGNINGER Normalvektorer Innfallsretning Refleksjonsretning Siktvinkel Phong-refleksjon: Ambient, Diffuse, Specular. Interpolasjon av lysegenskaper (Gouraud-shading) Interpolasjon av normalvektorer (Phong-shading)
23 VI. EKSAMENSPRAKSIS
24 EKSAMENSPRAKSIS I Matematiske tekster skal være like sammenhengende som andre tekster. Forklar hva som skjer. Hvis du bare skriver opp resultatet, finnes det to utfall: true/false Hvis du i tillegg forklarer hva du gjør, kan også selve tankegangen bedømmes. Matematikk spill med symboler. Matematiske symboler = forkortelser for ordinære setningselementer.
25 EKSAMENSPRAKSIS II Kalkulator med trigonometriske funksjoner Formelark (vedlagt) La oss se over prøveeksamen: pdf
RF5100 Lineær algebra Leksjon 9
RF5100 Lineær algebra Leksjon 9 Lars Sydnes, NITH 11. november 2013 I. DATASKJERMEN DATASKJERMEN (0, 0) x (wp os x, wp os y ) y winres x (wcenter x, wcenter y ) winres x (devres x, devres y ) Merk: Det
DetaljerRF5100 Lineær algebra Leksjon 1
RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell
DetaljerNorges Informasjonstekonlogiske Høgskole
Oppgavesettet består av 9 (ni) sider. Norges Informasjonstekonlogiske Høgskole RF5100 Lineær algebra Side 1 av 9 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember
DetaljerEKSAMEN RF5100, Lineær algebra
Side av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF500, Lineær algebra Tillatte hjelpemidler: Godkjent kalkulator og utdelt formelark Varighet: 3 timer Dato: 4. oktober 04 Emneansvarlig: Lars Sydnes
DetaljerEKSAMEN RF3100 Matematikk og fysikk
Side 1 av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF3100 Matematikk og fysikk Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 4.juni 2015 Emneansvarlig: Lars Sydnes
DetaljerNorges Informasjonstekonlogiske Høgskole
Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember
DetaljerRF5100 Lineær algebra Leksjon 1
RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerRF3100 Matematikk og fysikk Leksjon 1
RF3100 Matematikk og fysikk Leksjon 1 Lars Sydnes, NITH 30. august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Ved NTNU: Doktorgrad i Matematikk 2012, Siv.ing. Industriell
DetaljerRF5100 Lineær algebra Løsningsforslag til prøveeksamen
RF5 Lineær algebra Løsningsforslag til prøveeksamen NITH 6. desember Oppgave (a) Jeg skal løse et system av tre ligninger med tre ukjente. Dette gjør jeg ved å utføre radoperasjoner på matrisen tilhørende
DetaljerMatematikk R1 Oversikt
Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF330 Metoder i grafisk databehandling og diskret geometri Eksamensdag: 3. desember 010 Tid for eksamen: 14.30 18.30 Oppgavesettet
DetaljerEKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG
DetaljerLineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort
DetaljerSeksjonene : Vektorer
Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren
DetaljerSeksjonene : Vektorer
Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren
DetaljerTDT4195 Bildeteknikk
TDT495 Bildeteknikk Grafikk Vår 29 Forelesning 5 Jo Skjermo Jo.skjermo@idi.ntnu.no Department of Computer And Information Science Jo Skjermo, TDT423 Visualisering 2 TDT495 Forrige gang Attributter til
DetaljerLineær algebra-oppsummering
Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte
Detaljera. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z
Kommentar: Svar kort og konsist. Husk at eksamen har tre oppgaver. Poengene for hver (del-) oppgave bør gi en indikasjon på hvor me tid som bør benttes per oppgave. Oppgave 1: Forskjellige emner (40 poeng)
DetaljerForelesningsnotater SIF8039/ Grafisk databehandling
Forelesningsnotater SIF839/ Grafisk databehandling Notater til forelesninger over: Kapittel 4: Geometric Objects and ransformations i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 orbjørn
DetaljerUniversitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl.
Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato:. desember 28 Varighet: 9 - Antall sider inkl. forside 7 OPPGAVE. (2%) a) b)
DetaljerMA-132 Geometri Torsdag 4. desember 2008 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
Institutt for matematiske fag EKSAMEN i MA-1 Geometri Torsdag 4. desember 008 kl. 9.00-14.00 Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator. Bokmål Oppgave 1 Gitt et linjestykke.
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerVær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
DetaljerMatematikk og fysikk RF3100
DUMMY Matematikk og fysikk RF3100 Løsningsforslag, Øving 11 8mai 201 Tidsfrist: 18mai 201 klokken 1400 Oppgave 1 Obs: I denne oppgaven reperesenterer vi vektorer med 1 n-matriser, altså radvektorer I hele
DetaljerRF3100 Matematikk og fysikk Leksjon 1
RF3100 Matematikk og fysikk Leksjon 1 Lars Sydnes, NITH 30. august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Ved NTNU: Doktorgrad i Matematikk 2012, Siv.ing. Industriell
DetaljerBokmål. Eksamensinformasjon
Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del
DetaljerØgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................
DetaljerSkipsoffisersutdanningen i Norge. Innholdsfortegnelse. 00TM01G - Emneplan for: Matematikk på operativt nivå
Skipsoffisersutdanningen i Norge 00TM01G - Emneplan for: Matematikk på operativt nivå Generelt Utarbeidet av: Maritime fagskoler i Norge Godkjent av: Linda Gran Kalve Versjon: 2.01 Gjelder fra: 27.09.2016
DetaljerGauss-eliminasjon og matrisemultiplikasjon
DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,
DetaljerSammendrag R2. www.kalkulus.no. 31. mai 2009
Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være
DetaljerRF5100 Lineær algebra Leksjon 2
RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013 I. LINEÆRE SYSTEM SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på
DetaljerInstitutt for matematiske fag EKSAMEN i MA-132 Geometri Torsdag 4. desember 2008 kl Oppgave 1
Institutt for matematiske fag EKSAMEN i MA-132 Geometri Torsdag 4. desember 2008 kl. 9.00-14.00 Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator. Oppgave 1 Bokmål Gitt et linjestykke.
DetaljerEksamensoppgave i TMA4110/TMA4115 Calculus 3
Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:
DetaljerDel 1 - Uten hjelpemidler
Del 1 - Uten hjelpemidler Oppgaveteksten til del 1 ligger i: http://www.ulven.biz/r1/heldag/r1_hd_100516.docx (Oppgaveteksten til del er inkludert i dette dokumentet.) Oppgave 1 f x 3x 1 x 1 x (Husk: x
DetaljerKap. 6 Ortogonalitet og minste kvadrater
Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og
DetaljerLøsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet
DetaljerRF5100 Lineær algebra Leksjon 10
RF5100 Lineær algebra Leksjon 10 Lars Sydnes, NITH 11. november 2013 I. LITT OM LYS OG FARGER GRUNNLEGGENDE FORUTSETNINGER Vi ser objekter fordi de reflekterer lys. Lys kan betraktes som bølger / forstyrrelser
DetaljerPlotting av grafer og funksjonsanalyse
Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning
DetaljerInnlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13
Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,
DetaljerTMA4115 Matematikk 3 Vår 2017
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4115 Matematikk Vår 2017 Obligatoriske oppgaver Lay, avsnitt 1.6 5. Bor-sulfid reagerer voldsomt med vann for å danne borsyre
DetaljerOppgaver som illustrerer alle teknikkene i 1.4 og 1.5
Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Gitt 3 punkter A 1,1,1,B 2,1,3,C 3,4,5 I Finne ligning for plan gjennom 3 punkt Lager to vektorer i planet: AB 1, 0,2 og AC 2,3, 4 Lager normalvektor
DetaljerEksamensoppgave i MA1202/MA6202 Lineær algebra med anvendelser
Institutt for matematiske fag Eksamensoppgave i Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 01. juni 2017 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte hjelpemidler:
DetaljerLineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning
Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable
Detaljer3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det?
Likninger av første grad med en ukjent 1. Løs følgende likninger x 3 + 4x a. + = 16 2x 7 2 x 1 x + 3 b. + 2 = 0 x x 2 1 1 1 c. (2x + 3) (3 4x) = (4x 7) 3 2 6 d. 2 x + 3( 2 x) = 3 2. Lag en likning som
DetaljerUNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
DetaljerOppgave 1 (25 %) - Flervalgsoppgaver
Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består
DetaljerEksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra
Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra
DetaljerGENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type
Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.
DetaljerEksamen i matematikk. Hvordan har eksamen i R1 høsten 2011 endret all læreplantolkning?
Eksamen i matematikk Hvordan har eksamen i R1 høsten 2011 endret all læreplantolkning? Samarbeidet udir/forlag Før reform 94: En representant fra hvert matematikkverk var med på å lage eksamensoppgavene
DetaljerLøsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)
Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1
DetaljerDigital Arbeidsbok i ELE 3719 Matematikk
Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................
DetaljerTexas Instruments TI-84
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Regning 4 1.1 Tallet e...................................... 4 2 Sannsynlighetsregning
Detaljer2 = 4 x = x = 3000 x 5 = = 3125 x = = 5
Heldagsprøve i FO99A matematikk Dato: 7. desember 010 Tidspunkt: 09:00 14:00 Antall oppgaver 4 Vedlegg: Formelsamling Tillatte hjelpemidler: Godkjent kalkulator Alle svar skal grunngis. Forsøk å gi svarene
DetaljerSammendrag R1. Sandnes VGS 19. august 2009
Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A
DetaljerSammendrag R1. 26. januar 2011
Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander
DetaljerEKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER
DetaljerEksamensoppgave i TMA4115 Matematikk 3
Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand
DetaljerLineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som
DetaljerFASIT OG TIPS til Rinvold: Visuelle perspektiv. Lineær algebra. Caspar forlag, 1.utgave 2003 og 2.opplag 2004.
FAIT OG TIP til Rinvold: Visuelle perspektiv. Lineær algebra. Caspar forlag,.utgave og.opplag. Versjon..9. Det er ikke tatt med svar på alle oppgaver. Denne fasiten vil bli oppdatert etter hvert. Oppdager
DetaljerUtkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.
Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir
DetaljerGeometri. Kapittel 3. 3.1 Vektorproduktet
Kapittel 3 Geometri I dette kapitlet skal vi benytte den teorien vi utviklet i kapittel 1 og 2 til å studere geometriske problemstillinger. Vi skal se på kurver og flater, og vi skal også studere hvordan
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom
DetaljerLøsningsforslag. e n. n=0. 3 n 2 2n 1. n=1
Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene
DetaljerLøsningsforslag. og B =
Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og
DetaljerLær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals
Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
DetaljerØgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning
Detaljer1 Geometri R2 Oppgaver
1 Geometri R2 Oppgaver Innhold 1.1 Vektorer... 2 1.2 Regning med vektorer... 15 1.3 Vektorer på koordinatform... 19 1.4 Vektorprodukt... 22 1.5 Linjer i rommet... 27 1.6 Plan i rommet... 30 1.7 Kuleflater...
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert
Detaljer12 Projeksjon TMA4110 høsten 2018
Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,
DetaljerINF Obligatorisk oppgave 2
INF3320 - Obligatorisk oppgave 2 Innleveringsfrist: 23. september (Revisjon 4. september 2003) I denne oppgaven skal vi se på transformasjoner og interaktivitet. Vi skal lage et lite program som implementerer
DetaljerSammendrag kapittel 9 - Geometri
Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning
DetaljerGeometri R2, Prøve 2 løsning
Geometri R, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt punktene P 1, 1,5 og Q 1,4,0 a) Bestem avstanden mellom punktene Avstanden mellom punktene er lengden av PQ PQ 1 1,4
DetaljerLineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig
DetaljerInnlevering i FORK Matematikk forkurs OsloMet Obligatorisk innlevering 3 Innleveringsfrist Onsdag 14.november 2018 kl. 10:30 Antall oppgaver: 13
Innlevering i FORK00 - Matematikk forkurs OsloMet Obligatorisk innlevering Innleveringsfrist Onsdag 4.november 08 kl. 0:0 Antall oppgaver: Bestem vinkelen mellom vektorene u = [, 7] og v = [4, 5]. Hva
DetaljerMA1201/MA6201 Høsten 2016
MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til
DetaljerLineær algebra. H. Fausk
Lineær algebra H. Fausk 04.02.2016 Sjuende utkast Lineære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av lineære likningsystem enkelt, det benytter bare de
DetaljerMA1202/MA S løsningsskisse
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ
DetaljerLØSNINGSFORSLAG. Universitetet i Agder Fakultet for Teknologi og realfag. Dato: 03. desember 2009 Varighet: Antall sider inkl.
Universitetet i Agder Fakultet for Teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato: 3. desember 29 Varighet: 9-3 Antall sider inkl. forside 8 Tillatte hjelpemidler:
DetaljerR2 - Vektorer i rommet
R2 - Vektorer i rommet - 26.01.17 Del I - Uten hjelpemidler Løsningsskisser - versjon 31.01.17 Oppgave 1 Gitt vektorene u 1, 2, 3 og v 2, 1, 4. a) Regn ut u v b) Regn ut u v c) Regn ut w u t v d) Løs vektorligningen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerTest, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde.
Test, 1 Geometri Innhold 1.2 Regning med vektorer... 1 1.3 Vektorer på koordinatform... 6 1.4 Vektorproduktet... 11 1.5 Linjer i rommet... 16 1.6 Plan i rommet... 18 1.7 Kuleflater... 22 Grete Larsen 1.2
DetaljerEKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:
EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet
DetaljerKompetansemål Geometri, R Vektorer Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5
1 Geometri Innhold Kompetansemål Geometri, R2... 3 1.1 Vektorer... 4 1.2 Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5 Multiplikasjon av vektor med tall... 6 Parallelle vektorer...
DetaljerOppgavesett. Kapittel Oppgavesett 1
Kapittel 9 Oppgavesett Dette kapitlet består av fire oppgavesett med oppgaver fra alle deler av kompendiet. 9. Oppgavesett Oppgave. Et dynamisk system er gitt ved x n+ = M x n der M er -matrisen.6.. M
DetaljerTMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:
TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og
DetaljerEksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger
Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 06. juni 2016 Eksamenstid (fra
DetaljerManual for wxmaxima tilpasset R1
Manual for wxmaxima tilpasset R1 Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,
DetaljerRF3100 Matematikk og fysikk Leksjon 6
RF3100 Matematikk og fysikk Leksjon 6 Lars Sydnes, NITH 4.oktober 2013 I. FUNKSJONER TILFELDIGE EKSEMPLER x-koordinaten er en funksjon av t når startposisjon x 0 og startfart v x er gitt: x = x 0 + v x
DetaljerVektorligninger. Kapittel 3. Vektorregning
Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det
DetaljerMicrosoft Mathematics Brukermanual matematikk vgs
Microsoft Mathematics Brukermanual matematikk vgs Generelt om Microsoft Mathematics... 2 Nedlasting... 2 Innholdsoversikt... 2 Fremgangsmåte... 3 Tall og algebra... 4 Omgjøring mellom enheter... 4 Likninger...
DetaljerR1 Eksamen høsten 2009
R1 Eksamen høsten 2009 Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x b) Deriver funksjonen gx x 3 ln2 x 3 2 c) Likningen 2x 10x 2x 10 0 har tre løsninger. Vis at x1 1 er en løsning og finn de to andre.
DetaljerTom Lindstrøm og Klara Hveberg. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,
Tom Lindstrøm og Klara Hveberg Tilleggskapitler til Kalkulus 3 utgave Universitetsforlaget, Oslo 3 utgave Universitetsforlaget AS 2006 1 utgave 1995 2 utgave 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8
DetaljerForelesningsnotat, lørdagsverksted i fysikk
Forelesningsnotat, lørdagsverksted i fysikk Kristian Etienne Einarsrud 1 Vektorer, grunnleggende matematikk og bevegelse 1.1 Introduksjon Fysikk er en vitenskap som har som mål å beskrive verden rundt
DetaljerTempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.
Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken
Detaljer