RF5100 Lineær algebra Leksjon 12

Størrelse: px
Begynne med side:

Download "RF5100 Lineær algebra Leksjon 12"

Transkript

1 RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013

2 I. GAUSS-ELIMINASJON

3 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z = 1 3z = 2 GAUSS-ELIMINASJON 2y 2z = 2 y + 2z = Utgangspunkt /2 1/2 1/ Eliminerer x Eliminerer y / /3 Eliminerer z /3 Løsning: x = 2/3, y = 2/3, z = 2/3

4 EKSEMPLER Per, Ola og Kari har til sammen 10 epler. Per og Kari har til sammen dobbelt så mange epler som Ola. Hvis Per gir ett eple til Kari, så har Per og Kari like mange epler. Grafen til polynomet p(x) = a 0 +a 1 x+a 2 x 2 går gjennom punktene (0, 0), (0, 1), (2, 1). Bestem a 0, a 1, a 2. Bestem b 1, b 2, b 3 -koordinatene til punktet (1, 1, 3) når 2 b 1 = 2, 3 b 2 = 5, 1 b 3 =

5 II. HOMOGENE KOORDINATER

6 HOMOGENE KOORDINATER Punkter 4-vektoren [x, y, z, w] som representant for punktet (x/w, y/w, z/w) Vanlig representasjon: (x, y, z) [x, y, z, 1]. Vektorer 4-vektoren [x, y, z, 0] som representant for vektoren [x, y, z]. Vanlig representasjon: [x, y, z] [x, y, z, 0].

7 4 4-MATRISER I Affine transformasjoner: x xa + b Kan formuleres slik: [ ] A 0 [x, y, z, 1] [x, y, z, 1] b 1 Affine transformasjoner og vektorer: [ ] A 0 [x, 0] = [x, y, z, 0] [x, 0] b 1 = [xa, 0] Dette svarer til den lineære transformasjonen x aa. Den lineære delen av den affine transformasjonen.

8 AFFINE OG LINEÆRE TRANSFORMASJONER Punkter og affine transformasjoner hører sammen. Punktenes plassering i forhold til origo er avgjørende. Vektorer og lineære transformasjone hører sammen. Vektorer bryr seg ikke om hvor origo ligger. 4 4-matriser transformerer punkter/vektorer på riktig måte: Vektorer berøres kun av den lineære delen.

9 SENTRALPROJEKSJON View Frustrum (x, y, z) [x, y, z, 1] Clip-matrise Clip koordinater (C x, C y, C z ) [x, y, z, w ] N x = Zx x z et.c N x = C x et.c Normaliserte skjerm-koordinater (N x, N y ) dev x = wc x + wresx 2 N x et.c. Fysiske skjerm-koordinater (phys x, phys y )

10 PROJEKSJONSMATRISEN zoom x zoom y f+n f n 1 2n f n 0 (x, y, z) CC [x, y, z, 1] zoom x x zoom y y f+n f n z 2n z f n w ( zoomx x, zoom ) y y z z NS CC: Camera Coordinates, NS: Normalized screen coordinates. Praktisk fortolkning av w: Variabelen w lagrer et tall som vi skal dividere med.

11 III. LITT OM PROJEKSJONER

12 ORNORMALITET PROJEKSJONER B = (b 1,..., b k ) er et ortonormalt system dersom { 1 i = j b i b j = 0 i j proj B x = (b 1 x)b 1 + (b 2 x)b (b k x)b k proj B x b i for i = 1, 2,..., k proj B x x v x for alle v = Σ i α i b i. Denne ulikheten er en likhet hvis og bare hvis v = proj B x.

13 UTNYTTELSE Projeksjon i geometri Analyse av data Komprimering av data. Billdekomprimering: Bilde deles opp i biter på 8 8 piksler. Disse delene analyseres ved hjelp av et ortonormalt system.

14 IV. STIKKORD TIL PENSUM:

15 VEKTORREGNING Vektorroperasjoner: Addisjon, subtraksjon, skalarmultiplikasjon Skalarprodukt: Norm, vinkler, avstand, projeksjoner Kryssprodukt: Areal, vinkler, normalvektorer

16 MATRISEREGNING Matriseprodukt: Matrise-matrise, radvektor-matrise, kolonnevektormatrise Ortogonale matriser: Inversjon = Transponering, Sammenheng med ortogonale basiser Projeksjonsmatriser: Nyttig bruk av homogene koordinater Homogene matriser: Affine transformasjoner Determinant: Er matrisen inverterbar?

17 PROJEKSJONER Projeksjon på vektor: proj u v = u v u u u Projeksjon på ortonormalt system B = (b 1, b 2,..., b k ): proj B v = k i=1 (b i v)b i Spørsmål: Hva er b 1, b 2, b 3 -koordinatene til x? Svar: (b 1 x, b 2 x, b 3 x) x = (b 1 x)b 1 + (b 2 x)b 2 + (b 3 x)b 3

18 ROTASJON OG ORIENTERING Konkrete vektorberegninger: Matriser Beskrivelse for mennekser: Eulervinkler Rotasjonskinematikk: Rotasjonsvektorer. Interpolasjon, rotasjonsberegninger: Kvaternioner

19 V. PRAKTISK BRUK

20 SJONGLERING MELLOM ULIKE KOORDINATER Sjonglering mellom ulike valg av origo: Slagord 1: Posisjonsvektor = forflytningsvektor i forhold til origo O. Slagord 2: Koordinater = Vektorenes komponenter i forhold til orientering b 1, b 2, b 3. Modellkoordinater Globale koordinater Kamerakoordinater Clip-koordinater Normaliserte skjermkoordinater Vinduskoordinater.

21 INTERPOLASJON Slerp: Sfærisk lineær interpolasjon. Polynominterpolasjon: Polynom av grad n som interpolerer n + 1 datapunkter. Splines: Stykkevis polynominterpolasjon. Interpolasjon i trekanter: Barysentriske koordinater. Interpolasjon av farger. Interpolasjon av normalvektorer. Interpolasjon av teksturkoordinater. Objekter som støtter vektoroperasjoner støtter interpolasjon.

22 LYSBEREGNINGER Normalvektorer Innfallsretning Refleksjonsretning Siktvinkel Phong-refleksjon: Ambient, Diffuse, Specular. Interpolasjon av lysegenskaper (Gouraud-shading) Interpolasjon av normalvektorer (Phong-shading)

23 VI. EKSAMENSPRAKSIS

24 EKSAMENSPRAKSIS I Matematiske tekster skal være like sammenhengende som andre tekster. Forklar hva som skjer. Hvis du bare skriver opp resultatet, finnes det to utfall: true/false Hvis du i tillegg forklarer hva du gjør, kan også selve tankegangen bedømmes. Matematikk spill med symboler. Matematiske symboler = forkortelser for ordinære setningselementer.

25 EKSAMENSPRAKSIS II Kalkulator med trigonometriske funksjoner Formelark (vedlagt) La oss se over prøveeksamen: pdf

RF5100 Lineær algebra Leksjon 9

RF5100 Lineær algebra Leksjon 9 RF5100 Lineær algebra Leksjon 9 Lars Sydnes, NITH 11. november 2013 I. DATASKJERMEN DATASKJERMEN (0, 0) x (wp os x, wp os y ) y winres x (wcenter x, wcenter y ) winres x (devres x, devres y ) Merk: Det

Detaljer

RF5100 Lineær algebra Leksjon 1

RF5100 Lineær algebra Leksjon 1 RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 9 (ni) sider. Norges Informasjonstekonlogiske Høgskole RF5100 Lineær algebra Side 1 av 9 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

EKSAMEN RF5100, Lineær algebra

EKSAMEN RF5100, Lineær algebra Side av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF500, Lineær algebra Tillatte hjelpemidler: Godkjent kalkulator og utdelt formelark Varighet: 3 timer Dato: 4. oktober 04 Emneansvarlig: Lars Sydnes

Detaljer

EKSAMEN RF3100 Matematikk og fysikk

EKSAMEN RF3100 Matematikk og fysikk Side 1 av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF3100 Matematikk og fysikk Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 4.juni 2015 Emneansvarlig: Lars Sydnes

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

RF5100 Lineær algebra Leksjon 1

RF5100 Lineær algebra Leksjon 1 RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

RF3100 Matematikk og fysikk Leksjon 1

RF3100 Matematikk og fysikk Leksjon 1 RF3100 Matematikk og fysikk Leksjon 1 Lars Sydnes, NITH 30. august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Ved NTNU: Doktorgrad i Matematikk 2012, Siv.ing. Industriell

Detaljer

RF5100 Lineær algebra Løsningsforslag til prøveeksamen

RF5100 Lineær algebra Løsningsforslag til prøveeksamen RF5 Lineær algebra Løsningsforslag til prøveeksamen NITH 6. desember Oppgave (a) Jeg skal løse et system av tre ligninger med tre ukjente. Dette gjør jeg ved å utføre radoperasjoner på matrisen tilhørende

Detaljer

Matematikk R1 Oversikt

Matematikk R1 Oversikt Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF330 Metoder i grafisk databehandling og diskret geometri Eksamensdag: 3. desember 010 Tid for eksamen: 14.30 18.30 Oppgavesettet

Detaljer

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

TDT4195 Bildeteknikk

TDT4195 Bildeteknikk TDT495 Bildeteknikk Grafikk Vår 29 Forelesning 5 Jo Skjermo Jo.skjermo@idi.ntnu.no Department of Computer And Information Science Jo Skjermo, TDT423 Visualisering 2 TDT495 Forrige gang Attributter til

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte

Detaljer

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z Kommentar: Svar kort og konsist. Husk at eksamen har tre oppgaver. Poengene for hver (del-) oppgave bør gi en indikasjon på hvor me tid som bør benttes per oppgave. Oppgave 1: Forskjellige emner (40 poeng)

Detaljer

Forelesningsnotater SIF8039/ Grafisk databehandling

Forelesningsnotater SIF8039/ Grafisk databehandling Forelesningsnotater SIF839/ Grafisk databehandling Notater til forelesninger over: Kapittel 4: Geometric Objects and ransformations i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 orbjørn

Detaljer

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl.

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl. Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato:. desember 28 Varighet: 9 - Antall sider inkl. forside 7 OPPGAVE. (2%) a) b)

Detaljer

MA-132 Geometri Torsdag 4. desember 2008 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

MA-132 Geometri Torsdag 4. desember 2008 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator. Institutt for matematiske fag EKSAMEN i MA-1 Geometri Torsdag 4. desember 008 kl. 9.00-14.00 Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator. Bokmål Oppgave 1 Gitt et linjestykke.

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF3100 Løsningsforslag, Øving 11 8mai 201 Tidsfrist: 18mai 201 klokken 1400 Oppgave 1 Obs: I denne oppgaven reperesenterer vi vektorer med 1 n-matriser, altså radvektorer I hele

Detaljer

RF3100 Matematikk og fysikk Leksjon 1

RF3100 Matematikk og fysikk Leksjon 1 RF3100 Matematikk og fysikk Leksjon 1 Lars Sydnes, NITH 30. august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Ved NTNU: Doktorgrad i Matematikk 2012, Siv.ing. Industriell

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

Skipsoffisersutdanningen i Norge. Innholdsfortegnelse. 00TM01G - Emneplan for: Matematikk på operativt nivå

Skipsoffisersutdanningen i Norge. Innholdsfortegnelse. 00TM01G - Emneplan for: Matematikk på operativt nivå Skipsoffisersutdanningen i Norge 00TM01G - Emneplan for: Matematikk på operativt nivå Generelt Utarbeidet av: Maritime fagskoler i Norge Godkjent av: Linda Gran Kalve Versjon: 2.01 Gjelder fra: 27.09.2016

Detaljer

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

RF5100 Lineær algebra Leksjon 2

RF5100 Lineær algebra Leksjon 2 RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013 I. LINEÆRE SYSTEM SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på

Detaljer

Institutt for matematiske fag EKSAMEN i MA-132 Geometri Torsdag 4. desember 2008 kl Oppgave 1

Institutt for matematiske fag EKSAMEN i MA-132 Geometri Torsdag 4. desember 2008 kl Oppgave 1 Institutt for matematiske fag EKSAMEN i MA-132 Geometri Torsdag 4. desember 2008 kl. 9.00-14.00 Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator. Oppgave 1 Bokmål Gitt et linjestykke.

Detaljer

Eksamensoppgave i TMA4110/TMA4115 Calculus 3

Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

Del 1 - Uten hjelpemidler

Del 1 - Uten hjelpemidler Del 1 - Uten hjelpemidler Oppgaveteksten til del 1 ligger i: http://www.ulven.biz/r1/heldag/r1_hd_100516.docx (Oppgaveteksten til del er inkludert i dette dokumentet.) Oppgave 1 f x 3x 1 x 1 x (Husk: x

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet

Detaljer

RF5100 Lineær algebra Leksjon 10

RF5100 Lineær algebra Leksjon 10 RF5100 Lineær algebra Leksjon 10 Lars Sydnes, NITH 11. november 2013 I. LITT OM LYS OG FARGER GRUNNLEGGENDE FORUTSETNINGER Vi ser objekter fordi de reflekterer lys. Lys kan betraktes som bølger / forstyrrelser

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

TMA4115 Matematikk 3 Vår 2017

TMA4115 Matematikk 3 Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4115 Matematikk Vår 2017 Obligatoriske oppgaver Lay, avsnitt 1.6 5. Bor-sulfid reagerer voldsomt med vann for å danne borsyre

Detaljer

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Gitt 3 punkter A 1,1,1,B 2,1,3,C 3,4,5 I Finne ligning for plan gjennom 3 punkt Lager to vektorer i planet: AB 1, 0,2 og AC 2,3, 4 Lager normalvektor

Detaljer

Eksamensoppgave i MA1202/MA6202 Lineær algebra med anvendelser

Eksamensoppgave i MA1202/MA6202 Lineær algebra med anvendelser Institutt for matematiske fag Eksamensoppgave i Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 01. juni 2017 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det?

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det? Likninger av første grad med en ukjent 1. Løs følgende likninger x 3 + 4x a. + = 16 2x 7 2 x 1 x + 3 b. + 2 = 0 x x 2 1 1 1 c. (2x + 3) (3 4x) = (4x 7) 3 2 6 d. 2 x + 3( 2 x) = 3 2. Lag en likning som

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

Eksamen i matematikk. Hvordan har eksamen i R1 høsten 2011 endret all læreplantolkning?

Eksamen i matematikk. Hvordan har eksamen i R1 høsten 2011 endret all læreplantolkning? Eksamen i matematikk Hvordan har eksamen i R1 høsten 2011 endret all læreplantolkning? Samarbeidet udir/forlag Før reform 94: En representant fra hvert matematikkverk var med på å lage eksamensoppgavene

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer

Digital Arbeidsbok i ELE 3719 Matematikk

Digital Arbeidsbok i ELE 3719 Matematikk Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Regning 4 1.1 Tallet e...................................... 4 2 Sannsynlighetsregning

Detaljer

2 = 4 x = x = 3000 x 5 = = 3125 x = = 5

2 = 4 x = x = 3000 x 5 = = 3125 x = = 5 Heldagsprøve i FO99A matematikk Dato: 7. desember 010 Tidspunkt: 09:00 14:00 Antall oppgaver 4 Vedlegg: Formelsamling Tillatte hjelpemidler: Godkjent kalkulator Alle svar skal grunngis. Forsøk å gi svarene

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

Detaljer

Eksamensoppgave i TMA4115 Matematikk 3

Eksamensoppgave i TMA4115 Matematikk 3 Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

FASIT OG TIPS til Rinvold: Visuelle perspektiv. Lineær algebra. Caspar forlag, 1.utgave 2003 og 2.opplag 2004.

FASIT OG TIPS til Rinvold: Visuelle perspektiv. Lineær algebra. Caspar forlag, 1.utgave 2003 og 2.opplag 2004. FAIT OG TIP til Rinvold: Visuelle perspektiv. Lineær algebra. Caspar forlag,.utgave og.opplag. Versjon..9. Det er ikke tatt med svar på alle oppgaver. Denne fasiten vil bli oppdatert etter hvert. Oppdager

Detaljer

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14. Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir

Detaljer

Geometri. Kapittel 3. 3.1 Vektorproduktet

Geometri. Kapittel 3. 3.1 Vektorproduktet Kapittel 3 Geometri I dette kapitlet skal vi benytte den teorien vi utviklet i kapittel 1 og 2 til å studere geometriske problemstillinger. Vi skal se på kurver og flater, og vi skal også studere hvordan

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

1 Geometri R2 Oppgaver

1 Geometri R2 Oppgaver 1 Geometri R2 Oppgaver Innhold 1.1 Vektorer... 2 1.2 Regning med vektorer... 15 1.3 Vektorer på koordinatform... 19 1.4 Vektorprodukt... 22 1.5 Linjer i rommet... 27 1.6 Plan i rommet... 30 1.7 Kuleflater...

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

INF Obligatorisk oppgave 2

INF Obligatorisk oppgave 2 INF3320 - Obligatorisk oppgave 2 Innleveringsfrist: 23. september (Revisjon 4. september 2003) I denne oppgaven skal vi se på transformasjoner og interaktivitet. Vi skal lage et lite program som implementerer

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

Geometri R2, Prøve 2 løsning

Geometri R2, Prøve 2 løsning Geometri R, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt punktene P 1, 1,5 og Q 1,4,0 a) Bestem avstanden mellom punktene Avstanden mellom punktene er lengden av PQ PQ 1 1,4

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig

Detaljer

Innlevering i FORK Matematikk forkurs OsloMet Obligatorisk innlevering 3 Innleveringsfrist Onsdag 14.november 2018 kl. 10:30 Antall oppgaver: 13

Innlevering i FORK Matematikk forkurs OsloMet Obligatorisk innlevering 3 Innleveringsfrist Onsdag 14.november 2018 kl. 10:30 Antall oppgaver: 13 Innlevering i FORK00 - Matematikk forkurs OsloMet Obligatorisk innlevering Innleveringsfrist Onsdag 4.november 08 kl. 0:0 Antall oppgaver: Bestem vinkelen mellom vektorene u = [, 7] og v = [4, 5]. Hva

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til

Detaljer

Lineær algebra. H. Fausk

Lineær algebra. H. Fausk Lineær algebra H. Fausk 04.02.2016 Sjuende utkast Lineære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av lineære likningsystem enkelt, det benytter bare de

Detaljer

MA1202/MA S løsningsskisse

MA1202/MA S løsningsskisse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ

Detaljer

LØSNINGSFORSLAG. Universitetet i Agder Fakultet for Teknologi og realfag. Dato: 03. desember 2009 Varighet: Antall sider inkl.

LØSNINGSFORSLAG. Universitetet i Agder Fakultet for Teknologi og realfag. Dato: 03. desember 2009 Varighet: Antall sider inkl. Universitetet i Agder Fakultet for Teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato: 3. desember 29 Varighet: 9-3 Antall sider inkl. forside 8 Tillatte hjelpemidler:

Detaljer

R2 - Vektorer i rommet

R2 - Vektorer i rommet R2 - Vektorer i rommet - 26.01.17 Del I - Uten hjelpemidler Løsningsskisser - versjon 31.01.17 Oppgave 1 Gitt vektorene u 1, 2, 3 og v 2, 1, 4. a) Regn ut u v b) Regn ut u v c) Regn ut w u t v d) Løs vektorligningen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde.

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde. Test, 1 Geometri Innhold 1.2 Regning med vektorer... 1 1.3 Vektorer på koordinatform... 6 1.4 Vektorproduktet... 11 1.5 Linjer i rommet... 16 1.6 Plan i rommet... 18 1.7 Kuleflater... 22 Grete Larsen 1.2

Detaljer

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon: EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet

Detaljer

Kompetansemål Geometri, R Vektorer Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5

Kompetansemål Geometri, R Vektorer Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5 1 Geometri Innhold Kompetansemål Geometri, R2... 3 1.1 Vektorer... 4 1.2 Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5 Multiplikasjon av vektor med tall... 6 Parallelle vektorer...

Detaljer

Oppgavesett. Kapittel Oppgavesett 1

Oppgavesett. Kapittel Oppgavesett 1 Kapittel 9 Oppgavesett Dette kapitlet består av fire oppgavesett med oppgaver fra alle deler av kompendiet. 9. Oppgavesett Oppgave. Et dynamisk system er gitt ved x n+ = M x n der M er -matrisen.6.. M

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 06. juni 2016 Eksamenstid (fra

Detaljer

Manual for wxmaxima tilpasset R1

Manual for wxmaxima tilpasset R1 Manual for wxmaxima tilpasset R1 Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

RF3100 Matematikk og fysikk Leksjon 6

RF3100 Matematikk og fysikk Leksjon 6 RF3100 Matematikk og fysikk Leksjon 6 Lars Sydnes, NITH 4.oktober 2013 I. FUNKSJONER TILFELDIGE EKSEMPLER x-koordinaten er en funksjon av t når startposisjon x 0 og startfart v x er gitt: x = x 0 + v x

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

Microsoft Mathematics Brukermanual matematikk vgs

Microsoft Mathematics Brukermanual matematikk vgs Microsoft Mathematics Brukermanual matematikk vgs Generelt om Microsoft Mathematics... 2 Nedlasting... 2 Innholdsoversikt... 2 Fremgangsmåte... 3 Tall og algebra... 4 Omgjøring mellom enheter... 4 Likninger...

Detaljer

R1 Eksamen høsten 2009

R1 Eksamen høsten 2009 R1 Eksamen høsten 2009 Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x b) Deriver funksjonen gx x 3 ln2 x 3 2 c) Likningen 2x 10x 2x 10 0 har tre løsninger. Vis at x1 1 er en løsning og finn de to andre.

Detaljer

Tom Lindstrøm og Klara Hveberg. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,

Tom Lindstrøm og Klara Hveberg. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget, Tom Lindstrøm og Klara Hveberg Tilleggskapitler til Kalkulus 3 utgave Universitetsforlaget, Oslo 3 utgave Universitetsforlaget AS 2006 1 utgave 1995 2 utgave 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8

Detaljer

Forelesningsnotat, lørdagsverksted i fysikk

Forelesningsnotat, lørdagsverksted i fysikk Forelesningsnotat, lørdagsverksted i fysikk Kristian Etienne Einarsrud 1 Vektorer, grunnleggende matematikk og bevegelse 1.1 Introduksjon Fysikk er en vitenskap som har som mål å beskrive verden rundt

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer