RF3100 Matematikk og fysikk Leksjon 1
|
|
- Ina Espeland
- 8 år siden
- Visninger:
Transkript
1 RF3100 Matematikk og fysikk Leksjon 1 Lars Sydnes, NITH 30. august 2013
2 I. INFORMASJON
3 FAGLÆRER Kontakt: Lars Sydnes Ved NTNU: Doktorgrad i Matematikk 2012, Siv.ing. Industriell matematikk 2007 Geometri / differensialgometri Rotasjonsbevegelse Anvendelser innenfor fysikk / astronomi. Ved NITH: Førsteamanuensis. Algoritmer og datastrukturer Lineær algebra, fysikk Matematikk forkurs / Matematikk R1
4 HVA ER FAGLÆRER NYSKJERRIG PÅ? Matematikk og algoritmer: Matematikk som beregningskunst. Hvor går grensene for hva som kan behandles matematisk? Geometri: Klassisk geometri og differensialgeometri. Programmering og geometri. Symmetri: En verden uten symmetrier er ubegripelig. Fysikk: Modellering av trelegemeproblemet
5 GRUNNSPØRSMÅL Et dypt(?) spørsmål: Hvilke data/datastrukturer er velegnede instrumenter når vi skal gjenskape/imitere sanseerfaringer? Praktisk spørsmål: Hvordan representere en uhyre komplisert virkelighet med endelige datamengder?
6 NOEN VERKTØY Punkter i rommet: Vi setter opp referanseposisjoner P 0, P 1, P 2,..., P n i rommet. Posisjonene representeres ved koordinatvektorer: P i = (x i, y i, z i ) -> Vinkler, Avstander, Areal, Volum, Sammensatte figurer. Newtons lover Newtons fysikk er stort sett i overenstemmelse med dagliglivets fysikk. Det vi føler på kroppen og kjenner igjen som tilforlatelig. MEN: Sannheten får ikke ødelegge en god historie: Hva passer i dataspill?
7 NOEN VERKTØY Ulike koordinatsystemer Verdenskoordinater Modellkoordinater Kamerakoordinater Ulike koordinatsystemer egner seg for ulike oppgaver. Transformering mellom koordinatsystemer Matriser
8 II. ARBEIDSMETODER
9 PAPIR OG BLYANT TAVLE Hvordan foregår matematisk arbeid? Tavlebruk: Foreleser forteller og forklarer. Forelser utøver matematikk. Derfor: Det er viktig å bruke tavlen! (jfr. live-koding) Papir og blyant: Vi forstår begrepene ved å bruke dem på enkle problemer. Vi forstår algoritmene ved å gjøre dem for hånd. Vi utvikler modeller og algoritmer.
10 Utvikle egne bibliotek Bruke bibiliotekene DATA Viktig målsetning: Hver og en av oss skal skrive et velfungerende bibliotek for lineær algebra. Offisielt rammeverk: Java, la4j 1 la4j er et ferdig lineæralgebrabibliotek som vi vil bruke parallelt med det egenutviklede. 0/ 1 Finnes også her:
11 LÆREBØKER Dunn & Parberry: (D&P) Game Development. 3D Math Primer for Graphics and Uformell og vennlig introduksjon rettet mot spillprogrammerere. Aktuelle seksjoner er: Koordinater: Kapittel 1 Vektorer: Kapittel 2 Matriser: Utdrag av Kapittel 4,5,6 Geometri: Kapittel , Polarkoordinater: Kapittel 7 Fysikk / kinematikk: Kapittel 11 Fysikk / dynamikk: Kapittel 12. Funksjonslære: Kapittel 11 og 12. I tillegg: Eventuelle utfyllende notater. Vi kommer tilbake til læreboken i kurset RF5100.
12 EKSAMEN Forelesninger, Lærebok, Regneoppgaver, Pro- Forberedelse: grammering. Eksamen: Skriftlig. Fokus på det matematiske innholdet. 11.desember. Vi mestrer matematikken gjennom oppgaveregning og programmering.
13 FORELESNINGSPLAN SKISSE September: Vektorer, koordinatsystemer, trigonometriske funksjoner. Oktober: Fysikk November: Matriser, Oppsummering Se Planlegger i it s learning samt ~sydlar/rf3100/forelesninger/forelesningsplan_ arbeidsdokument.ods
14 III. DAGENS FORELESNING
15 I DAG Kort og godt: Hele kapittel 1. Kartesiske koordinatsystemer Ulike koordinatkonvensjoner Litt om notasjon Trigonometri
16 OPPGAVER Regning Koordinater : 1.5.1, Ulike konvensjoner : 1.5.4, Notasjon : Trigonometri : 1.5.8,1.5.9 Lab Løs og ved å programmere i java. Hvordan løser java.lang.math dette? Se her. Baserer Math.sin, Math.cos, Math.tan seg på vinkelmåling i radianer eller grader? Hva gjør metoden java.lang.math.atan2? Skriv en java-metode double degatan2(double x, double y) (En metode som altså måler vinkler i grader.)
RF3100 Matematikk og fysikk Leksjon 1
RF3100 Matematikk og fysikk Leksjon 1 Lars Sydnes, NITH 30. august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Ved NTNU: Doktorgrad i Matematikk 2012, Siv.ing. Industriell
DetaljerRF5100 Lineær algebra Leksjon 1
RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell
DetaljerRF5100 Lineær algebra Leksjon 1
RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell
DetaljerRF5100 Lineær algebra Leksjon 12
RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z
DetaljerSkipsoffisersutdanningen i Norge. Innholdsfortegnelse. 00TM02G - Emneplan for: Matematikk på operativt nivå
Skipsoffisersutdanningen i Norge 00TM02G - Emneplan for: Matematikk på operativt nivå Generelt Utarbeidet av: Maritime fagskoler i Norge Godkjent av: Anne Sjøvold Versjon: 1.02 Gjelder fra: 11.08.2016
DetaljerMAT4010 Matematikk, skole og kultur
MAT4010 Matematikk, skole og kultur Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/ Velkommen
DetaljerÅRSPLAN I MATEMATIKK FOR 4. TRINN 2018/2019 Læreverk: Multi Lærer: Anita Nordland og Astrid Løland Fløgstad UKE MÅL (K06) TEMA ARBEIDSFORM VURDERING
ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2018/2019 Læreverk: Multi Lærer: Anita Nordland og Astrid Løland Fløgstad UKE MÅL (K06) TEMA ARBEIDSFORM VURDERING 34 lese av, plassere og beskrive posisjoner i rutenett,
DetaljerData og statistikk 35
ÅRSPLAN I MATMATIKK FOR 3. TRINN HØSTN 2017 Læreverk: Multi Faglærer: Astrid Løland Fløgstad og Inger-Alice Breistein MÅL/LÆR (LK) TMA ARBIDSFORM/MTOD VURDRING 34 Data og statistikk 35 36 37 38 39 40 samle,
DetaljerÅRSPLAN I MATEMATIKK FOR 3. TRINN HØSTEN 2013 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING Data og statistikk
34 35 36 37 38 39 40 42 43 44 45 46 ÅRSPLAN I MATEMATIKK FOR 3. TRINN HØSTEN 2013 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING Data og statistikk samle, sortere,
DetaljerMatematikk påbygging
Høgskolen i Østfold Matematikk påbygging Omfang: 1 år 60 studiepoeng Påbyggingsstudium Godkjent Av Dato: 14.08.04 Endret av Dato: Innholdsfortegnelse INNHOLDSFORTEGNELSE... 2 MÅLGRUPPE OG OPPTAKSKRAV...
DetaljerÅrsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser
Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag
DetaljerØnsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring
Overordnet plan for fagene. Fag: Matematikk Trinn: 8. trinn Skole: Lindesnes ungdomsskole År: 2015/2016 Lærestoff: Nye Mega 8 a og 8b Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære
DetaljerÅRSPLAN I MATEMATIKK FOR 7. TRINN, SKOLEÅRET
ÅRSPLAN I MATEMATIKK FOR 7. TRINN, SKOLEÅRET 2016-2017 Faglærer: Cato Olastuen Fagbøker/lærestoff: Grunntall 7a og 7b Uker 34 35 36 37 Læreplanmål (kunnskapsløftet) Delmål Tema/emne Tall og algebra Beskrive
DetaljerRF5100 Lineær algebra Leksjon 2
RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013 I. LINEÆRE SYSTEM SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på
DetaljerMAT4010 Matematikk, skole og kultur
MAT4010 Matematikk, skole og kultur Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/ Velkommen
DetaljerSkipsoffisersutdanningen i Norge. Innholdsfortegnelse. 00TM01O - Emneplan for: Matematikk på ledelsesnivå
Skipsoffisersutdanningen i Norge 00TM01O - Emneplan for: Matematikk på ledelsesnivå Generelt Utarbeidet av: Maritime fagskoler i Norge Godkjent av: Anne Sjøvold Versjon: 4.01 Gjelder fra: 06.10.2016 Sidenr:
DetaljerMAT4010 Matematikk, skole og kultur
MAT4010 Matematikk, skole og kultur Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/ Velkommen
DetaljerEKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014
EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner
DetaljerSkipsoffisersutdanningen i Norge. Innholdsfortegnelse. 00TM01G - Emneplan for: Matematikk på operativt nivå
Skipsoffisersutdanningen i Norge 00TM01G - Emneplan for: Matematikk på operativt nivå Generelt Utarbeidet av: Maritime fagskoler i Norge Godkjent av: Linda Gran Kalve Versjon: 2.01 Gjelder fra: 27.09.2016
DetaljerÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN
34 35 36 37 38 39 40 42 43 44 45 ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN 2014 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive posisjoner
DetaljerVELKOMMEN TIL MAT-INF 1100
VELKOMMEN TIL MAT-INF 1100 1 Foreleser Knut Mørken, Institutt for informatikk Kontor nr. 155 i Forskningsparken I (flytter snart til 10. etg. i Abels hus) Email: knutm@ifi.uio.no Arbeider med numerisk
DetaljerHva er drivkrefter ved utvikling av dataspill: innhold eller teknologi? Om spillutdanning i nord
Hva er drivkrefter ved utvikling av dataspill: innhold eller teknologi? Om spillutdanning i nord Trender Serious gaming spill for trening og utvikling Gamifisering -- utdanning på nett (MOOC) Minigames
DetaljerEKSAMEN RF5100, Lineær algebra
Side av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF500, Lineær algebra Tillatte hjelpemidler: Godkjent kalkulator og utdelt formelark Varighet: 3 timer Dato: 4. oktober 04 Emneansvarlig: Lars Sydnes
DetaljerModul nr Funksjoner med GeoGebra
Modul nr. 1724 Funksjoner med Tilknyttet rom: Newton energi- og havbruksrom Midt-Troms 1724 Newton håndbok - Funksjoner med Side 2 Kort om denne modulen Denne modulen handler om matematiske funksjoner
DetaljerModul nr. 1203 Gjør Matte! 1-4 trinn.
Modul nr. 1203 Gjør Matte! 1-4 trinn. Tilknyttet rom: Newton Alta 1203 Newton håndbok - Gjør Matte! 1-4 trinn. Side 2 Kort om denne modulen Formålet med denne modulen er å skape interesse og plante en
DetaljerÅRSPLAN I MATEMATIKK 17/18
Tall KOMPETANSEMÅL PERIODE ARBEIDSMETODE DIGITALT VERKTØY Forstå plassverdisystemet for hele tall og, alt fra tusendeler til millioner og så med brøker og prosent. De skal også forstå utvidelsen til negative
DetaljerSALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd.
SALG > KOSTNAD y = 20x Salg y = 0 000 Kostnad 20x > 0 000 SALG > KOSTNAD mer enn 00 produkt selges. Virksomheten går da med overskudd. Slik kan ulikheter løses grafisk En ulikhet består av en venstre side,
DetaljerVELKOMMEN TIL MAT-INF1100
VELKOMMEN TIL MAT-INF1100 Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus Foreleser Knut Mørken, Institutt for informatikk, CMA Rom nr. 1033 i Niels Henrik Abels hus E-post: knutm@ifi.uio.no
DetaljerMatematikk 5., 6. og 7. klasse.
Matematikk 5., 6. og 7. klasse. Kompetansemål 5. 6. 7. Tall og algebra (regnemåter) Beskrive og bruke plassverdisystemet for, regne med positive og negative hele tall,, brøker og prosent, og plassere de
DetaljerVelkommen til MAT1030!
MAT1030 Diskret Matematikk Forelesning 1: Algoritmer, pseudokoder, kontrollstrukturer Roger Antonsen Institutt for informatikk, Universitetet i Oslo Velkommen til MAT1030! 13. januar 2009 (Sist oppdatert:
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 1: Algoritmer, pseudokoder, kontrollstrukturer Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. januar 2009 (Sist oppdatert: 2009-01-14 16:44) Velkommen
DetaljerGrunnleggende ferdigheter i faget (fra Kunnskapsløftet)
Årsplan for Matematikk 2013/2014 Klasse 10A, 10B og 10C Lærere: Lars Hauge, Rayner Nygård og Hans Dillekås Læreverk: Nye Mega 10A og 10B Grunnleggende ferdigheter i (fra Kunnskapsløftet) Å uttrykke seg
DetaljerEKSAMEN. Informasjon om eksamen. Emnekode og -navn: ITD37018 Anvendt Robotteknikk. Dato og tid: , 3 timer. Faglærer: Haris Jasarevic
Informasjon om eksamen EKSAMEN Emnekode og -navn: ITD37018 Anvendt Robotteknikk Dato og tid: 10.12.18, 3 timer Faglærer: Haris Jasarevic Hjelpemidler: Ingen hjelpemidler tillatt Om oppgaven: Alle oppgavene
DetaljerKnekk koden (programmering med Blue-Bot)
Lærerveiledning: Passer for: Varighet: Knekk koden (programmering med Blue-Bot) 4. trinn 90 minutter Knekk koden er et skoleprogram der elevene får lære algoritmisk tankegang gjennom enkel programmering.
DetaljerFagorientering 30. jan 2013 REALFAG
Fagorientering 30. jan 2013 REALFAG Biologi Biologi 1 Biologi 2 Den unge biologen Cellebiologi Fysiologien til mennesket Funksjon og tilpasning Biologisk mangfold Den unge biologen Økologi Energiomsetning
DetaljerTDT4195 Bildeteknikk
TDT495 Bildeteknikk Grafikk Vår 29 Forelesning 5 Jo Skjermo Jo.skjermo@idi.ntnu.no Department of Computer And Information Science Jo Skjermo, TDT423 Visualisering 2 TDT495 Forrige gang Attributter til
Detaljer- individuelt arbeid - tavleundervisning - ulike aktiviteter - undersøkelser - regnefortellinger - lesing av diagrammer
RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 3. trinn 2014/15 TID TEMA KOMPETANSEMÅL Eleven skal kunne: Uke 34-35 36-39 Flersifrede tall - addisjon og subtraksjon med tresifrede tall - ulike
DetaljerFagevaluering FYS Kvantemekanikk
Fagevaluering FYS3110 - Kvantemekanikk høst 07 Foreleser: Carsten A. Lütken Fysisk Fagutvalg 31. januar 2008 Generell informasjon Spørreundersøkelsen foretatt under en forelesning i faget høsten 2007.
DetaljerVELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus
VELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus Foreleser Knut Mørken, Matematisk institutt Rom nr. 1033 i Niels Henrik Abels hus E-post: knutm@ifi.uio.no Arbeider
DetaljerRENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 5., 6. og 7. trinn 2018/19
RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 5., 6. og 7. trinn 2018/19 Lekser: Elevene får hver uke et lekseark som skal gjøres i lekseboka. Dette leksearket er trening på de fire regneartene,
DetaljerTDT4105 Informasjonsteknologi, grunnkurs
1 TDT4105 Informasjonsteknologi, grunnkurs For BMAT, MTEL, MTENERG, MTING, MTIØT, MTMART og MTPROD Førsteamanuensis Roger Midtstraum Kontor: 206 i IT-bygget (Gløshaugen) Epost: roger@idi.ntnu.no Tlf: 735
DetaljerModul nr MatchGraph/ Gå grafen
Modul nr. 1856 MatchGraph/ Gå grafen Tilknyttet rom: Newton ENGIA - Statoil energirom - Ofoten 1856 Newton håndbok - MatchGraph/ Gå grafen Side 2 Kort om denne modulen Praktisk informasjon Denne modulen
DetaljerÅrsplan i 7. klasse matematikk 2016-2106
Årsplan i 7. klasse matematikk 2016-2106 Antall timer pr : 4 Lærere: Marianne Fjose Læreverk: Multi 7a og 7b, Gyldendal undervisning Nettstedene: gyldendal.no/multi Moava.org Grunnleggende ferdigheter:
DetaljerRF5100 Lineær algebra Leksjon 9
RF5100 Lineær algebra Leksjon 9 Lars Sydnes, NITH 11. november 2013 I. DATASKJERMEN DATASKJERMEN (0, 0) x (wp os x, wp os y ) y winres x (wcenter x, wcenter y ) winres x (devres x, devres y ) Merk: Det
DetaljerModul nr. 1094 Gjør Matte! 1-4 trinn.
Modul nr. 1094 Gjør Matte! 1-4 trinn. Tilknyttet rom: Ikke tilknyttet til et rom 1094 Newton håndbok - Gjør Matte! 1-4 trinn. Side 2 Kort om denne modulen Formålet med denne modulen er å skape interesse
DetaljerArbeidsplan for samlingene
Arbeidsplan for samlingene Forslag til forarbeide Tema Arbeidsoppgaver Prøveveiledning 1P og 2P Lese gjennom, skrive ned spørsmål til veiledningen. Eksempeloppgave 2016 Kartlegging, regn gjennom og marker
DetaljerMATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:
MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte
DetaljerEmneplaner for fysikk og matematikk 3-treterminordingen (TRE)
Emneplaner for fysikk og matematikk 3-treterminordingen (TRE) Heltid - ikke studiepoenggivende utdanning Godkjent av Avdelingsstyret ved ingeniørutdanningen 14. mars 2011 Fakultet for teknologi, kunst
DetaljerVELKOMMEN TIL MAT-INF 1100
VELKOMMEN TIL MAT-INF 1100 1 Forelesere Geir Pedersen, Matematisk institutt, avd. for mekanikk Rom nr. 918 i Niels Henrik Abels hus E-post: geirkp@math.uio.no Arbeider med havbølger og numerisk analyse
DetaljerØving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
DetaljerRF5100 Lineær algebra Løsningsforslag til prøveeksamen
RF5 Lineær algebra Løsningsforslag til prøveeksamen NITH 6. desember Oppgave (a) Jeg skal løse et system av tre ligninger med tre ukjente. Dette gjør jeg ved å utføre radoperasjoner på matrisen tilhørende
DetaljerKjerneelementer i matematikk
Tom Lindstrøm Leder for kjerneelementgruppen i matematikk Bodø, 28. september 2017 Bakgrunn Det går mot nye læreplaner, men før arbeidet settes i gang, skal det defineres kjerneelementer i hvert enkelt
DetaljerKjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall
MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.
DetaljerArbeidsplan for samlingene
Arbeidsplan for samlingene Forslag til forarbeide Tema Arbeidsoppgaver Prøveveiledning 1P og 2P Lese gjennom, skrive ned spørsmål til veiledningen. Eksempeloppgave 2016 Kartlegging, regn gjennom og marker
DetaljerAnvendt Robotteknikk Konte Sommer 2019 EKSAMEN HARIS JASAREVIC
2019 Anvendt Robotteknikk Konte Sommer 2019 EKSAMEN HARIS JASAREVIC Innhold Oppgaver... 2 Oppgave 1... 2 Oppgave 2... 2 Oppgave 3... 2 Oppgave 4... 2 Oppgave 5... 3 Oppgave 6... 4 Oppgave 7... 5 Oppgave
DetaljerÅRSPLAN. Grunnleggende ferdigheter
ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for
DetaljerPROGRAMFAG I PROGRAMOMRÅDE FOR REALFAG
PROGRAMOMRÅDET REALFAG Fag Vg1 Vg2 Vg3 BIOLOGI 0 Biologi 1 Biologi 2 FYSIKK 0 Fysikk 1 +Fysikk 2 GEOFAG* 0 Geofag 1 Geofag 2 INFORMASJONS- 0 Informasjonsteknologi 1 Informasjonsteknologi 2 TEKNOLOGI KJEMI
DetaljerSluttrapport i emne TFY4115 ved Institutt for fysikk. Høst 2014
Sluttrapport i emne TFY4115 ved Institutt for fysikk. Høst 2014 Skal fylles ut av emneansvarlig i samtlige emner som gis ved instituttet. Utfylt skjema leveres per e-post til snorre.hansen@ntnu.no senest
DetaljerØnsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring
Overordnet plan for fagene. Fag: Matematikk Trinn: 10 Skole: Lindesnes ungdomsskole År: 2015-16 Lærestoff: Mega 10 A og 10B Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære og hva
DetaljerÅRSPLAN I MATEMATIKK TRINN
ÅRSPLAN I MATEMATIKK 2017-2018 7. TRINN Mål: Planen skal ta utgangspunkt i kompetansemålene i matematikk ståsted til elevene. Tilpasning i forhold til mengde vanskegrad har alle krav på! Hovedtema Tall
DetaljerINF109 (kun et utvalg av kommentarene er med i denne rapporten)
INF109 (kun et utvalg av kommentarene er med i denne rapporten) Respondenter Prosent Ny 0 0,0% Distribuert 18 47,4% Noen svar 0 0,0% Gjennomført 19 50,0% Frafalt 1 2,6% I alt 38 100,0% Er det første gang
DetaljerPROGRAMFAG I PROGRAMOMRÅDE FOR REALFAG
PROGRAMOMRÅDET REALFAG Fagtilbud skoleåret 2018-2019 Fag Vg1 Vg2 Vg3 BIOLOGI 0 Biologi 1 Biologi 2 FYSIKK 0 Fysikk 1 +Fysikk 2 INFORMASJONS- 0 Informasjonsteknologi 1 Informasjonsteknologi 2 TEKNOLOGI
Detaljer(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer
5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave
DetaljerModul nr. 1649 Funksjoner med GeoGebra
Modul nr. 1649 Funksjoner med Tilknyttet rom: Newton ENGIA - Statoil energirom - Ofoten 1649 Newton håndbok - Funksjoner med Side 2 Kort om denne modulen Denne modulen handler om matematiske funksjoner
DetaljerInnhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21
Innhold Velkommen til studiet... 13 Oppbygning... 15 Sammenheng og helhet... 16 Pedagogisk struktur... 17 Lykke til med et spennende kurs... 19 DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21 Kapittel 1 Tall...
DetaljerVELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus
VELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus Forelesere Knut Mørken og Martin Reimers, Matematisk institutt, 10. etg i Niels Henrik Abels hus Arbeider med
DetaljerÅrsplan i matematikk 6.trinn 2017/2018
Årsplan i matematikk 6.trinn 2017/2018 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 34 /36 Statistikk Planleggje og samle inn data i samband med observasjonar,
DetaljerÅrsplan i matematikk 6.trinn 2015/2016
Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet
DetaljerSTUDIEPLAN. <Forkurs i realfag> <0> studiepoeng. <Narvik, Alta, Bodø*, Mo i Rana*>
STUDIEPLAN studiepoeng Bygger på av og av
DetaljerKONTINUASJONSEKSAMENER - "KONT" - SOMMEREN 2015
KONTINUASJONSEKSAMENER - "KONT" - SOMMEREN 2015 Kontinuasjonseksamen er en 100% erstatning for ordinær eksamen i emnet for kandidater som enten har strykresultat (F) eller er registrert med sykefravær
DetaljerUnneberg skole ÅRSPLAN I MATEMATIKK. 3. trinn Rød skrift marker det som er fra utviklende matte.
Unneberg skole ÅRSPLAN I MATEMATIKK. trinn 2016-2017 Rød skrift marker det som er fra utviklende matte. KOMPETANSEMÅL FRA LÆREPLANEN Eleven skal kunne LOKALE KJENNETEGN FOR MÅLOPPNÅELSE Eleven skal kunne
Detaljertimene og hjemme 36 både med og uten digitale verktøy fortløpende Kapittelprøve Arbeidsinnsats i 38 de hele tallene, bruke positive og mindre enn 0
ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2017/2018 Læreverk: Multi Lærer: Kaia Bøen Jæger og Carl Petter Tresselt UKE MÅL (K06) TEMA ARBEIDSFORM VURDERING 34 lese av, plassere og beskrive posisjoner i Koordinatsystemet
DetaljerFagevaluering AST1100 Høst 2004
Fagevaluering AST1100 Høst 2004 Fysisk Fagutvalg 29. november 2004 Generell informasjon 22. november 2004 gjennomførte Fysisk Fagutvalg en spørreundersøkelse blandt studentene på AST1100 i forbindelse
DetaljerOppfriskningskurs i matematikk Dag 1
Oppfriskningskurs i matematikk Dag 1 Petter Nyland Institutt for matematiske fag Mandag 6. august 2018 Om meg Bachelor- og mastergrad i matematiske fag (2014, 2016) Doktorgradsstipendiat i matematikk (2016
DetaljerVELKOMMEN TIL MAT-INF1100 og MAT-INF1105. Knut Mørken Rom Ø368, Fysikkbygget
VELKOMMEN TIL MAT-INF1100 og MAT-INF1105 Knut Mørken knutm@ifi.uio.no Rom Ø368, Fysikkbygget Lærere Knut Mørken og Martin Reimers, Matematisk institutt Arbeider med beregningsorientert matematikk. En anvendelse
DetaljerLæreplan i Programmering og modellering - programfag i studiespesialiserende utdanningsprogram
2.12.2016 Læreplan i - programfag i studiespesialiserende utdanningsprogram Formål Programmering er et emne som stadig blir viktigere i vår moderne tid. Det er en stor fordel å kunne forstå og bruke programmering
DetaljerResultater av WebEvaluering
Resultater av WebEvaluering Navn på evalueringen: FY1001 Mekanisk fysikk (BFY), studentevaluering for studenter ved Bachelorstudiet i fysikk. Om evalueringen: Denne evalueringen besvares av studenter som
DetaljerMekanikk FYS MEK 1110
Mekanikk FYS MEK 1110 Andreas Görgen Fysisk Institutt, UiO 13.01.2014 FYS-MEK 1110 13.01.2014 1 oversikt generelle opplysninger om kurset analytiske og numeriske metoder læringsmål lærebok forelesninger
DetaljerÅrsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere:
Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Cordula Norheim, Åsmund Gundersen, Renate Dahl Akersveien 4, 0177 OSLO, Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter
DetaljerNorges Informasjonstekonlogiske Høgskole
Oppgavesettet består av 9 (ni) sider. Norges Informasjonstekonlogiske Høgskole RF5100 Lineær algebra Side 1 av 9 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember
DetaljerOmlegging av brukerkurs i matematikk og statistikk ved MN-fakultetet RAPPORT FRA ARBEIDSGRUPPEN FOR GRUNNUNDERVISNING I MATEMATIKK OG STATISTIKK
Omlegging av brukerkurs i matematikk og statistikk ved MN-fakultetet RAPPORT FRA ARBEIDSGRUPPEN FOR GRUNNUNDERVISNING I MATEMATIKK OG STATISTIKK INNHOLD KORT OPPSUMMERT... 2 Mandat... 2 Arbeidsprosessen...
DetaljerBeregninger i ingeniørutdanningen
Beregninger i ingeniørutdanningen John Haugan, Høyskolen i Oslo og Akershus Knut Mørken, Universitetet i Oslo Dette notatet oppsummerer Knuts innlegg om hva vi mener med beregninger og Johns innlegg om
DetaljerAnvendt Robotteknikk Konte Sommer FASIT EKSAMEN HARIS JASAREVIC
2019 Anvendt Robotteknikk Konte Sommer 2019 - FASIT EKSAMEN HARIS JASAREVIC Innhold Oppgaver... 2 Oppgave 1... 2 Oppgave 2... 3 Oppgave 3... 3 Oppgave 4... 3 Oppgave 5... 3 Oppgave 6... 4 Oppgave 7...
DetaljerÅrsplan i matematikk 4. klasse
Overordnet plan for fagene Fag: Matematikk Trinn: 4. trinn Skole: Årnes Lærer: Svein Bernhard Aas År: 2019/2020 Lærestoff: Multi grunnbok 4a og 4b, Multi oppgavebok 4 og Multi Smart Øving Grunnleggende
DetaljerMekanikk FYS MEK 1110
Mekanikk FYS MEK 1110 Andreas Görgen Fysisk Institutt, UiO 15.01.2013 FYS-MEK 1110 15.01.2013 1 oversikt generelle opplysninger om kurset analytiske og numeriske metoder læringsmål lærebok forelesninger
DetaljerPå reise Nivå: Formål: Program: Henvisning til plan: 8. klasse Matematikk i dagliglivet: Tall og algebra: Grafer og funksjoner:
På reise Nivå: 8. og 9. klasse Formål: Arbeide med lineære funksjoner og verktøyprogram Program: Regneark, kurvetegningsprogram Henvisning til plan: 8. klasse Matematikk i dagliglivet: registrere og formulere
DetaljerVELKOMMEN TIL MAT-INF1100
VELKOMMEN TIL MAT-INF1100 Foreleser Knut Mørken, Institutt for informatikk, CMA Rom nr. 1033 i Niels Henrik Abels hus E-post: knutm@ifi.uio.no Arbeider med numerisk analyse og representasjon av geometri.
DetaljerLOKALT GITT EKSAMEN MUNTLIG EKSAMEN
LOKALT GITT EKSAMEN MUNTLIG EKSAMEN Fagnavn: Matematikk MAT1105 Eksamensdato: Onsdag 15. juni 2017 Faglærer: Geir Granberg Informasjon om muntlig eksamen i matematikk (MAT1105) Forberedelsestid Tillatte
DetaljerFagevaluering FYS-MENA3110- Kvantenanofysikk
Fagevaluering FYS-MENA3110- Kvantenanofysikk høst 07 Forelesere: Geir Helgesen, Ole Martin Løvvik Fysisk Fagutvalg 30. oktober 2007 Besvarelsen er anonym, men vi gjør oppmerksom på at foreleser har tilgang
DetaljerRENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 3.og 4.trinn 2017/18
RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 3.og 4.trinn 2017/18 Klassen har to timer i uka med stasjonsjobbing der matematikk er fokus. Dette er timer da 1.-4.kl er sammen. De andre matematikktimene
DetaljerMaster i realfag med teknologi - integrert lærerutdanningsprogram (IMN)
Studieprogram M-RETEKLU5, BOKMÅL, 2007 HØST, versjon 08.aug.2013 11:10:53 Master i realfag med teknologi - integrert lærerutdanningsprogram (IMN) Vekting: 300 studiepoeng Fører til grad: Master i realfag
DetaljerVelkommen til IT1101 Informatikk basisfag. Faglærer og forelesninger. Lærebok. Øvinger. IT1101 Fagstab. Fagets hjemmeside
Velkommen til IT1101 Informatikk basisfag I dag: Praktisk info Lærebok, øvinger, oppmeldingskrav, vurderingsform i emnet, hva skjer fremover Introduksjon til informatikk Informasjon Teknologi Algoritmer
DetaljerÅrsplan Matematikk Årstrinn: 7. årstrinn Lærere:
Årsplan Matematikk 2016 2017 Årstrinn: 7. årstrinn Lærere: Måns Bodemar, Jan Abild, Birgitte Kvebæk Akersveien 4, 0177 OSLO, Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter
DetaljerDELTA Matematikk på nett fra NTNU
Program for lærerutdanning Norgesuniversitetets prosjektseminar Tromsø, 17. og 18. april 2007 1 Om DELTA 2 Nettbasert matematikk noen erfaringer Læringsmiljø Kommunikasjon Multimedia 3 Oppsummering Om
DetaljerSTUDIEPLAN. 0 studiepoeng. Narvik, Alta, Bodø Studieår
STUDIEPLAN REALFAGSKURS (deltidsstudium på 1 år) FOR 3-ÅRIG INGENIØRUTDANNING OG INTEGRERT MASTERSTUDIUM I TEKNOLOGISKE FAG ETTER NASJONAL PLAN fastsatt av Universitets- og høgskolerådet 0 studiepoeng
Detaljer<kode> Grunnleggende matematikk for ingeniører Side 1 av 5
Grunnleggende matematikk for ingeniører Side 1 av 5 Emnebeskrivelse 1 Emnenavn og kode Grunnleggende matematikk for ingeniører 2 Studiepoeng 10 studiepoeng 3 Innledning Dette er det ene av
DetaljerRENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 3.og 4.trinn. Grunnleggende ferdigheter i faget:
RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 3.og 4.trinn Grunnleggende ferdigheter i faget: Muntlige ferdigheter: å skape meining gjennom å lytte, tale og samtale om matematikk.( )-være med
DetaljerÅRSPLAN I MATEMATIKK FOR SINSEN SKOLE 7.trinn Sist revidert: august 2016 av Hilde Sollie
ÅRSPLAN I MATEMATIKK FOR SINSEN SKOLE 7.trinn Sist revidert: august 2016 av Hilde Sollie Læreverk: 7A+7B Grunnbok og oppgavebok Grunntall 8 Nettressurser: Dreambox Learning Abakus Matematikkmandag! Ukentlig
DetaljerMatematikk 7. trinn 2014/2015
Matematikk 7. trinn 2014/2015 Tid Emne Kompetansemål Delmål Arbeidsmåte Vurdering 34- Tall 39 - beskrive for desimaltall, rekne med positive og negative heile tal, desimaltall, brøker og prosent, og plassere
DetaljerEksempeloppgave 2014. Fotball. René Descartes. MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 2. Ny eksamensordning
Eksempeloppgave 2014 MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 2 Fotball Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) René Descartes II Minstekrav
Detaljer