Vedlegg V0.10. MILJØTILTAK VED VRAKET AV U-864 Metode for usikkerhetsanalyse DNV GL AS

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Vedlegg V0.10. MILJØTILTAK VED VRAKET AV U-864 Metode for usikkerhetsanalyse DNV GL AS"

Transkript

1 Vedlegg V0.10 MILJØTILTAK VED VRAKET AV U-864 Metode for usikkerhetsanalyse DNV GL AS

2 Project name: Miljøtiltak ved vraket av U-864 DNV GL AS [Business Area] Report title: Project Management & Technical Customer: DNV GL AS, Services Program Contact person: Date of issue: P.O.Box Høvik Project No.: PP Norway Organisation unit: Project Management & Technical Services Program Tel: Report No.:, Rev. Document No.: 18BRK3T-12 Utført av: Nicolaj Tidemand (DNV GL AS) Sophie Davidsson (DNV GL AS) Revidert av: Carl Erik Høy-Petersen (DNV GL AS) Dato: Gjengivelse av deler av dette vedleggsdokument som kan føre til mistolkning er ikke tillatt

3 Table of contents 1 INNLEDNING GENERELT OM KVANTITATIV USIKKERHETSANALYSE OPPBYGGING AV ANALYSEMODELLEN METODE FOR USIKKERHETSANALYSE Basisestimat: Estimatusikkerhet og korrelasjon Faktorberegning Behandling av hendelser 3 5 BEGREPSFORKLARING Grunnleggende statistikk 5 DNV GL Side i

4 1 INNLEDNING I dette vedlegget er metodikken som ligger til grunn for usikkerhetsanalysen av kostnader og varighet for prosjektets forskjellige faser. 2 GENERELT OM KVANTITATIV USIKKERHETSANALYSE Deterministisk analyse innebærer å bruke det mest sannsynlige verdi-estimat av hver variabel i en modell for å regne seg frem til et totalestimat. Sensitiviteten i summen kan bestemmes ved å anslå scenarioer for beste og verste utfall for alle postene. Da tas det ikke hensyn til at det er større sannsynlighet for at den mest sannsynlige verdien inntreffer enn maksimums- og minimumsverdien. Ved å tilegne en fordelingsfunksjon til kostnadspostene og beregne dette stokastisk eller ved simulering tar man hensyn til dette. Begge tilfeller vil gi en gitt fordeling for totalsummen, samt tilhørende forventningsverdi og varians. Av de mest kjente metoder og teknikker kan nevnes momentmetoden, eksakte algebraiske løsninger og Monte Carlo-simulering. Monte Carlo-simulering er den metoden som er mest utbredt på verdensbasis og er valgt til denne analysen. 3 OPPBYGGING AV ANALYSEMODELLEN Usikkerhetsanalysen følger standard metode som benyttes i kravene til kvalitetssikring av offentlige investeringsprosjekter utarbeidet av Finansdepartementet. Dette er en anerkjent metode for beregning av usikkerhet i store, komplekse prosjekter. Kystverket har utarbeidet én kostnadsmodell som dekker begge alternativer, Alternativ 1 «Tildekking» og Alternativ 3 «Heving av last», for prosjekt U-864. Modellen bygger på en grunnkalkyle med estimatusikkerhet. I modellen beregnes de forventede kostnadene for hver definerte kostnad. Kostnaden kan bestå av en enkeltverdi, eller som et produkt av varighet, mengde og/eller enhetspris. Alle disse verdiene har angitt en usikkerhet basert på et trippelestimat. Videre kan kostnadene endres på grunn av systematisk usikkerhet, som vil påvirke en eller flere kostnadsposter i form av overgripende usikkerhetsfaktorer. Det er også avdekket noen hendelser som kan inntreffe med en viss prosent sannsynlighet, og har en kostnad dersom de inntreffer. Disse forholdene er beskrevet nærmere i kapittel 4. For analyse av forventet varighet ligger samme metodikk til grunn som nevnt i avsnittet over. Analysen er beregnet ved hjelp av Monte Carlo-simulering med (Palisade) i et MS Excel-basert verktøy utviklet av DNV GL AS for dette oppdraget. Figur 1 på neste side viser en forenklet fremstilling av modellen. DNV GL Side 1

5 Figur 1 - Fremstilling av beregningsmodellen for begge alternativer DNV GL Side 2

6 4 METODE FOR USIKKERHETSANALYSE 4.1 Basisestimat: Estimatusikkerhet og korrelasjon Alle kostnads- og inntektselementer er beskrevet med et trippelestimat p10, mode og p90. For simuleringen er en Pertfordeling (se figuren under) valgt for å kunne benytte disse inngangsverdiene. Figur 2: Pertfordeling med trippelestimat. Budsjettmodellen er detaljert, og inngangsverdiene til beregning av flere budsjettposter antas å ha en avhengighet i variasjonen (samvariasjon). Inngangsverdier som samvarierer (for eksempel tiden det tar å montere ankere i trykkskroget på akterseksjon og forseksjon) er korrelert med en Pearsons korrelasjonsfaktor mellom -1 og Faktorberegning Beregning av en usikkerhetsfaktors påvirkning skjer ved multiplisering av de to fordelingene for kostnadsposten og for usikkerhetsfaktoren. For å isolere faktorens bidrag benyttes kun den prosentvise endringen. Det medfører at dersom faktoren F er oppgitt som en variasjon rundt 0 (for eksempel med trippelanslaget -0,1 0,0 0,15) vil regnestykket for posten se slik ut: Bidrag fra F på posten B1 = Forventningsverdi for B1 * F. Bidraget fra usikkerhetsfaktorene summeres med totalen på samme måte som totaler fra andre kostnads- og inntektsposter. 4.3 Behandling av hendelser Hendelser er definert som binære fordelinger der hendelsen vil inntreffe med en gitt sannsynlighet. Dersom den inntreffer, er fordelingen til kostnadseffekten beskrevet med et trippelestimat. Kostnadskonsekvensen kan for eksempel beskrives med en Pertfordeling som vist i fremstillingen i figuren under. DNV GL Side 3

7 Figur 3: Binær hendelse, beskrevet med en sannsynlighet P for at den inntreffer og en fordeling for kostnadskonsekvensen dersom dette skjer. Det er P % sannsynlig at kostnaden ligger innenfor Pertfordelingen, og (1-P)% sannsynlig at den ikke inntreffer i det hele tatt og kostnaden blir 0. Bidraget fra hendelsene summeres med totalen på samme måte som totaler fra andre kostnads- og inntektsposter. DNV GL Side 4

8 5 BEGREPSFORKLARING Dette kapittelet lister opp en rekke ord og uttrykk som er benyttet i rapporten for å forklare disse grundigere. Listen er ikke uttømmende. 5.1 Grunnleggende statistikk En variabel som har en spesifikk verdi kalles deterministisk. Til forskjell kan en tilfeldig stokastisk variabel anta et spekter av verdier. Fordelingen av mulige utfall for en stokastisk variabel beskrives av en sannsynlighetsfordeling. De mest brukte statistiske begrepene i denne rapporten er beskrevet i tabellen under. Tabell 1: Statistiske begreper som brukes i rapporten. Tabellen er hentet fra rapporten DEMO 2000, Det Norske Veritas. Begrep Definisjon Beskrivelse Sannsynlighetsfordeling f (x) Fordelingen for ulike utfall av x. Akkumulert sannsynlighetsfordeling Forventningsverdi (eng. mean) Median (P50) x F ( x) = f ( y) dy E ( x) = µ = xf ( x) dx 1 2 = P50 f ( x) dx = P50 f ( x) dx Sannsynligheten for at et utfall er mindre enn eller lik x. Gjennomsnittsverdien av en fordeling (tyngdepunkt). Samme sannsynlighet over og under P50. Mode Varians d f ( x) = 0 Verdien der f(x) er størst; dx toppunktet på fordelingen. ( 2 2 Var ( x) = σ = x µ ) f ( x) dx Mål på spredningen i fordelingen. Standardavvik σ = Var(x) Roten av variansen. Percentil Pxx F ( Pxx) = xx% Sannsynligheten for at utfallet er mindre enn eller lik pxx er xx%, for eksempel F(p10) = 10% = 0,1. Pearsons korrelasjonskoeffisient ρ( x, y) = COV ( x, y) VAR( X ) VAR( Y ) Benevningsfri koeffisient for å beskrive lineære sammenhenger mellom to avhengige variabler. Trippelestimat, [ 1 < ρ < 1] Også kalt trepunktsestimat. Det angis tre punkter for å beskrive en sannsynlighetsfordeling som i figuren. Dette kan for eksempel være p10, mode og p90. Noen av disse målene er illustrert i Figur 4. DNV GL Side 5

9 1,0 Mode 0,9 0,8 0,7 0,6 0,5 Median (P50) Gjennomsnitt Mode Median (P50) Gjennomsnitt 0,48 0,78 1,00 0,4 0,3 0,2 0,1 f(x) F(x) 0,0-0,5 0,0 0,5 1,0 1,5 Figur 4: Illustrasjon av noen statistiske parametere. Figuren viser en lognormalfordeling og den korresponderende akkumulerte sannsynlighetsfordelingen. 2,0 x 2,5 3,0 3,5 4,0 4,5 DNV GL Side 6

10 ABOUT DNV GL Driven by our purpose of safeguarding life, property and the environment, DNV GL enables organizations to advance the safety and sustainability of their business. We provide classification and technical assurance along with software and independent expert advisory services to the maritime, oil and gas, and energy industries. We also provide certification services to customers across a wide range of industries. Operating in more than 100 countries, our 16,000 professionals are dedicated to helping our customers make the world safer, smarter and greener.

Vedlegg V MILJØTILTAK VED VRAKET AV U-864 Mulighetsstudier av alternative metoder for heving av last DNV GL AS

Vedlegg V MILJØTILTAK VED VRAKET AV U-864 Mulighetsstudier av alternative metoder for heving av last DNV GL AS Vedlegg V3.05.0 MILJØTILTAK VED VRAKET AV U-864 Mulighetsstudier av alternative metoder for heving av last DNV GL AS Project name: Miljøtiltak ved vraket av U-864 DNV GL AS Report title: Customer: Contact

Detaljer

Vedlegg V0.03. MILJØTILTAK VED VRAKET AV U-864 Geoteknisk vurdering av stabilitet ved tildekking DNV GL AS

Vedlegg V0.03. MILJØTILTAK VED VRAKET AV U-864 Geoteknisk vurdering av stabilitet ved tildekking DNV GL AS Vedlegg V0.03 MILJØTILTAK VED VRAKET AV U-864 Geoteknisk vurdering av stabilitet ved tildekking DNV GL AS Project name: Miljøtiltak ved vraket av U-864 DNV GL AS Report title: Project Management & Technical

Detaljer

Vedlegg V1.01. MILJØTILTAK VED VRAKET AV U-864 Fremdriftsanlyse for Alternativ 1 Tildekking DNV GL AS

Vedlegg V1.01. MILJØTILTAK VED VRAKET AV U-864 Fremdriftsanlyse for Alternativ 1 Tildekking DNV GL AS Vedlegg V1.01 MILJØTILTAK VED VRAKET AV U-864 Fremdriftsanlyse for Alternativ 1 Tildekking DNV GL AS Project name: Miljøtiltak ved vraket av U-864 DNV GL AS [Business Area] Report title: Customer: Contact

Detaljer

Vedlegg 2 Metodebeskrivelse for usikkerhetsanalysen. Kvalitetssikring (KS 1) av KVU for hovedvegsystemet i Moss og Rygge

Vedlegg 2 Metodebeskrivelse for usikkerhetsanalysen. Kvalitetssikring (KS 1) av KVU for hovedvegsystemet i Moss og Rygge Vedlegg 2 Metodebeskrivelse for usikkerhetsanalysen Kvalitetssikring (KS 1) av KVU for hovedvegsystemet i Moss og Rygge Innledning Terramar har en velprøvd tilnærming til og metodikk for gjennomføring

Detaljer

Norsk Sanerings Service AS

Norsk Sanerings Service AS MILJØMÅLINGER STORØY Rapport: Miljømåling på Storøy 2015 Norsk Sanerings Service AS Rapportnr.: 2015-1294, Rev. 01 Dokumentnr.: 1SWYRUF-3 Dato: 2016-01-14 Innhold 1 SAMMENDRAG... 1 2 INNLEDNING... 1 3

Detaljer

NOOMAS Sertifisering. 13. september Heleid selskap i DNV GL-gruppen. 13. september 2016

NOOMAS Sertifisering. 13. september Heleid selskap i DNV GL-gruppen. 13. september 2016 NOOMAS Sertifisering Heleid selskap i DNV GL-gruppen 1 Organized to maximise customer value MARITIME OIL & GAS ENERGY BUSINESS ASSURANCE SOFTWARE MARINE CYBERNETICS RESEARCH & INNOVATION 2 Who is NOOMAS?

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

Systematisk usikkerhet

Systematisk usikkerhet Kvalitetssikring av konseptvalg, samt styringsunderlag og kostnadsoverslag for valgt prosjektalternativ Systematisk usikkerhet Basert på et utkast utarbeidet under ledelse av Dovre International AS Versjon

Detaljer

Strategi med kunden i fokus

Strategi med kunden i fokus Strategi med kunden i fokus 4. November 2016 Trond Winther, Head of Department SAFER, SMARTER, GREENER Innhold 1 Bakgrunn og utfordring 2 Strategi 3 Læringer 2 Our vision: global impact for a safe and

Detaljer

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i

Detaljer

HORTEN VISUELL KARTLEGGING Horten havn visuell kartlegging. Horten Kommune. Rapportnr.: , Rev. 01 Dokumentnr.: 116MJ2QZ-3 Dato:

HORTEN VISUELL KARTLEGGING Horten havn visuell kartlegging. Horten Kommune. Rapportnr.: , Rev. 01 Dokumentnr.: 116MJ2QZ-3 Dato: HORTEN VISUELL KARTLEGGING Horten havn visuell kartlegging Horten Kommune Rapportnr.: 2017-1068, Rev. 01 Dokumentnr.: 116MJ2QZ-3 Dato: 2017-11-09 Innholdsfortegnelse 1 INTRODUKSJON... 1 2 FELTARBEID...

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4 3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF

Detaljer

Statistikk 1 kapittel 4

Statistikk 1 kapittel 4 Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2017 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

Konkurranseutsetting: krav og konseptutvikling

Konkurranseutsetting: krav og konseptutvikling Konkurranseutsetting: krav og konseptutvikling Gardermoen, 28.08.2014 Kay Erik Stokke 1 SAFER, SMARTER, GREENER DNV GL logo A global impact for a safe and sustainable future Size matters 2 Creating a global

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

Vedlegg V1.02. MILJØTILTAK VED VRAKET AV U-864 Usikkerhetsanalyse Alt. 1 Tildekking DNV GL AS

Vedlegg V1.02. MILJØTILTAK VED VRAKET AV U-864 Usikkerhetsanalyse Alt. 1 Tildekking DNV GL AS Vedlegg V1.02 MILJØTILTAK VED VRAKET AV U-864 Usikkerhetsanalyse Alt. 1 Tildekking DNV GL AS Project name: Miljøtiltak ved vraket av U-864 DNV GL AS Report title: Customer: Contact person: DNV GL AS, Date

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

Foreleses onsdag 8. september 2010

Foreleses onsdag 8. september 2010 TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians

Detaljer

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians.

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. H. Goldstein Revidert januar 2008 Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. Dette notatet er ment å illustrere noen begreper fra Løvås, kapittel

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Sentralverdi av dataverdi i et utvalg Vi tenker oss et utvalg med datapar. I vårt eksempel har vi 5 datapar.

Sentralverdi av dataverdi i et utvalg Vi tenker oss et utvalg med datapar. I vårt eksempel har vi 5 datapar. Statistisk behandling av kalibreringsresultatene Del 4. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. Dennne artikkelen tar

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012) 1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Regneregler for forventning og varians

Regneregler for forventning og varians Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent

Detaljer

Vedlegg V3.01. MILJØTILTAK VED VRAKET AV U-864 Fremdriftsanlyse for Alternativ 3 Heving av last DNV GL AS

Vedlegg V3.01. MILJØTILTAK VED VRAKET AV U-864 Fremdriftsanlyse for Alternativ 3 Heving av last DNV GL AS Vedlegg V3.01 MILJØTILTAK VED VRAKET AV U-864 Fremdriftsanlyse for Alternativ 3 Heving av last DNV GL AS Project name: Miljøtiltak ved vraket av U-864 DNV GL AS Report title: Customer: DNV GL AS Contact

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.1) Forventningsverdi = gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: x xf(x),x

Detaljer

Delrapport 1. Usikkerhetsanalyse av behov for midler til drift og vedlikehold av riksveger. for. Statens vegvesen, Vegdirektoratet

Delrapport 1. Usikkerhetsanalyse av behov for midler til drift og vedlikehold av riksveger. for. Statens vegvesen, Vegdirektoratet Kvalitetssikring av anslag for drift og vedlikehold av riksveger i NTP 2014-2023 Delrapport 1 Usikkerhetsanalyse av behov for midler til drift og vedlikehold av riksveger for Statens vegvesen, Vegdirektoratet

Detaljer

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.) Forventningsverdi gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: E(X) f(),x diskret

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så

Detaljer

Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger

Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 3 4 Pensumoversikt Forelesninger og øvinger

Detaljer

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,

Detaljer

Kvalitetssikring av kostnadsbudsjett for Sykkel-VM i Bergen 2017

Kvalitetssikring av kostnadsbudsjett for Sykkel-VM i Bergen 2017 Kvalitetssikring av kostnadsbudsjett for Sykkel-VM i Bergen 2017 Rapport, v.1.0 Det Norske Veritas Innhold Utgangspunkt for kvalitetssikringen Resultater fra kvalitetssikringen Anbefalinger Vedlegg 3

Detaljer

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

La U og V være uavhengige standard normalfordelte variable og definer

La U og V være uavhengige standard normalfordelte variable og definer Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005 SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger

Detaljer

Kostnadsestimering under usikkerhet

Kostnadsestimering under usikkerhet Frode Drevland Kostnadsestimering under usikkerhet concept Concept temahefte nr. 4 Concept Side i Om forfatteren: Frode Drevland er universitetslektor ved Institutt for bygg, anlegg og transport på Fakultet

Detaljer

NFR-møte 27. april. Øyvind Christophersen og Åsa Borg Pedersen, Miljødirektoratet

NFR-møte 27. april. Øyvind Christophersen og Åsa Borg Pedersen, Miljødirektoratet NFR-møte 27. april Øyvind Christophersen og Åsa Borg Pedersen, Miljødirektoratet Ambisiøse klimamål Parisavtalen - mål om 2 grader og 1,5 grader temperaturøkning Norge 2050 et lavutslippssamfunn Innebærer

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

= 5, forventet inntekt er 26

= 5, forventet inntekt er 26 Eksempel på optimal risikodeling Hevdet forrige gang at i en kontrakt mellom en risikonøytral og en risikoavers person burde den risikonøytrale bære all risiko Kan illustrere dette i en enkel situasjon,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Onsdag 12. oktober 2016 Tid for eksamen: 10.00 12.00 Oppgavesettet er på

Detaljer

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være

Detaljer

Forvaltningsrevisjon Bergen kommune Effektivitet og kvalitet i internkontrollen Prosjektplan/engagement letter

Forvaltningsrevisjon Bergen kommune Effektivitet og kvalitet i internkontrollen Prosjektplan/engagement letter Forvaltningsrevisjon Bergen kommune Effektivitet og kvalitet i internkontrollen Prosjektplan/engagement letter Mai 2017 «Forvaltningsrevisjon av effektivitet og kvalitet i internkontrollen» Mai 2017 Prosjektplan

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 9. oktober 2008. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

Mål på beliggenhet (2.6) Beregning av kvartilene Q 1, Q 2, Q 3. 5-tallssammendrag. ST0202 Statistikk for samfunnsvitere

Mål på beliggenhet (2.6) Beregning av kvartilene Q 1, Q 2, Q 3. 5-tallssammendrag. ST0202 Statistikk for samfunnsvitere 2 Mål på beliggenhet (2.6) Kvartiler: Deler de ordnede dataene inn i fire like store deler: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 1. kvartil Q 1 : 25% av dataene

Detaljer

Appendiks 4: Vurdering av flokkuleringseffekten og tilpasning i DREAM

Appendiks 4: Vurdering av flokkuleringseffekten og tilpasning i DREAM Appendiks 4: Vurdering av flokkuleringseffekten og tilpasning i DREAM Nordic Rutile AS Rapportnr.: 2014-1244, Rev A Dokumentnr.: 18BHORT-1 Dato: 2014-09-29 Innholdsfortegnelse 1 VURDERING AV FLOKKULERINGSEFFEKTEN

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

A NEW REALITY. DNV GL Industry Outlook for 2016. Kjell Eriksson, Regional Manager Oil & Gas, Norway 02 Februar - Offshore Strategi Konferansen 2016,

A NEW REALITY. DNV GL Industry Outlook for 2016. Kjell Eriksson, Regional Manager Oil & Gas, Norway 02 Februar - Offshore Strategi Konferansen 2016, OIL & GAS A NEW REALITY DNV GL Industry Outlook for 2016 Kjell Eriksson, Regional Manager Oil & Gas, Norway 02 Februar - Offshore Strategi Konferansen 2016, 1 2013 SAFER, SMARTER, GREENER 3 februar 2016

Detaljer

U-864 Forprosjekt Presentasjon av resultater Pressemøte Bergen 20.mai 2014

U-864 Forprosjekt Presentasjon av resultater Pressemøte Bergen 20.mai 2014 U-864 Forprosjekt Presentasjon av resultater Pressemøte Bergen 20.mai 2014 Agenda Introduksjon (v/ Kystverket) Presentasjon av situasjonsbeskrivelse og mandat (v/ Kystverket) Presentasjon av DNV GL sitt

Detaljer

Sannsynlighetsregning og Statistikk.

Sannsynlighetsregning og Statistikk. Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Mål på beliggenhet (2.6) Kvartiler: Deler de ordnede dataene inn i fire like store deler: 1. kvartil Q 1 : 25% av dataene

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 22/3, 2006. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:

Detaljer

Eksamen i. MAT110 Statistikk 1

Eksamen i. MAT110 Statistikk 1 Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Torsdag 28. mai 2015 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde: Per Kristian Rekdal / 924 97 051 Kristiansund: Terje

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er

Detaljer

Tilfeldige variable (5.2)

Tilfeldige variable (5.2) Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i

Detaljer

Felles begrepsapparat KS 2

Felles begrepsapparat KS 2 Kvalitetssikring av konseptvalg, samt styringsunderlag og kostnadsoverslag for valgt prosjektalternativ Felles begrepsapparat KS 2 Versjon 1.1, datert 11.3.2008 Innhold 1. Innledning s 2 2. Usikkerhetsstyring

Detaljer

Familieeide selskaper - Kjennetegn - Styrker og utfordringer - Vekst og nyskapning i harmoni med tradisjoner

Familieeide selskaper - Kjennetegn - Styrker og utfordringer - Vekst og nyskapning i harmoni med tradisjoner Familieeide selskaper - Kjennetegn - Styrker og utfordringer - Vekst og nyskapning i harmoni med tradisjoner Resultater fra omfattende internasjonal undersøkelse og betraktninger om hvordan observasjonene

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) =

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) = Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 4, blokk I Løsningsskisse Oppgave 1 a) Utfallsrommet til X 1 er {1, 2,, 4, 5, }. Sannsynlighetsfordelingen

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

Kostnadskalkyler og usikkerhetsanalyser i store industriprosjekt. Olav Torp Førsteamanuensis NTNU, Institutt for bygg, anlegg og transport

Kostnadskalkyler og usikkerhetsanalyser i store industriprosjekt. Olav Torp Førsteamanuensis NTNU, Institutt for bygg, anlegg og transport 1 Kostnadskalkyler og usikkerhetsanalyser i store industriprosjekt Olav Torp Førsteamanuensis NTNU, Institutt for bygg, anlegg og transport 2 Struktur på presentasjonen Litt om kostnadskalkyler Usikkerhetsanalyser

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017 Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

Bruk data fra tabellen over (utvalget) og opplysninger som blir gitt i oppgavene og svar på følgende spørsmål:

Bruk data fra tabellen over (utvalget) og opplysninger som blir gitt i oppgavene og svar på følgende spørsmål: Frafall fra videregende skole (VGS) er et stort problem. Bare ca 70% av elevene som begynner p VGS fullfører og bestr i løpet av 5 r. For noen elever er skolen s lite attraktiv at de velger slutte før

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Usikkerhetsanalyse Feilkilder i metode og beregning

Usikkerhetsanalyse Feilkilder i metode og beregning concept Kjell Austeng, Vibeke Binz og Frode Drevland Usikkerhetsanalyse Feilkilder i metode og beregning Concept rapport Nr 13 concept Kjell Austeng, Vibeke Binz og Frode Drevland Usikkerhetsanalyse -

Detaljer

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).

Detaljer

NOTAT: 8 /12 RISIKOBASERT SIKRING (SECURITY) OG. Morten Bremer Mærli Forsker Det Norske Veritas RISIKOREDUKSJON 08.03.2012. www.22julikommisjonen.

NOTAT: 8 /12 RISIKOBASERT SIKRING (SECURITY) OG. Morten Bremer Mærli Forsker Det Norske Veritas RISIKOREDUKSJON 08.03.2012. www.22julikommisjonen. NOTAT: 8 /12 RISIKOBASERT SIKRING (SECURITY) OG RISIKOREDUKSJON Morten Bremer Mærli Forsker Det Norske Veritas 08.03.2012 www.22julikommisjonen.no 22. juli-kommisjonen, Pb 742 Sentrum, 0106 OSLO E-POST

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg

Detaljer

Risikostyring i teori og praksis

Risikostyring i teori og praksis OIL & GAS Risikostyring i teori og praksis Med eksempler fra forskjellige bransjer Tore Hartvigsen 1 SAFER, SMARTER, GREENER PRESENTASJON Risiko Risikostyring Risikostyringsprosessen (ISO 31000) Risikoidentifisering

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Fredag 28. oktober 2016 Tid for eksamen: 14.00 16.00 Oppgavesettet er på

Detaljer

Bootstrapping og simulering Tilleggslitteratur for STK1100

Bootstrapping og simulering Tilleggslitteratur for STK1100 Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor

Detaljer

Det kommunale og fylkeskommunale risikobildet - Sammendrag

Det kommunale og fylkeskommunale risikobildet - Sammendrag Det kommunale og fylkeskommunale risikobildet - Sammendrag 1 2 Sammendrag På vegne av KS har Deloitte gjennomført en kartlegging av det kommunale og fylkeskommunale risikobildet basert på vedtatte planer

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Kapittel 4: Matematisk forventning [4.1+start 4.3] Quiz kjørt med Kahoot! fra kahoot.it. Mette Langaas wiki.math.ntnu.no/emner/tma4240/2015h/start/ 2 Høyde, kvinner Frequency

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 1. juni 2010. KLASSE: HIS 08 11. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside)

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer