Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension

Størrelse: px
Begynne med side:

Download "Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension"

Transkript

1 onlinear Differ. Equ. Appl. 07 4:50 c 07 Springer International Publishing AG DOI 0.007/s onlinear Differential Equations and Applications odea Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension Zhisu Liu, Marco Squassina and Jianjun Zhang Abstract. We study the existence of ground states to a nonlinear fractional Kirchhoff equation with an external potential V. Under suitable assumptions on V, using the monotonicity trick and the profile decomposition, we prove the existence of ground states. In particular, the nonlinearity does not satisfy the Ambrosetti Rabinowitz type condition or monotonicity assumptions. Mathematics Subject Classification. 35Q55, 35Q5, 53C35. Keywords. Fractional Kirchhoff type problems, Ground state solutions, Profile decomposition. Contents. Introduction and results.. Overview.. Main results.3. Main difficulties. Variational setting 3. The perturbed functional 4. Upper estimate of c λ and limit problems 4.. An energy estimate 4.. The limit problem 5. Behaviour of Palais Smale sequences 5.. Splitting lemmas 5.. Profile decomposition Z. Liu is supported by the SFC 667. M. Squassina is member of the Gruppo azionale per l Analisi Matematica, la Probabilità e le loro Applicazioni GAMPA of the Istituto azionale di Alta Matematica IdAM. J. J. Zhang was partially supported by the Science Foundation of Chongqing Jiaotong University 5JDKJC-B : V,-vol

2 50 Page of 3 Z. Liu, M. Squassina and J. Zhang odea 6. Proof of the main results 6.. ontrivial critical points of I λ 6.. Completion of the proof Acknowledgements References. Introduction and results.. Overview In this paper we are concerned with the existence of positive ground state solutions to the following nonlinear fractional Kirchhoff equation a + b Δ u dx Δ u + V xu = fu in, R K u H, u > 0 in, where a, b are positive constants, 0, and >. The operator Δ is the fractional Laplacian defined as F ξ F u, where F denotes the Fourier transform on. When a =andb = 0, then K reduces to the following fractional Schrödinger equation Δ u + V xu = fu in,. which has been proposed by Laskin [0] in fractional quantum mechanics as a result of extending the Feynman integrals from the Brownian like to the Lévy like quantum mechanical paths. For such a class of fractional and nonlocal problems, Caffarelli and Silvestre [8] expressed Δ as a Dirichlet eumann map for a certain local elliptic boundary value problem on the half-space. This method is a valid tool to deal with equations involving fractional operators to get regularity and handle variational methods. We refer the readers to [6, 34] and to the references therein. Investigated first in [, 3] via variational methods, there has been a lot of interest in the study of the existence and multiplicity of solutions for. when V and f satisfy general conditions. We cite [,33,36] with no attempts to provide a complete list of references. If =, then problem K formally reduces to the well-known Kirchhoff equation a + b u dx Δu + V xu = fu in,. related to the stationary analogue of the Kirchhoff Schrödinger type equation u t a + b u dx Δu = ft, x, u, Ω where Ω is a bounded domain in, u denotes the displacement, f is the external force, b is the initial tension and a is related to the intrinsic properties of the string. Equations of this type were first proposed by Kirchhoff [9] to describe the transversal oscillations of a stretched string. Besides, we also point

3 odea Ground states for fractional critical Kirchhoff equations Page 3 of 3 50 out that such nonlocal problems appear in other fields like biological systems, where u describes a process depending on the average of itself. We refer readers to Chipot and Lovat [0], Alves and Corrêa []. However, the solvability of the Kirchhoff type equations has been well studied in a general dimension by various authors only after Lions [3] introduced an abstract framework to such problems. For more recent results concerning Kirchhoff-type equations we refer e.g. to [4,7,6,8]. In [], by using a monotonicity trick and a global compactness lemma, LiandYeprovedthatforfu = u p u and p 3, /, problem. has a positive ground state. Subsequently, Liu and Guo [5] extended the above result to p, /. Fiscella and Valdinoci [4], proposed the following stationary Kirchhoff variational equation with critical growth M Δ u dx Δ u = λfx, u+ u u in Ω, R.3 u =0 in \Ω, which models nonlocal aspects of the tension arising from measurements of the fractional length of the string. They obtained the existence of non-negative solutions when M and f are continuous functions satisfying suitable assumptions. Autuori et al. [3] considered the existence and the asymptotic behavior of non-negative solutions of.3. Pucci and Saldi [30] established multiplicity of nontrivial solutions. Via a three critical points theorem, yamoradi [7] studied the subcritical case of.3 and obtained three solutions. See also [9,5,9,3,39] for related results. To the best of our knowledge, there are few papers in the literature on fractional Kirchhoff equations in. Recently, Ambrosio and Isernia [] considered the fractional Kirchhoff problem a + b Δ u dx Δ u = fu in,.4 where f is an odd subcritical nonlinearity satisfying the well known Berestycki and Lions [6] assumptions. By minimax arguments, the authors establish a multiplicity result in the radial space Hrad R when the parameter b is sufficiently small. Asin[], Teng [37] also searched for ground state solutions for the fractional Schrödinger Poisson system in R 3 with critical growth { Δ u + V xu + φu = μ u q u + u u in R 3, Δ t φ = u in R 3. We point out that, in [,37] the corresponding limit problems play an important role. In order to get the existence of ground state solutions of the limit problems, the authors used a constrained minimization on a manifold M obtained by combining the ehari and Pohožaev manifolds... Main results Motivated by the works above, in this paper we aim to study the existence of positive ground state solutions to the fractional Kirchhoff equation with the Berestycki Lions type conditions of critical type, firstly introduced in [40].

4 50 Page 4 of 3 Z. Liu, M. Squassina and J. Zhang odea... Assumptions on V. On the external potential we assume the following: V V C, R and, setting W x := max{x Vx, 0}, we assume Δ u dx W < as R L R, S := inf u D, /, u 0 dx := ; V there exists V R such that u V x lim V y =V, for all x ; y V 3 the operator a Δ + V x :H H satisfies inf u H u 0 a Δ u + V xu dx > 0. u dx... Assumptions on f. We assume that ft = 0 for all t 0and f f C R + ft, R and lim t 0 t =0; ft f lim t =; t f 3 there are D>0 and <q< such that ft t + Dt q for any t 0. ow we state our first result. Theorem.. Assume V V 3, f f 3 and = with, or =3with 3 4,. i If q,, there is D > 0 such that, for D D, K admits a positive ground state solution. 4 ii If q,, for any D>0, K admits a positive ground state solution. Remark.. It is worth pointing out that we have to restrict, when =or 3 4, if = 3 in the process of proving the Mountain-Pass geometry for the corresponding energy functional. Moreover, in order to get a positive ground state solution, we construct a perturbed functional whose nontrivial critical points can be proved in such restrictions on. However, when is small, the argument in proving the two statements above does not work any more. For the details, see Lemmas 3.3 and 6.. We point out that without any symmetry assumption on V, the ground state solution obtained above maybe is not radially symmetric. In the following, we impose a monotonicity assumption of V and show that K admits a radially symmetric solution. Assume now that V is radially symmetric and increasing, that is for all x, y : x y V x V y. V 4

5 odea Ground states for fractional critical Kirchhoff equations Page 5 of 3 50 Theorem.3. Under the assumptions of Theorem. and V 4, K admits a radially symmetric positive solution at the global unrestricted to radial paths mountain pass energy level. As a main tool to prove Theorem. we shall give the profile decomposition of the Palais Smale sequences by which we can derive some compactness and get a positive ground states for K. The main tool for the proof of Theorem.3 is a symmetric version of the monotonicity trick [35]. We recall that Zhang and Zou [4] studied the critical case for Berestycki Lions theorem of the Schrödinger equation Δu+V xu = fu. They obtained positive ground state solutions when V satisfies similar assumptions as V V 3, f satisfies f f 3 and f 4 f 4 t C + t, for t>0 and some C>0. We should mention that in the present paper, f 4 is removed..3. Main difficulties We mention the difficulties and the idea in proving Theorem.. Firstly, without the Ambrosetti Rabinowitz condition, it is difficult to get the boundedness of Palais Smale sequences. In order to overcome this difficulty, inspired by [], we will use the monotonicity trick developed by Jeanjean [8], introduce a family of functionals I λ and obtain a bounded PS cλ sequence for I λ for almost all λ in an interval J, where c λ is given in Sect. 3. Secondly, by the presence of the Kirchhoff term, one obstacle arises in getting the compactness of I λ, even in the subcritical case. Precisely, this does not hold in general: for any ϕ C0, Δ un dx Δ un Δ ϕdx R Δ u dx Δ u Δ ϕdx, where {u n } n is a PS-sequence of I λ satisfying u n uin H. Then, even in the subcritical case, it is not clear that weak limits are critical points of I λ.in[], for.4 the compactness was recovered by restricting I λ to the radial space Hrad R, which is compactly embedded L s for all s,. For the related works in the bounded domains, see e.g. [4,30,39]. In the present paper, we do not impose any symmetry and just consider K in H. So the arguments mentioned above cannot be applied. Inspired by [], in place of I λ, we consider a family of related functionals J λ,whose corresponding problem is a non Kirchhoff equation. Thirdly, the critical exponent makes the problem rather tough. The PS- condition does not hold in general and to overcome this difficulty, we show that the mountain pass level c λ is strictly less than some critical level c λ. For Δu + V xu = λfu with critical growth, if S is the best constant of D, L, one can show that [7] c λ = S λ.

6 50 Page 6 of 3 Z. Liu, M. Squassina and J. Zhang odea For a + b u dx Δu + V xu = λfu inr 3 involving critical growth R 3 [, 4] c λ = ab 4λ S3 + [b S 4 +4λaS] 3 4λ + b3 S 6 4λ. However, for fractional Kirchhoff equations, to give the exact value of c λ is complicated, since one cannot solve precisely a fractional order algebra equation. A careful analysis is needed at this stage. With an estimate of c λ, inspired by [4], we establish a profile decomposition of the Palais Smale sequence {u n } n Lemma 5.4 related to J λ. Thanks to this result, for almost every λ [/, ] we obtain a nontrivial critical point u λ of I λ at the level c λ.finally, choosing a sequence λ n [/, ] with λ n, thanks to the Pohožaev identity we obtain a bounded PS c -sequence of the original functional I. Using the idea above again, we obtain a nontrivial solution of problem K. Throughout this paper, C will denote a generic positive constant. The paper is organized as follows. In Sect., the variational setting and some preliminary lemmas are presented. In Sect. 3, we consider a perturbation of the original problem K. Then using the monotonicity trick developed by Jeanjean, we obtain the bounded PS cλ -sequence {u n } n for almost all λ. In Sect. 4, an upper estimate of the mountain pass value is obtained and the limit problem is discussed. In Sect. 5, we give the profile decomposition of {u n } n. In Sect. 6, Theorem. and.3 are finally proved.. Variational setting In this section we outline the variational framework for K and recall some preliminary lemmas. For any 0,, the fractional Sobolev space H R 3 is defined by { } ux uy H := It is known that u L : R ux uy x y + dxdy =Cn, x y + L Δ u dx, where cos ζ Cn, = R ζ + dζ. We endow the space H with the norm / u H := u dx + Δ u dx..

7 odea Ground states for fractional critical Kirchhoff equations Page 7 of 3 50 H is also the completion of C0 with H and it is continuously embedded into L q forq [, ]. The homogeneous space D, is { } D, := u L ux uy : L, x y + and it is also the completion of C0 with respect to the norm / u D, := Δ u dx. Lemma.. orm equivalence Assume V V 3. Then there exist ε 0 > 0 and ω>0 with a ε Δ u + V xu dx ω u dx, for every u H and all ε 0,ε 0. Proof. By contradiction, for ε 0 = ω =/n there exist ε n 0and{u n } n H with a εn Δ un + V xu n dx u n dx. n Then, up to a standard nomalization, we may assume that u n H = and a εn Δ un + V xu n dx R n. In view of V 3, we get u n 0, which implies from V and the above inequality that {u n } n goes to zero in D,. Therefore u n 0inH, which contradicts the normalization. Let H := { } u H : V xu dx < be the Hilbert space equipped with the inner product u, v H := a Δ u Δ vdx+ V xuv dx, R and the corresponding induced norm / u := a Δ u dx + V xu dx. From Lemma., it easily follows that the above norm is equivalent to H. A function u His a weak solution to problem K if, for every ϕ H,we

8 50 Page 8 of 3 Z. Liu, M. Squassina and J. Zhang odea have a + b Δ u dx Δ / u Δ / ϕdx + V xuϕdx = fuϕdx. We stress that, under assumptions V V 3 andf f 3, if u is a weak solution to the above problem, then u is globally bounded and Hölder regular allowing the pointwise reppresentation of Δ u by the results of [3]. In particular u>0 a.e. wherever u 0. In what follows, we recall a fractional varsion of Lions lemma whose proof can be seen in [3]. Lemma.. Lions lemma Assume that {u n } n is bounded in H and lim sup u n dx =0, n y B ry for some r>0. Thenu n 0 in L s for all s,. The energy functional associated with K, I : H R, is defined as Iu = u + b Δ u dx F udx, u H, 4 with F u = u 0 ftdt. Obviously I C H and its critical points are weak solutions to K. 3. The perturbed functional Since we do not impose the well-known Ambrosetti Rabinowitz condition, the boundedness of the Palais Smale sequence becomes complicated. To overcome this difficulty, we adopt a monotonicity trick due to Jeanjean [8]. Theorem 3.. Monotonicity trick [8] Let E, be a real Banach space with its dual space E and J R + an interval. Consider the family of C functionals on E I λ = Au λbu, λ J, with B nonnegative and either Au + or Bu + as u, satisfying I λ 0 = 0. We set Γ λ := {γ C[0, ],E γ0 = 0, I λ γ < 0}, for all λ J. If for every λ J, Γ λ is nonempty and c λ = inf max I λγs > 0, γ Γ λ s [0,] then for almost any λ J, I λ admits a bounded Palais Smale sequence {u n } n E, namely sup n u n <, I λ u n c λ and I λ u n 0 in E. Moreover λ c λ is left continuous.

9 odea Ground states for fractional critical Kirchhoff equations Page 9 of 3 50 Set J := [, ], E := H and Au := u + b Δ u dx, Bu := F udx. 4 We consider the family of functionals I λ : H R defined by I λ u =Au λbu, that is I λ u = u + b Δ u dx λ F udx. 4 It is easy to see that Bu 0 for all u Hand Au + as u. In the following H denotes a closed half-space of containing the origin, 0 H. We denote by H the set of closed half-spaces of containing the origin. We shall equip H with a topology ensuring that H n H as n if there is a sequence of isometries i n : such that H n = i n H and i n converges to the identity. Given x, the reflected point σ H x will also be denoted by x H. The polarization of a nonnegative function u : R + with respect to H is defined as { u H max{ux,uσ H x}, for x H, x := min{ux,uσ H x}, for x \H. Given u, the Schwarz symmetrization u of u is the unique function such that u and u are equimeasurable and u x =h x, where h :0, R + is a continuous and decreasing function. We set H + := {u H: u 0}. ow we state a symmetric version of Theorem 3.. Lemma 3.. Symmetric monotonicity trick [35] Under the assumptions of Theorem 3. for E = H, assume that I λ u I λ u for any λ J and u H and I λ u H I λ u, for any λ J, u H + and H H. Then, for any p [, ], I λ has a bounded Palais Smale sequence {u n } n H with u n u n p 0. Lemma 3.3. Uniform Mountain-Pass geometry Assume that f f 3 and V V 3 hold. Furthermore let =with, or =3with 3 4,. Then we have: Γ λ, for every λ J; there exist r, η > 0 independent of λ, such that u = r implies I λ u η. In particular c λ η. Proof. For every ϕ H + \{0}, taking into account of f 3, we have I λ ϕ ϕ + b Δ ϕ dx D ϕ q dx 4 R q R ϕ dx. Under the assumptions on and, it follows that > 4. Then there exists t 0 > 0 sufficiently large, independent of λ J, such that I λ t 0 ϕ < 0. Setting

10 50 Page 0 of 3 Z. Liu, M. Squassina and J. Zhang odea w := t 0 ϕ H,wehaveI λ w < 0 and we can define the corresponding Γ λ. Then, setting γt :=tw, wehaveγ Γ λ for every λ J. ii f -f imply that, for any ε>0, there exists C ε > 0 such that F s ε s + C ε s, for all s R. Then there exist σ,σ > 0 such that I λ ϕ σ ϕ σ ϕ, for every ϕ H. Hence there exist r, η > 0, independent of λ, such that for u = r, I λ u η and I λ ϕ > 0assoonas ϕ r with ϕ 0. ow fix λ J and γ Γ λ. Since γ0 = 0 and I λ γ < 0, certainly γ >r. By continuity, we conclude that there exists t γ 0, such that γt γ = r. Therefore, for every λ J, we conclude c λ inf γ Γλ I λ γt γ η>0. Lemma 3.4. I λ decreases upon polarization Assume V 4 holds. Then for any λ J, for all u H + and H H there holds I λ u H I λ u. Proof. It is knownsee[5, Theorem ] that R u H x u H y R ux uy x y + dxdy x y + dxdy, for all u H+. Furthermore, we have see [38] F u H dx = F udx, for all u H +, and, by the monotonicity assumptions on V, V xu H dx V xu dx, for all u H +, which concludes the proof by the definition of I λ. Assume V V 3 andf f 3. As a consequence we now get the following result. Corollary 3.5. Bounded Palais Smale with sign For almost every λ J, there is a bounded sequence {u n } n H + such that I λ u n c λ, I λ u n 0. Furthermore, u n u n 0ifV 4 is assumed. Proof. For a.a. λ J, a bounded PS-sequence {u n } n Hfor I λ is provided by combining Theorem 3. with Lemmas 3.3 and 3.4. Furthermore, if V 4 holds, using Lemma 3. in place of Theorem 3., we also get u n u n 0. ext we show that we can assume that u n is nonnegative. Indeed, we know that I λ u n,u n = μ n,u n with μ n 0inH as n, with u n = min{u n, 0}, namely fs =0fors 0 a + b Δ un dx Δ u n u n dx+ V x u n dx = μ n,u n. As it is readily checked, for all x, y,wehave u n x u n yu n x u n y u n x u n y,

11 odea Ground states for fractional critical Kirchhoff equations Page of 3 50 which yields that Cn, R Δ u n u n dx 3 u n x u n yu n x u n y = R x y + dxdy R u n x u n y x y + dxdy =Cn, u n D,. Thus u n = o n, which also yields that {u + n } n is bounded. We can now prove that I λ u + n c λ and I λ u+ n 0. Of course u n = u + n + o n and Δ un dx = Δ u + n dx + o n. otice that from f f, we get F u n dx F u + n dx C u n + u n u n C u n + C u n = o n. This shows that I λ u + n c λ. We claim that I λ u+ n 0. Setting w n := I λ u n I λ u+ n, it is enough to prove that w n 0inH. For any ϕ Hwith ϕ H, we have w n,ϕ = a + b Δ un dx Δ / u n Δ / ϕdx R a + b Δ u + n dx Δ / u + n Δ / ϕdx R + V xu n ϕdx λ fu n fu + n ϕdx R = a + b Δ u + n dx Δ / u n Δ / ϕdx R + V xu n ϕdx λ fu n ϕdx + ξ n,ϕ, for some ξ n 0inH. Then, by f -f, w n,ϕ C u n H + ξ n H, proving the claim. Observe now that by the triangular inequality and the contractility property of the Schwarz symmetrization in L p -spaces i.e. w z p w z p for all w, z L p with w, z 0, we get u + n u + n u n u n u n +u + n u n u n + u + n u n u n + u + n u n = u n C u n H = o n. Since u n u n 0, we have u + n u + n 0asn. This ends the proof.

12 50 Page of 3 Z. Liu, M. Squassina and J. Zhang odea 4. Upper estimate of c λ and limit problems In this section, we give an upper estimate of the mountain pass value c λ. Moreover, the corresponding limit problem is discussed. 4.. An energy estimate ext we provide a crucial energy estimate for c λ. Lemma 4.. Energy estimate Suppose that f f 3 and V V 3 hold. For any λ [, ], assume that ] 4 q, 4 or q, with D large enough. Then we have c λ <c λ, c λ := as T + bs 4 T 4 λ T, where T = T λ > 0 continuously depends on λ. Proof. Let η C0 R 3 be a cut-off function with support in B 0 such that η onb 0 and η [0, ] on B 0. It is well known that S is achieved by T x :=κ μ + x x 0 for arbitrary κ R, μ>0andx 0. Then, taking x 0 = 0, we can define T x/s v ε x :=ηxu ε x, u ε x =ε u x/ε, u / x :=. T Then Δ u ε = u ε u ε and Δ u ε = u ε = S.Asin[33], we have A ε := Δ vε x dx = S + Oε. 4. On the other hand, for any q [,, we obtain v ε q dx ε q κ q T q S S / εs / r dr, 0 μ + r q where S is the unit sphere in. Observe that, as ε 0, εs / r c 0,, if q>, dr = Olog 0 μ + r q ε, if q =, = Oε q, if q<. Then q Oε, if q> C ε := v ε q, dx Olog R q ε ε, if q =, 4. Oε q, if q<.

13 odea Ground states for fractional critical Kirchhoff equations Page 3 of 3 50 Since <, Similar as above, v ε dx Oε. v ε dx ε κ T S S / Oε. εs / 0 r μ + r dr So that we have B ε := v ε dx = Oε. 4.3 As can be seen in [33], it holds D ε := v ε dx = S + Oε. Step. For any ε>0 small there exists t 0 > 0 such that I λ γ ε t 0 < 0, where γ ε t :=v ε /t. Indeed, by V andf 3, for any t>0, I λ γ ε t a Δ γε t dx + b Δ γε t dx R 4 + V [ γ ε t γε t dx λ R + D γ εt q ] dx q = aa ε t + ba ε V B ε 4 t 4 + λd ε λdc ε t. 4.4 q oting that <<4, wehave0< 4 <. Then by 4.3, V B ε λd ε λs, as ε 0. So it follows from 4. that for any ε>0 small enough, I λ γ ε t as t +. Then there exists t 0 > 0 such that I λ γ ε t 0 < 0. Step. otice that, as t 0 +,wehave [ Δ γε t + γ ε t ] dx = t A ε + t B ε 0 uniformly for ε>0 small. We set γ ε 0 = 0. Then γ ε t 0 Γ λ, where Γ λ is as in Theorem 3. and c λ sup I λ γ ε t. t 0 Recalling that c λ > 0, by 4.4, there exists t ε > 0 such that sup I λ γ ε t = I λ γ ε t ε. t 0

14 50 Page 4 of 3 Z. Liu, M. Squassina and J. Zhang odea By 4., 4. and 4.4, we get I λ γ ε t 0 + as t 0 + and I λ γ ε t as t + uniformly for ε>0 small. Then there exist t,t > 0 independent of ε>0 such that t t ε t.let J ε t := aa ε t + ba ε 4 t 4 λd ε t, then V B ε c λ sup J ε t+ λdc ε t ε t 0 q By formula 4., for any q,, we have Then by 4.3, we conclude that q C ε Oε. c λ sup J ε t+oε q ODε. t 0 oting that >0and q/ > 0, we have sup t 0 J ε t c λ / uniformly for ε>0 small. As above, there are t 3,t 4 > 0 independent of ε>0 such that sup t 0 J ε t =sup t [t3,t 4] J ε t. By 4., where c λ sup K t 0 Observe that for t>0, S t + O ε O Dε q Kt = as t + bs 4 t 4 λ t., 4.5 K t = t Kt, where Kt :=as + bs t λt, and K t =t bs λt 4. Since 4 >, there is a unique T>0 such that Kt > 0ift 0,Tand Kt < 0ift>T. Hence, T is the unique maximum point of K. Then by 4.5, c λ KT +Oε O Dε q. 4.6 If q>4/, then 0 < q/ <, which implies by 4.6 that for any fixed D>0, c λ <KT forε>0 small. If <q 4/, for ε>0 small and D ε q/, then also in this case c λ <KT, which completes the proof.

15 odea Ground states for fractional critical Kirchhoff equations Page 5 of The limit problem ote that V x V as x. For any λ [/, ], we consider the problem a + b Δ u dx Δ u + V u = λfu in, R u H, u > 0 in, whose energy functional is defined by Iλ u := a Δ u + V u dx + b Δ u dx R 4 R λ F udx. We will use of the following Pohožaev type identity, whose proof is similar as in []. Lemma 4.. Pohožaev identity Let u be a critical point of Iλ in H for λ [, ]. ThenP λu =0, P λ u := a Δ u dx + b Δ u dx R + V u dx λ F udx. 4.7 otice that P λ u = d dt I λ u /t t=. Lemma 4.3. For λ [, ], ifw λ H\{0} solves P λ w λ =0, then there exists γ λ C[0, ], H such that γ λ 0 = 0, Iλ γ λ < 0, w λ γ λ [0, ], 0 γ λ 0, ] and max t [0,] I λ γ λ t = Iλ w λ. Proof. ote that Iλ w λ /t = t a Δ wλ dx + bt 4 Δ wλ dx R 4 R + t V w λdx t λ F w λ dx =0, which, by 4.7, yields lim t I λ w λ /t < 0. Then there is t 0 > 0 such that Iλ w λ /t 0 < 0. Let γ λ t = w λ /tt 0 for 0 <t andγ λ 0 = 0. Then γ λ C[0, ], H, w λ γ λ [0, ] and max t [0,] Iλ γ λt = Iλ w λast = t 0 is the unique maximum point of t Iλ γ λt by Lemma 4..

16 50 Page 6 of 3 Z. Liu, M. Squassina and J. Zhang odea 5. Behaviour of Palais Smale sequences By Corollary 3.5, for almost every λ [/, ], there exists a bounded Palais Smale sequence {u n } n H for I λ at the level c λ. Then there exists a subsequence of {u n } n, still denoted by {u n } n, such that u n u 0 in H and u n u 0 a.e. in as n.let vn := u n u 0. Then vn 0inH and vn 0 a.e. otice that, since u n 0, the dominated convergence theorem implies that vn 0inL q for any q. 5.. Splitting lemmas Let us set gt :=ft t +, Gt := t 0 gsds. In order to get the profile decomposition of {u n } n, we state the following splitting lemmas. Lemma 5.. Splitting lemma I We have gu n gu 0 gvnϕdx o n ϕ, 5. where o n 0 as n, uniformly for any ϕ C0. Proof. For each n, there exists θ n 0, such that gu n gvn g vn + θ n u 0 u In view of f -f 3, for any ε>0, there exists D >0 such that gt ε t, for t D/. 5.3 Let Ω n D :={x : u n x D} and for r>0, B r := {x : x < r}, Br c := \B r 0. Since u 0 H,wehave BR c { u 0x D/} 0as R. Then for ε given as above, there exist R>0and Ω R with Ω R Λ ε such that u 0 x < D/ forx BR c \Ω R, where Λ ε > 0 will be chosen later small enough. Then, by Hölder s inequality, 5. and 5.3, we have gu n gvn ϕ dx BR c \ΩR gu n gvn ϕ dx BR c \ΩR Ωn D + gu n gvn ϕ dx B c R \ΩR Ωc n D εc u n + vn ϕ + max g t t D B c R u 0xdx / ϕ. 5.4

17 odea Ground states for fractional critical Kirchhoff equations Page 7 of 3 50 It follows from f andf that, for ε>0 given, there exists C ε = C ε f > 0 such that gu n gvn ϕ dx Ω R ε u n + vn ϕ dx + C ε εc Ω R u n + vn ϕ + C ε Ω R un + vn ϕ dx Ω R un + v n ϕ. 5.5 By 5.4 and 5.5, by choosing Λ ε such that C ε Λ / ε ε, there exists C>0 with gu n g vn ϕ dx Cε ϕ. 5.6 B c R Moreover, gu 0 ϕ dx C B c R C B c R u 0 ϕ dx + u 0 ϕ dx BR c / u 0 dx / ϕ + C u 0 dx ϕ. B c R 5.7 It follows from 5.6 and 5.7 that, for ε>0 above, we choose R>0above large enough such that gu n gu 0 gvnϕdx Cε ϕ, 5.8 B c R where C is independent of n, ε and ϕ C0. On the other hand, gu n gu 0 ϕ dx B R gu n gu 0 B R Observe that / dx g t 0 + g / t lim = lim t + t B c R / BR / t t / =0. ϕ Then gu n gu 0 / 0inL B R. Hence, we deduce /. gu n gu 0 ϕ dx o n ϕ. 5.9 B R Similarly, we also obtain that gvn ϕdx o n ϕ, 5.0 B R for any ϕ C0. It follows from 5.8, 5.9 and 5.0 that 5. holds.

18 50 Page 8 of 3 Z. Liu, M. Squassina and J. Zhang odea Lemma 5.. Splitting lemma II We have u n u n u 0 u 0 vn vn ϕdx o n ϕ, where o n 0 as n, uniformly for any ϕ C0. Proof. For any ε>0, there exists R = Rε > 0 such that u n u n u 0 u 0 vn v n ϕdx \B R0 u n u n vn v n ϕdx \B R0 + u 0 5. u 0 ϕdx \B R0 C u n + vn u 0 ϕ dx \B R0 + u 0 ϕ dx Cε ϕ. \B R0 On the other hand, for every r>0, we have u n u n u 0 u vn vn ϕdx B R0 u n u n u 0 u 0 vn v B R0 { vn r} n ϕdx + u n u n u 0 u 0 vn vn ϕdx =: I + I. B R0 { v n r} ow, there exists r = rr such that r B R 0 / ε. Therefore, we have I C u n + u 0 + vn vnϕ dx B R0 { v n r} Cr B R 0 / ϕ Cε ϕ. 5. For such r, R fixed above, u n converges to u in measure in B R 0, i.e. B R 0 { v n r} 0forn. Therefore, for n large, I C u n + vn u 0 ϕ dx B R0 { vn r} + u 0 ϕ dx Cε ϕ. 5.3 B R0 { vn r} Then 5., 5. and 5.3 yield the assertion. Lemma 5.3. Splitting lemma III We have fu n u n dx = fvnv ndx + fu 0 u 0 dx + o n,

19 odea Ground states for fractional critical Kirchhoff equations Page 9 of 3 50 where o n 0 as n. Furthermore F u n dx = F vndx + F u 0 dx + o n. Proof. Since ft =gt+t for t 0, by the standard Brezis Lieb lemma, it suffices to prove gu n u n dx = gvnv ndx + gu 0 u 0 dx + o n, where o n 0asn.Fixedε>0, there exists C ε > 0 such that gt εt + C ε t, t Then there exists R = Rε > 0 large enough such that gu 0 vndx gu 0 vn dx R B + gu 0 vn dx R BR c ε u 0 + C ε u 0 vn dx + ε vn + vn and B R Cε + C ε o n. g v n u0 dx g R B vn u0 dx + g vn u0 dx R BR c ε vn + C ε vn u 0 dx B R + ε vn + C ε vn u 0 dx B c R Cε + C ε o n It follows from 5.5, 5.6 and Lemma 5. that gu n u n gu 0 u 0 gvnv ndx gu n gu 0 gvnu R R n dx + gvnu 0 dx + gu 0 vn dx o n u n + Cε + C ε o n. Letting n and ε 0 + completes the proof of the first assertion. The second assertion follows from the standard Brezis Lieb lemma and Gu n dx = Gvndx + Gu 0 dx + o n, whose proof is left to the reader.

20 50 Page 0 of 3 Z. Liu, M. Squassina and J. Zhang odea 5.. Profile decomposition In the following, we give the profile decomposition of {u n } n, which plays a crucial role in getting the compactness. Since c λ > 0, for some B >0wehave Δ un dx B, as n. ow, for any u H,let J λ u := a + b B Δ u dx + V x u dx λ F udx R and Jλ u := a + b B Δ u dx + V u dx λ F udx, R which are respectively the corresponding functional of the following problems a + b B Δ u + V xu = fu, a + b B Δ u + V u = fu, u H. Here we point out that in contrast with the original problem K, the problems above are both non Kirchhoff. ow we take advantage of this to get the profile decomposition of {u n } n. Lemma 5.4. Profile decomposition Let {u n } n Hbe the sequence mentioned above and assume that conditions V -V 3, f -f 3 hold and <4. Then J λ u 0=0with u 0 0, and there exist a number k {0}, nontrivial positive critical points w,...,w k H of Jλ which decay polynomially at infinity as w j x x + = O, such that i yn +, j yn j yn + i if i j, i, j k, n +, ii c λ + b B 4 4 = J λ u 0 + k Jλ wj, j= iii u n u 0 k w j yn j 0, j= iv B = Δ u 0 + k Δ w j. j= Moreover, we agree that in the case k =0the above holds without w j.in addition, if V 4 holds, then k =0and u 0 H rad R. Proof. Observe that, from I λ u n =c λ + o n and I λ u n 0inH,we obtain J λ u n =c λ + b B o n, J λu n 0 in H.

21 odea Ground states for fractional critical Kirchhoff equations Page of 3 50 Then, it is standard to get J λ u 0ϕ = 0 for all ϕ H. From Lemma 5.3, we get F vndx = F u n dx F u 0 dx + o n, R fvnv ndx = fu n u n dx fu 0 u 0 dx + o n. It follows that J λ u n =J λ vn+j λ u 0 +o n, 5.7 J λv nv n = J λu n u n J λu 0 u 0 + o n = o n. 5.8 On the other hand, by a slight variant of [, Proposition 4.], u 0 satisfies the Pohǒzaev identity a + b Δ u0 dx + V x xu R 0dx + V xu 0dx λ F u 0 dx =0. Then by V and<4, wehave J λ u 0 =a + b B Δ u0 dx V x xu R 0dx R a + b B Δ u0 dx R W u 0 a + b B Δ u0 dx a Δ u0 dx R = b B Δ u0 dx > 0, which implies that J λ u 0 b B Δ u0 dx We claim that one of the following conclusions holds for vn: v vn 0inH, or v there exist r > 0, σ>0 and a sequence {yn} n such that lim inf n vn dx σ>0. B r yn 5.0 Indeed, suppose that v does not occur. Then for any r>0, we have lim vn dx =0. n y B ry Therefore, it follows from Lemma. that vn 0inL s fors,. It follows from 5.4 that for any ε>0, there exists C ε > 0 such that gvnv n dx ε vn + vn dx + C ε vn q dx.

22 50 Page of 3 Z. Liu, M. Squassina and J. Zhang odea So from vn 0inL q and the arbitrariness of ε, we can easily obtain that fvnv ndx = vn + dx + on. Furthermore, from J λ v nvn = o n in 5.8, we have vn + b B Δ v n dx = λ vn + + o n. 5. In view of conditions V -V 3, we can check that V > 0. And so we can also get V x vn dx = V + x vn dx + o n, which, together with the definition of S and 5., implies that as vn 4 dx + bs vn dx λ vn dx + on. 5. Let l 0 be such that v R n dx l.ifl>0, then it follows from 5. that K l l = as l + bs l 4 λl 0, where K has been defined in Lemma 4.. This also implies that l T T is the unique maximum point of K. On the other hand, by 5.7 and 5.9, we have c λ + b B 4 4 a + b = B R + J λ u 0 +o n a + b B 4 + b B o n, Δ v n + V x v n λ v n Δ v n + V x v n λ + v n dx + which, together with 5. and the definition of S, implies that c λ a Δ v n dx + R 4 b Δ v n dx + o n + o n. as v n dx + 4 dx 4 bs v n dx

23 odea Ground states for fractional critical Kirchhoff equations Page 3 of 3 50 Thus, combining v R n dx l and l T, K T =0,wehave c λ as l + 4 bsl 4 as T + 4 bst 4 = as T + 4 bs T 4 λ T = c λ, contradicting c λ <c λ. Hence, l = 0. It follows from 5. that v n 0, that is, u n u 0 in H. Then Lemma 5.4 hold with k = 0 if v does not occur. In particular, if we assume V 4 holds, then by Corollary 3.5, u n u n 0. Obviously, { u n } n H rad R is bounded and u n u n q 0for q,. Since { u n } n has a strongly convergent subsequence in L q for q,, without loss of generality, we assume that u n u 0 in L q for q, andu 0 = u 0. As a consequence, v does not hold and as above, u n u 0 in H. In the following, otherwise, suppose that v holds, that is 5.0 holds. Consider v n +y n. The boundedness of {v n} n and 5.0 imply that v n + y n w 0 in H. Thus, it follows from v n 0 in H that {y n} n is unbounded and, up to a subsequence, y n +. Let us prove that J λ w = 0. It suffices to show that J λ v n + y nϕ 0 for any ϕ C 0. Combining Lemmas 5. and 5., we obtain J λu n ϕ J λu 0 ϕ J λv nϕ o n ϕ, ϕ C 0, which implies that J λ v nϕ o n ϕ, for all ϕ C0, as n. otice that J λv nϕ y n Cn, = a + b B v nx vnyϕx yn ϕy yn R x y + dxdy + V xvnxϕx yndx λ gvnxϕx yndx R λ vnx + ϕx yndx = o n ϕ yn = o n ϕ. Thus, as n, it follows that Cn, a + b B v nx + yn v n y + ynϕx ϕy R x y + dxdy + V x + ynv nx + ynϕxdx λ gvnx + ynϕxdx R vnx + yn + ϕxdx = o n ϕ. 5.3

24 50 Page 4 of 3 Z. Liu, M. Squassina and J. Zhang odea Since y n and ϕ C 0, we obtain V x + yn V vnx + ynϕxdx Thus, combining 5.3 and 5.4, we have for any ϕ C0, Jλ vn + ynϕ Cn, = a + b v nx + yn v n y + ynϕx ϕy R x y + dxdy + V vnx + ynϕxdx λ R gvnx + ynϕxdx λ vnx + yn + ϕxdx = o n. Then, Jλ w =0,w > 0andw x x + = O as x. Finally, let us set vnx =vnx w x yn, 5.5 then vn 0inH. Since V x V as x and vn 0 strongly in L loc R, we have V x V vn dx = o n. It follows that V x vn dx = V x vn dx + V x + yn w x dx V x + ynv nx + ynw xdx R = V u n dx V u 0 dx R V w dx + o n = V x u n dx R V x u 0 dx V w dx + o n, 5.6 and it is easy to see that vn =o n also Δ vn = Δ u n Δ u 0 Δ w + o n, 5.7 vn + = u n u 0 w + o n, Gvndx = Gu n dx Gu 0 dx Gw dx. 5.8 It is readily checked that we also have gvnϕdx = gu n ϕdx gu 0 ϕdx R 5.9 gw ynϕdx + o n ϕ,

25 odea Ground states for fractional critical Kirchhoff equations Page 5 of 3 50 for any ϕ C0. Combining 5.6, 5.7, 5.8 and 5.9, we deduce that J λ vn=j λ u n J λ u 0 Jλ w +o n, J λv nϕ = J λu n ϕ J λu 0 ϕ Jλ w ynϕ + o n ϕ = o n ϕ, 3 Jλ vn=j λ vn Jλ w +o n for any ϕ C0. Thus {vn} n is a Palais Smale sequence and we get J λ vn=c λ + b B 4 4 J λu 0 Jλ w +o n <c λ + b B 4 4. Remark that one of v and v holds for vn.ifv n 0inH, then Lemma 5.4 holds with k =. Otherwise, {vn} is non-vanishing, that is, v holds for vn. Similarly, we repeat the arguments. By iterating this procedure we obtain sequences of points {yn} R j such that yn +, j yn j yn + i if i j as n + and vn j = vn j w j x yn j like 5.5 with j such that vn j 0inH, Jλ w j = 0. Using the properties of the weak convergence, we have k k a u n u 0 w j yn j = u n u 0 w j yn j + o n, j= bj λ u n =J λ u 0 + k j= j= J λ w j +J λ v k+ n +o n ote that there is ρ>0 such that w ρ for every nontrivial critical point w of Jλ and {u n} n is bounded in H. By5.30a, the iteration stops at some k. Thatis,vn k+ 0inH. We stress that the polynomial decay of the limiting profiles w j can be justified as in [3, Theorem 3.4 and Theorem.5]. The proof is now complete. 6. Proof of the main results In order to obtain the existence of ground state solutions of problem K, our strategy is that we firstly obtain the existence nontrivial solutions of the perturbed problem, then as λ goes to, we get a nontrivial solution of the original problem. Finally, thanks to the profile decomposition of the PS- sequence, we obtain the existence of ground state solutions of problem K. 6.. ontrivial critical points of I λ Lemma 6.. Assume that V -V 3 and f -f 3 hold. For almost every λ [/, ], there exists u λ H\{0} such that I λ u λ =c λ and I λ u λ=0.in addition, if V 4 holds, then u λ H rad R.

26 50 Page 6 of 3 Z. Liu, M. Squassina and J. Zhang odea Proof. For almost all λ [/, ], there is a bounded sequence {u n } n H such that I λ u n c λ, I λ u n 0. From Lemma 5.4, up to a subsequence, there exist u 0 Hand B >0 such that u n u 0 in H, Δ un dx B, as n and J λ u 0 = 0. Furthermore, there exist k {0}, nontrivial critical points w,...,w k of Jλ and k sequences of points {yj n}, j k, such that k u n u 0 w j yn j 0, c λ + b B 4 k 4 = J λu 0 + Jλ w j 6. and j= B = Δ u0 + j= k Δ w j. 6. ow we claim that if u 0 0, then by <4, J λ u 0 > b B Δ u0 dx Indeed, since J λ u 0 = 0, similar as in [], we get P λ u 0 := a + b B Δ u0 dx + V xu R 0dx + V x,xu 0dx λ F u 0 dx =0. By hypothesis V wehave J λ u 0 = a + b B Δ u0 dx V x xu R 0dx > b B Δ u0 dx, which implies that 6.3 holds. For each nontrivial critical point w j, j =,..., k ofjλ, a + b B Δ w j dx + V w j dx R R λ F w j dx = Pλ w j =0. Then it follows from 6. that a Δ w j b dx + Δ w j dx R + V w j dx λ F w j dx 0. j=

27 odea Ground states for fractional critical Kirchhoff equations Page 7 of 3 50 Then there exists t j 0, ] such that at j Δ w j dx + bt 4 j + t j Δ w j dx 6.4 V w j dx t j λ F w j dx =0. That is, w j /t j satisfies the identity P λ u = 0 and it follows from Lemma 4.3 that there exists γ λ C[0, ], H such that γ λ 0 = 0, Iλ γ λ < 0, w j γ λ [0, ] and Iλ w j /t j = max t [0,] I λ γ λ t. By hypothesis V, we have max t [0,] Iλ γ λt max t [0,] I λ γ λ t, which, by the definition of c λ, implies that Iλ wj t j c λ. In particular, if V x V, then Iλ w j /t j >c λ. 6.5 So by 6.4 wehave Δ w j dx Jλ w j =Jλ w j P λ w j =a + b B a Δ w j x dx R t j + 4 b Δ w j x dx R t j + b B Δ w j dx 4 R = Iλ w j t j P λw j + b B Δ w j dx t j 4 R = Iλ w j + b B Δ w j dx t j and then we conclude that Jλ w j c λ + b B Δ w j dx, 4 where the inequality is strict if V x V. Then by formulas , c λ + b B 4 4 = J λu 0 + k Jλ w j kc λ + b B 4 j= 4, 6.7 with strict inequality if V x V or u 0 0. If k = 0, we are done. If condition V 4 holds, then k =0andu 0 is radial. Then it follows that I λ u 0 =J λ u 0 b B 4 /4=c λ and I λ u 0= J λ u 0=0. If k =andv x V or u 0 0, then 6.7 yields a contradiction

28 50 Page 8 of 3 Z. Liu, M. Squassina and J. Zhang odea If k =andv x V and u 0 = 0, then B = Δ w and it follows from 6. that c λ = Jλ w b B 4 4 = J λ w b 4 Δ w 4 = I λ w, I λw =0, as desired. Hence, in any case, the assertion follows. 6.. Completion of the proof Choosing a sequence {λ n } n [, ] satisfying λ n, we find a sequence of nontrivial critical points {u λn } n still denoted by {u n } n ofi λn and I λn u n =c λn. In particular, if V 4 holds, then {u n } n Hrad R. ow we show that {u n } is bounded in H. Remark that u n satisfies the Pohožaev identity as follows a Δ un dx + b Δ un dx R + V xu ndx + V x xu R ndx λ F u n dx =0. It follows that I λn u n = a Δ un dx + b Δ un dx R 4 V x xu ndx. Since c λ is continuous on λ, I λ n u n =c λn + o n <c λ n. It follows from V that there is a positive number κ 0, a such that W κs. Hence, a κ Δ un dx I λn u n, which implies that a Δ u n dx is bounded from above. By V 3, f - f andi λ n u n u n = 0, there is ν>0such that for any ε>0, there exists C ε > 0 with ν u ndx a Δ un dx + V xu ndx ε u ndx +C ε u n dx, which yields that {u n } n is bounded in L. Then {u n } n is bounded in H. By Theorem 3., lim Iu n = lim I λn u n +λ n F u n dx = lim c λ n n n n = c and for any ϕ C0, lim n I u n ϕ = lim I λ n n u n ϕ +λ n fu n ϕdx =0.

29 odea Ground states for fractional critical Kirchhoff equations Page 9 of 3 50 That is, {u n } n is a bounded Palais Smale sequence for I at level c. Then by Lemma 6., there is a nontrivial critical point u 0 Hradial, if V 4 holds for I and Iu 0 =c. Set ν =inf{iu :u H\{0}, I u =0}. Of course 0 <ν Iu 0 =c <. By the definition of ν, there is {u n } n H with Iu n ν and I u n = 0. We deduce that {u n } n is bounded in H. Up to a sequence, for some B >0, Δ un dx B. Let us set Ju :=J u andj u :=J u, for any u H. From Lemma 5.4 there exists u 0 Hsuch that u n u 0 in H and J u 0 = 0. Furthermore, there exist k {0}, nontrivial critical points w,...,w k of J and k sequences of points {yn} j n, j k, such that k u n u 0 w j yn j 4 b B k 0, ν + j= 4 = Ju 0+ J w j 6.8 j= and k B = Δ u0 + Δ w j. If k = 0, we are done. If k, assume by contradiction that u 0 0. Then, as in Lemma 6., Ju 0 > b B Δ u0 dx, for each j there is t j 0, ] such that I w j /t j c, which is strict if V x V,and J w j c + b B Δ w j dx, 4 where the inequality is strict if V x V. Then by formulas and ν c,weget c + b B 4 4 ν + b B 4 4 = Ju 0+ j= k j= J w j >kc + b B 4 4, a contradiction. Hence u 0 =0andk =, in which case a contradiction follows as in the proof of Lemma 6.. The proof is complete. Acknowledgements The authors would like to express their sincere gratitude to the anonymous referee for his/her valuable suggestions and comments.

30 50 Page 30 of 3 Z. Liu, M. Squassina and J. Zhang odea References [] Alves, C.O., Corrêa, F.: On existence of solutions for a class of problem involving a nonlinear operator. Appl. onlinear Anal. 8, [] Ambrosio, V., Isernia, T.: A multiplicity result for a fractional Kirchho equation in with a general nonlinearity. Commun. Contemp. Math doi:0.4/s Published online [3] Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. onlinear Anal. 5, [4] Azzollini, A.: The elliptic Kirchhoff equation in perturbed by a local nonlinearity. Differ. Integral Equ. 5, [5] Baernstein, A.: A unified approach to symmetrization. In: Partial Differential Equations of Elliptic Type Cortona, 99 Symposia Mathematica, vol. 35, pp Cambridge University Press, Cambridge 994 [6] Berestycki, H., Lions, P.: onlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 8, [7] Brezis, H., irenberg, L.: Positive solutions of nonlinear elliptic problems involving critical Sobolev exponent. Commun. Pure Appl. Math. 36, [8] Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. PDE 3, [9] Caponi, M., Pucci, P.: Existence theorems for entire solutions of stationary Kirchhoff fractional p-laplacian equations. Ann. Mat. Pura Appl. 954, [0] Chipot, M., Lovat, B.: Some remarks on nonlocal elliptic and parabolic problems. onlinear Anal. 30, [] Chang, X., Wang, Z.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. onlinearity 6, [] Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem involving the fractional laplacian. Le Matematiche 68, [3] Felmer, P., Quaas, A., Tan, J.: Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 4, [4] Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. onlinear Anal. 94, [5] Fiscella, A., Pucci, P.: p-fractional Kirchhoff equations involving critical nonlinearities. onlinear Anal. RWA 35,

31 odea Ground states for fractional critical Kirchhoff equations Page 3 of 3 50 [6] Frank, R., Lenzmann, E.: Uniqueness and non degeneracy of ground states for Δ s Q + Q Q + =0inR. ActaMath.0, [7] He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in R 3.J.Differ.Equ.5, [8] Jeanjean, L.: On the existence of bounded Palais Smale sequence and application to a Landesman Lazer type problem set on. Proc. R. Soc. Edinb. Sect. A 9, [9] Kirchhoff, G.: Mechanik. Teubner, Leipzig 883 [0] Laskin,.: Fractional Schrödinger equation. Phys. Rev. E 66, [] Li, G., Ye, H.: Existence of positive solutions for nonlinear Kirchhoff type problems in R 3 with critical Sobolev exponent and sign-changing nonlinearities. Math. Methods Appl. Sci. 376, [] Li, G., He, Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R 3. J. Differ. Equ. 57, [3] Lions, J.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Proceedings of the International Symposium Inst. Mat. Univ. Fed. Rio de Janeiro, 997 In: orth-holland Mathematics Studies, vol. 30, pp [4] Liu, Z., Guo, S.: Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent. Z. Angew. Math. Phys. 66, [5] Liu, Z., Guo, S.: Existence of positive ground state solutions for Kirchhoff type problems. onlinear Anal. 0, 3 05 [6] Ma, T., Rivera, J.: Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett. 6, [7] yamoradi,.: Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math. Commun. 8, [8] Perera, K., Zhang, Z.: ontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ., [9] Pucci, P., Xiang, M., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger Kirchhoff type equations involving the fractional p-laplacian in. Calc. Var. Part. Differ. Equ. 54, [30] Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in involving nonlocal operators. Rev. Mat. Iberoam. 3, 06 [3] Pucci, P., Xiang, M., Zhang, B.: Existence and multiplicity of entire solutions for fractional p-kirchhoff equations. Adv. onlinear Anal. 5, [3] Secchi, S.: Ground state solutions for nonlinear fractional Schrodinger equations in R-. J. Math. Phys. 54, doi:0.063/

32 50 Page 3 of 3 Z. Liu, M. Squassina and J. Zhang odea [33] Servadei, R., Valdinoci, E.: The Brezis irenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, [34] Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. J. Math. 55, [35] Squassina, M.: On the Struwe Jeanjean Toland monotonicity trick. Proc. R. Soc. Edinb. Sect. A 4, [36] Tao, F., Wu, X.: Existence and multiplicity of positive solutions for fractional Schrödinger equations with critical growth. onlinear Anal. RWA 35, [37] Teng, K.: Existence of ground state solutions for the nonlinear fractional Schrödinger Poisson system with critical Sobolev exponent. J. Differ. Equ. 6, [38] Van Schaftingen, J.: Symmetrization and minimax principles. Commun. Contemp. Math. 7, [39] Xiang, M., Zhang, B., Guo, X.: Infinitely many solutions for a fractional Kirchhoff type problem via Fountain Theorem. onlinear Anal. 0, [40] Zhang, J.J., Zou, W.M.: A Berestycki Lions theorem revisted. Commun. Contemp. Math. 4, 4 0 [4] Zhang, J., Zou, W.M.: The critical case for a Berestycki Lions theorem. Sci. China Math. 4, Zhisu Liu School of Mathematics and Physics University of South China Hengyang 400 Hunan People s Republic of China liuzhisu83@sina.com Marco Squassina Dipartimento di Matematica e Fisica Universita Cattolica del Sacro Cuore Via Musei 4 5 Brescia Italy marco.squassina@unicatt.it Jianjun Zhang College of Mathematics and Statistics Chongqing Jiaotong University Chongqing People s Republic of China zhangjianjun09@tsinghua.org.cn Received: 6 December 06. Accepted: 5 July 07.

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

On time splitting for NLS in the semiclassical regime

On time splitting for NLS in the semiclassical regime On time splitting for NLS in the semiclassical regime Rémi Carles CNRS & Univ. Montpellier Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 21 Splitting for NLS i t u + 1 2 u = f ( u 2) u,

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

Concentration Compactness at the Mountain Pass Level in Semilinear Elliptic Problems

Concentration Compactness at the Mountain Pass Level in Semilinear Elliptic Problems Nonlinear differ. equ. appl. 15 (2008), 581 598 c 2008 Birhäuser Verlag Basel/Switzerland 1021-9722/040581-18 published online 26 November 2008 DOI 10.1007/s00030-008-7046-8 Nonlinear Differential Equations

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

An oscillatory bifurcation from infinity, and

An oscillatory bifurcation from infinity, and Nonlinear differ. equ. appl. 15 (28), 335 345 121 9722/8/3335 11, DOI 1.17/s3-8-724-1 c 28 Birkhäuser Verlag Basel/Switzerland An oscillatory bifurcation from infinity, and from zero Philip Korman Abstract.

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

Flows and Critical Points

Flows and Critical Points Nonlinear differ. equ. appl. 15 (2008), 495 509 c 2008 Birkhäuser Verlag Basel/Switzerland 1021-9722/040495-15 published online 26 November 2008 DOI 10.1007/s00030-008-7031-2 Nonlinear Differential Equations

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions J. Math. Fluid Mech. 2019 21:36 c 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00021-019-0440-7 Journal of Mathematical Fluid Mechanics On the Existence of Strong Solutions to a Fluid Structure

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

Numerical Simulation of Shock Waves and Nonlinear PDE

Numerical Simulation of Shock Waves and Nonlinear PDE Numerical Simulation of Shock Waves and Nonlinear PDE Kenneth H. Karlsen (CMA) Partial differential equations A partial differential equation (PDE for short) is an equation involving functions and their

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

NO X -chemistry modeling for coal/biomass CFD

NO X -chemistry modeling for coal/biomass CFD NO X -chemistry modeling for coal/biomass CFD Jesper Møller Pedersen 1, Larry Baxter 2, Søren Knudsen Kær 3, Peter Glarborg 4, Søren Lovmand Hvid 1 1 DONG Energy, Denmark 2 BYU, USA 3 AAU, Denmark 4 DTU,

Detaljer

Self-improving property of nonlinear higher order parabolic systems near the boundary

Self-improving property of nonlinear higher order parabolic systems near the boundary Nonlinear Differ Equ Appl 7 200), 2 54 c 2009 Birkhäuser Verlag Basel/Switzerland 02-9722/0/0002-34 published online October 2, 2009 DOI 0007/s00030-009-0038-5 Nonlinear Differential Equations and Applications

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

Superlinear Ambrosetti Prodi problem for the p-laplacian operator

Superlinear Ambrosetti Prodi problem for the p-laplacian operator Nonlinear Differ. Equ. Appl. 17 (010), 337 353 c 010 Birkhäuser Verlag Basel/Switzerland 101-97/10/030337-17 published online January 8, 010 DOI 10.1007/s00030-010-0057- Nonlinear Differential Equations

Detaljer

Periodic solutions for a class of non-autonomous differential delay equations

Periodic solutions for a class of non-autonomous differential delay equations Nonlinear Differ. Equ. Appl. 16 (2009), 793 809 c 2009 Birkhäuser Verlag Basel/Switzerland 1021-9722/09/060793-17 published online July 4, 2009 DOI 10.1007/s00030-009-0035-8 Nonlinear Differential Equations

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24 Level Set methods Sandra Allaart-Bruin sbruin@win.tue.nl Level Set methods p.1/24 Overview Introduction Level Set methods p.2/24 Overview Introduction Boundary Value Formulation Level Set methods p.2/24

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains J. Math. Fluid Mech. 19 (2017), 375 422 c 2016 Springer International Publishing 1422-6928/17/030375-48 DOI 10.1007/s00021-016-0289-y Journal of Mathematical Fluid Mechanics Solvability and Regularity

Detaljer

Smart High-Side Power Switch BTS730

Smart High-Side Power Switch BTS730 PG-DSO20 RoHS compliant (green product) AEC qualified 1 Ω Ω µ Data Sheet 1 V1.0, 2007-12-17 Data Sheet 2 V1.0, 2007-12-17 Ω µ µ Data Sheet 3 V1.0, 2007-12-17 µ µ Data Sheet 4 V1.0, 2007-12-17 Data Sheet

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

Solutions of nonlinear differential equations

Solutions of nonlinear differential equations Nonlinear Differ. Equ. Appl. 17 (21), 249 27 c 29 Birkhäuser Verlag Basel/Switzerland 121-9722/1/2249-22 published online December 11, 29 DOI 1.17/s3-9-52-7 Nonlinear Differential Equations and Applications

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

FIRST LEGO League. Härnösand 2012

FIRST LEGO League. Härnösand 2012 FIRST LEGO League Härnösand 2012 Presentasjon av laget IES Dragons Vi kommer fra Härnosänd Snittalderen på våre deltakere er 11 år Laget består av 4 jenter og 4 gutter. Vi representerer IES i Sundsvall

Detaljer

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai 2008 09:00 13:00 Tillatte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

Løsningsførslag i Matematikk 4D, 4N, 4M

Løsningsførslag i Matematikk 4D, 4N, 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y

Detaljer

Lipschitz Metrics for Non-smooth evolutions

Lipschitz Metrics for Non-smooth evolutions Lipschitz Metrics for Non-smooth evolutions Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu Alberto Bressan (Penn State) Nonsmooth evolutions 1 / 36 Well-posedness

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

HONSEL process monitoring

HONSEL process monitoring 6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All

Detaljer

Radially symmetric growth of nonnecrotic tumors

Radially symmetric growth of nonnecrotic tumors Nonlinear Differ. Equ. Appl. 17 (1), 1 c 9 Birkhäuser Verlag Basel/Switzerland 11-97/1/11- published online October, 9 DOI 1.17/s3-9-37-6 Nonlinear Differential Equations and Applications NoDEA Radially

Detaljer

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015 Qi-Wu-Zhang model 2D Chern insulator León Martin 19. November 2015 Motivation Repeat: Rice-Mele-model Bulk behavior Edge states Layering 2D Chern insulators Robustness of edge states Motivation topological

Detaljer

On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding

On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding Nonlinear Differ. Equ. Appl. (2017) 24:37 c 2017 Springer International Publishing AG DOI 10.1007/s00030-017-0461-y Nonlinear Differential Equations and Applications NoDEA On the uniqueness of vanishing

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Emneevaluering GEOV325 Vår 2016 Kommentarer til GEOV325 VÅR 2016 (emneansvarlig) Forelesingsrommet inneholdt ikke gode nok muligheter for å kunne skrive på tavle og samtidig ha mulighet for bruk av power

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

Integral Equations on Multi-Screens

Integral Equations on Multi-Screens Integr.Equ.Oper.Theory DOI 10.1007/s00020-013-2085-x c Springer Basel 2013 Integral Equations and Operator Theory Abstract. In the present article, we develop a new functional framework for the study of

Detaljer

GEO231 Teorier om migrasjon og utvikling

GEO231 Teorier om migrasjon og utvikling U N I V E R S I T E T E T I B E R G E N Institutt for geografi Emnerapport høsten 2013: GEO231 Teorier om migrasjon og utvikling Innhold: 1. Informasjon om emnet 2. Statistikk 3. Egenevaluering 4. Studentevaluering

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

REMOVE CONTENTS FROM BOX. VERIFY ALL PARTS ARE PRESENT READ INSTRUCTIONS CAREFULLY BEFORE STARTING INSTALLATION

REMOVE CONTENTS FROM BOX. VERIFY ALL PARTS ARE PRESENT READ INSTRUCTIONS CAREFULLY BEFORE STARTING INSTALLATION 2011-2014 FORD EXPLORER PARTS LIST Qty Part Description Qty Part Description 1 Bull Bar 2 12mm x 35mm Bolt Plates 1 Passenger/Right Mounting Bracket 2 12mm Nut Plate 1 Driver/Left Mounting Bracket 2 12mm

Detaljer

Uniqueness of the nonlinear Schrödinger equation driven by jump processes

Uniqueness of the nonlinear Schrödinger equation driven by jump processes Nonlinear Differ. Equ. Appl. (219) 26:22 c 219 pringer Nature witzerland AG 121-9722/19/31-31 published online June 6, 219 https://doi.org/1.17/s3-19-569-3 Nonlinear Differential Equations and Applications

Detaljer

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Investigating Impact of types of delivery of undergraduate science content courses

Detaljer

EKSAMENSOPPGAVE I FAG TKP 4105

EKSAMENSOPPGAVE I FAG TKP 4105 EKSAMENSOPPGAVE I FAG TKP 4105 Faglig kontakt under eksamen: Sigurd Skogestad Tlf: 913 71669 (May-Britt Hägg Tlf: 930 80834) Eksamensdato: 08.12.11 Eksamenstid: 09:00 13:00 7,5 studiepoeng Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2915 Vekst og næringsstruktur Exam: ECON2915 - Growth and business structure Eksamensdag: Fredag 2. desember 2005 Sensur kunngjøres: 20. desember

Detaljer

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 45 INNFØRING I KVANTEMEKANIKK DATO: Fredag 4 desember TID: 9 5 Antall vekttall: 4 Antall sider: 5 Tillatte hjelpemidler:

Detaljer