Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

Størrelse: px
Begynne med side:

Download "Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains"

Transkript

1 J. Math. Fluid Mech. 19 (2017), c 2016 Springer International Publishing /17/ DOI /s y Journal of Mathematical Fluid Mechanics Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains C. H. Arthur Cheng and Steve Shkoller Abstract. We provide a self-contained proof of the solvability and regularity of a Hodge-type elliptic system, wherein the divergence and curl of a vector field u are prescribed in an open, bounded, Sobolev-class domain R n, and either the normal component u N or the tangential components of the vector field u N are prescribed on the boundary. For k > n/2, we prove that u is in the Sobolev space H k1 ()ifisanh k1 -domain, and the divergence, curl, and either the normal or tangential trace of u has sufficient regularity. The proof is based on a regularity theory for vector elliptic equations set on Sobolev-class domains and with Sobolev-class coefficients, and with a rather general set of Dirichlet and Neumann boundary conditions. The resulting regularity theory for the vector u is fundamental in the analysis of free-boundary and moving interface problems in fluid dynamics. Mathematics Subject Classification. 35J57, 58A14. Keywords. Hodge theory, elliptic estimates, Sobolev-class coefficients, Sobolev-class domains, regularity. Contents 1. Introduction Statements of the Main Results Outline of the Paper A Brief History of Prior Results Notation and Preliminary Results Definition of a C k -Domain Definition of an H s -Domain Basic Inequalities Poincaré-Type Inequalities Commutation with Mollifiers The Piola Identity Vector-Valued Elliptic Equations The Case that the Coefficients a jk are of Class C k The Case that the Coefficients a jk are of Sobolev Class Regularity Theory: The Proof of Theorem Existence and Uniqueness Theory: The Proof of Theorem Uniqueness of the Solution Existence of Solutions Solutions with Prescribed Tangential Trace Fractional-Order Regularity: The Proof of Theorem Appendix A. Proofs of the Inequalities in Sect References 421

2 376 C. H. A. Cheng and S. Shkoller JMFM 1. Introduction 1.1. Statements of the Main Results Given a sufficiently smooth Sobolev-class bounded domain R n and forcing functions f and g in together with boundary data given by either h or h on, we establish the basic elliptic estimates for the vector elliptic system of Hodge-type: with boundary conditions given by either curl v = f in, div v = g in, v N = h or v N = h on, where N is the outward-pointing unit normal vector on. When the domain is of class C k1, elliptic estimates for solutions v in H k1 () are now classical. We extend this well-known theory to the case of domains of Sobolev class H k1. We first establish the following Theorem 1.1. Let R 3 be a bounded H k1 -domain with integer k > 3 2. Given f,g Hl 1 () with div f =0, consider the equations curl v = f in, (2a) div v = g in. (2b) (1) If f satisfies f N ds =0 for each connected component Γ of, (3) Γ and h H l 0.5 () satisfies hds = gdx, then, for 1 l k, there exists a solution v H l () to (2) with boundary condition such that v N = h on, (4) v Hl () C( H k0.5) f H l 1 () g H l 1 () h H l 0.5 (). The solution is unique if is the disjoint union of simply connected open sets. (2) If f satisfies (3) and f N =div h on (where div denotes the surface divergence operator defined in Definition 2.4), h H l 0.5 () satisfies h N =0as well as f n ds = (N h) dr if Σ has piecewise smooth boundary Σ Σ Σ with unit normal n, compatible with the orientation of Σ, (5) then, for 1 l k, there exists a solution v H l () to (2) with boundary condition such that v N = h on, (6) v Hl () C( H k0.5) f H l 1 () g H l 1 () h H l 0.5 (). The solution is unique if each connected component of has a connected boundary.

3 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type 377 Remark 1.2. To explain condition (3), let be a connected bounded open set, and let {Γ i } I i=0 denote the connected components of in which Γ 0 is the boundary of the unbounded connected component of.foreachi =0,...,I,letq i be the solution to Δq i =0 in, (7a) q i = δ ij on Γ j. (7b) Then if u satisfies curlu = f in for some divergence-free vector f, applying the divergence theorem and then integrating by parts, shows that for i =0,...,I, f NdS = (f N)q i ds = (f N)q i ds = Γ i Γ i = curlu q i dx = (N u) q i ds = q i divfdx f q i dx (N u) q i ds =0, where is the tangential derivative defined below in Definition 2.4. Therefore, for curlu = f to be solvable, it is necessary that f N ds =0 i {0, 1,...,I}. Γ i In other words, (3) is a necessary condition for the solvability of (2a). We will show that it is also one of the sufficient conditions to solve (2) with the boundary conditions (4) or(6). The problem (2) with either boundary conditions (4)or(6) has been well studied. The characterization of the kernel of both problems, the solvability conditions, and the existence theory has been developed in a number of papers; see, for example, 1,2,5,6,13 15,17, and the references therein. The inequalities given in Theorem 1.1 are new for Sobolev-class domains. Motivated by the analysis of the free-boundary problems which arise in inviscid fluid dynamics, we next state a theorem which provides two fundamental elliptic estimates set on Sobolev-class domains: Theorem 1.3. Let R n, n=2or 3, be a bounded H k1 -domain with integer k > n. Then there exists 2 a generic constant C depending on H k0.5 such that for all u H k1 (), u H k1 () C u L2 () curlu H k () divu H k () u N H k 0.5 (), (8) u H k1 () C u L 2 () curlu Hk () divu Hk () u N H k 0.5 (), (9) where u is the tangential derivative on (defined in Definition 2.4). Remark 1.4. The inequalities (8) and (9) play a fundamental role in the regularity theory of the Euler equations with moving interfaces; see, for example, 10 for the incompressible setting and 11 for the compressible problem with vacuum. The use of the norm u N H k 0.5 () rather than u N H k0.5 () is crucial, as the regularity of the normal vector to field to is often worse than the regularity of the velocity vector u. On the other hand, if is at least of class H k2 then the inequalities (8) and (9) can be replaced, respectively, by u H k1 () C u L 2 () curlu Hk () divu Hk () u N H k0.5 () (10) u H k1 () C u L2 () curlu H k () divu H k () u N H k0.5 () (11) Remark 1.5. Recently, Amrouche and Seloula 5 established the inequalities (10) and (11) inthel p framework and for domains of class C k1 ; see Corollary 3.5 in 5. Of course, in the case of a C k1 - domain, the inequalities (8) and (9) follow immediately from (10) and (11), respectively. When is very close to a C -domain, we can obtain these inequalities for fractional-order Sobolev spaces, as in the following

4 378 C. H. A. Cheng and S. Shkoller JMFM Theorem 1.6. Let R n, n=2or 3, be a bounded H s1 -domain with s R such that s> n 2,andlet D denote a C -domain such that the distance between D and in the H s0.5 -norm is less than ɛ for 0 <ɛ 1. Then there exists a generic constant C depending only on D H s0.5, such that for all u H s1 (), u H s1 () C u L2 () curlu Hs () divu Hs () u N H s 0.5 (), (12) u H s1 () C u L 2 () curlu H s () divu H s () u N H s 0.5 (), (13) where u is the tangential derivative on (defined in Definition 2.4). The inequalities (12) and (13) set in fractional-order Sobolev spaces are fundamental to the analysis of Euler-type free-boundary problems. We remark that is assumed to be in a small tubular neighborhood of the normal bundle over D; hence, there is height function h(x, t) suchthateachpointon is given by x h(x)n(x), x D, where n is the outward-pointing unit normal to D. The assumption that the distance between D and intheh s0.5 -norm is less than ɛ 1 means that we assume that h H s0.5 ( D) <ɛ Outline of the Paper In Sect. 2, we introduce our notation as well as a number of elementary technical lemmas, whose proofs we include (for completeness) in Appendix A. Section 3 is devoted to the analysis of the vector-valued elliptic system (31a) with mixed-type boundary conditions (31b) and (31c), which is fundamental to the proof of our two main theorems; in particular, we prove Theorem 3.6 which establishes the elliptic estimate for (31) when the coefficients are of Sobolev-class. As a corollary to this theorem, we state in Corollary 3.8 the basic elliptic estimates for both the classical Dirichlet and Neumann problems, again with Sobolev class regularity. Finally, for coefficients which are close to the identity, we give an improved estimate in Theorem 3.9 for solutions to (31), which is linear in the highest derivatives of the coefficient matrix. This latter theorem is essential for estimates in fractional-order Sobolev spaces via linear interpolation. In Sect. 4, we prove Theorem 1.3, using the elliptic regularity theory developed for the elliptic system (31). Then, in Sect. 5, we prove Theorem 1.1. Our proof relies on some basic geometric identities involving the mean curvature of, together with the elliptic regularity theory established in Sect. 3. Finally, in Sect. 6, we prove Theorem A Brief History of Prior Results In addition to the recent work of Amrouche and Seloula 5 noted above, there have been many other methods and results to study such elliptic systems on smooth domains. The elliptic system (2) can be viewed as a particular example of the systems studied by Agmon et al. 1, wherein both Schauder-type estimates and L p -estimates can be found. In 19, von Wahl proved that if the normal or the tangential trace of a vector field vanishes, and for bounded or unbounded, the inequality u L p () C ( divu L p () curlu L p ()) holds when the first Betti number or the second Betti number, respectively, is equal to zero. Vector potentials and the characterization of the kernel of problem (2) with boundary conditions (4) or (6) have been obtained by Foias and Temam 13, Georgescu 14, Bendali et al. 6, Amrouche et al. 2, and Amrouche et al. 3. Amrouche and Girault 4 derived the L p -regularity theory of the steady Stokes equation by establishing the equivalency between the Sobolev space W m,r and the direct sum of W m,r by divergence-free vector fields and the gradients of W m1,r functions. Schwarz 18, studied the Hodge decomposition on manifolds with boundaries and showed that a differential k-form can be written as the sum of an exact form, a coexact form, and a harmonic form.

5 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type 379 Bolik and von Wahl 7 derived C α -estimates of the gradient of a vector field whose curl, divergence, and normal or tangential traces are prescribed. Mitrea et al. 16 studied the vector potential theory on non-smooth domains in R 3 with applications to electromagnetic scattering. Buffa and Ciarlet 8 and 9 established the Hodge decomposition of tangential vector fields defined on polyhedron domains, and studied the tangential trace and tangential components of vectors belonging to the space H(curl, ) := { u L 2 (; R 3 ) curlu L 2 (; R 3 ) }. In 15, Kozono and Yanagisawa proved the decomposition of a divergence-free vector-field as the sum of the curl of a vector-field and a vector-field which is solenoidal, irrotational and has zero normal trace. 2. Notation and Preliminary Results The Einstein summation convention is used throughout the paper. In particular, repeated Latin indices are summed from 1 to n, and repeated Greek indices are summed from 1 to n 1. For example, f i g i = n i=1 f ig i and f α g α = n 1 i=1 f αg α. The gradient operator is denoted by =( 1,..., n ). Below, we shall also define various tangential derivative operators. When it is not explicitly stated, k,l 0 denote integers, and s denotes a real number Definition of a C k -Domain We recall that a domain R n is said to be of class C k if isan(n 1)-dimensional C k -manifold; that is, there exists an open cover {U m } K m=1 R n of and a collection of C k -maps {φ m } K m=1 such that for each 1 m K, φ m : U m V m R n 1 is one-to-one, onto, and has a C k -inverse map for some open subset V m of R n 1. A domain is called a C -domain if it is a C k -domain for all k N. Equivalently, we shall use the following Proposition 2.1. Let R n be a C k -domain for some k N, andε>0 be given. Then there exists a collection of open sets {U m } K m=0 with each U m R n, a collection of C k -maps {ϑ m } K m=1 and positive numbers {r m } K m=1 such that K m=0 U m and for each 1 m K, 1. ϑ m : B(0,r m ) U m is a C k -diffeomorphism; 2. ϑ m : B(0,r m ) {y n =0} U m ; 3. ϑ m : B(0,r m ) {y n > 0} U m ; 4. det( ϑ m )=1; 5. ϑ m Id L (B(0,r m)) ε. and The proof of this proposition is given in Appendix A. K m=1 U m, 2.2. Definition of an H s -Domain In order to make our presentation self-contained, in this section, we collect a number of useful technical lemmas. These lemmas are well-known when the domains are smooth, but we shall need these basic results for Sobolev class domains. The proofs will be collected in Appendix A. We use the term domain to mean an open connected subset of R n.

6 380 C. H. A. Cheng and S. Shkoller JMFM Definition 2.2. Let R n be a bounded domain, and s> n 1 be a real number. is said to be an 2 H s -domain, or of class H s, if there exists a bounded C -domain O and a map ψ such that ψ : O is an H s -diffeomorphism; that is, 1. ψ : O is continuous; 2. ψ :O is one-to-one and onto, with differentiable inverse map ψ 1 : O; 3. ψ : O is one-to-one and onto, with differentiable inverse map ψ 1 : O; 4. ψ H s (O; ) and ψ 1 H s (; O). By the trace theorem, ψ O H s 0.5 ( O; ) and we shall often denote the value of this norm by H s 0.5. Definition 2.3. For s> n 1, given a local chart (U,ϑ) as defined in Proposition 2.1, the induced metric 2 in the local chart (U,ϑ)isthe(0, 2)-tensor g αβ given by g αβ = ϑ ϑ, y α y β and the induced second-fundamental form in a local chart (U,ϑ)isthe(0, 2)-tensor b αβ given by b αβ = 2 ϑ (N ϑ), y α y β where N is the outward-pointing unit normal to. Definition 2.4 (Tangential gradient and surface divergence operators). For s> n 2 1, let Rn be a bounded H s -domain. We let denote the tangential gradient of a function on. If ϕ : R is differentiable, then in local chart (U,ϑ), ϕ is given by ( ϕ) ϑ = g αβ (ϕ ϑ) ϑ, y α y β { } where g αβ ϑ 2 is the inverse matrix of the induced metric g αβ, and are tangent vectors to. y β β=1 We define the surface divergence operator div to be the formal adjoint of ;ifu is a tangent vector field on so that u N =0on, then u ϕds = ϕ div u ds ϕ H 1 (). In a local chart (U,ϑ), (div u) ϑ = 1 gg αβ ( (u ϑ) ϑ ), g y α y β where g = det(g) is the determinant of the induced metric g αβ. Definition 2.5 (Tangential projection of a vector field onto ). With N denoting the outward unit normal vector field to andv : R n, we define P N : R n R n to be the tangential projection operator given by P N (v) =v (v N) N = ( Id N N ) v. (14) We will also write v for P N (v). Definition 2.6 (Various tangential derivatives). We let u : R n and w : R n denote vectorvalued functions, and let w be given by (14). 1. w u denotes the directional derivatives of u in the direction w. In a local chart (U,ϑ), w u ϑ = g αβ (u ϑ) ϑ j (w j ϑ) =g αβ ϑ (u ϑ) (w ϑ). y α y β y β y α

7 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type u =( u 1,..., u n ), and u w = n w i ( u i ), so that u w is a vector in the i=1 tangent space of. In a local chart (U,ϑ), ( u w) ϑ = g αβ (u j ϑ) ϑ i (w j ϑ) =g αβ (u ϑ) ϑ i (w ϑ). y α y β y α y β The product rule holds: u w = (u w) w u. 3. u w is defined to be the linear map satisfying (at each point of ) ( u w)v =( v u) w for all v R n. In a local chart (U,ϑ), ( αβ ϑj (u r ϑ) u w) ij ϑ = ε irs g (w s ϑ), y β y α where ε irs is the permutation symbol, equaling 1 if (i, r, s) is an even permutation of (1, 2, 3), 1 if (i, r, s) is an odd permutation of (1, 2, 3), and 0 otherwise Basic Inequalities We now state some basic inequalities, that we use throughout the paper. Proposition 2.7. For k > n 2 and 0 l k, let Rn be a bounded C -domain. Then for all σ ( 0, 1 4), there exists a constant C σ depending on σ such that for all f H k () and g H l (), l j f l j g L 2 () C σ f Hk () g H l σ (). (15) j=1 Moreover, for some generic constant C>0, fg H l () C f H () g k H l () f H k (),g H l (). (16) Remark 2.8. Suppose that s> n and 0 r s for some real numbers r and s. Then there exists a 2 generic constant C s > 0 such that fg Hr (R n ) C s f Hs (R n ) g Hr (R n ) f H s (R n ),g H r (R n ). (17) By the Sobolev extension argument, we also conclude that fg Hr () C s f Hs () g Hr () f H s (),g H r () (18) if is a bounded C -domain. The following corollary is a direct consequence of Proposition 2.7 since by Leibniz s rule, l l ( l ),f g = j f l j g. j Corollary 2.9. Let R n be a bounded C -domain for some integer k > n 2. j=1 1. Suppose that spt(g). Then for 0 <σ< 1 and 1 l k1, 4 l,f g C L 2 () σ f H () g max{k,l} H l σ (), (19) where l,f g = l (fg) f l g. 2. Suppose that ζ is a smooth cut-off function such that (a) spt(ζ) U;

8 382 C. H. A. Cheng and S. Shkoller JMFM (b) there exists a C -diffeomorphism ϑ : B(0, 1) U satisfying (i) ϑ : B (0, 1) B(0, 1) {y n > 0} U ; (ii) ϑ : {y n =0}. Define F =(ζf) ϑ and G =(ζg) ϑ. Then for 0 <σ<1/4, 1 l k1, l,f G L2 (B (0,r)) C σ f H max{k,l} () g H l σ (), (20) where l,f G = l (FG) F l G and =( y1,..., yn 1 ) denotes the horizontal derivative. The following two corollaries are direct consequences of Proposition 2.7, and are the foundation of the study of inequalities on H s -domains. The proof of these two corollaries can also be found in Appendix A. Corollary Let O R n be a bounded C -domain, and ψ : O R n be a H k1 -diffeomorphism for some integer k > n 2.IfJ = det( ψ) and A =( ψ) 1, then J H k (O) C ( ψ H (O)), (21a) k A Hk (O) C ( 1/J L (O), ψ Hk (O)). (21b) Corollary Let O R n be a bounded C -domain, and ψ : O R n be an H k1 -diffeomorphism for some integer k > n. Then for all l k1, 2 f H l () C( ψ H (O)) f ψ k H l (O) f H l (), (22a) f ψ Hl (O) C( ψ Hk (O)) f Hl () f H l (). (22b) Remark Note that Corollary 2.11 implies that the interpolation inequalities on a Sobolev class domain are still valid if the domain is bounded and has H k1 regularity for some integer k > n 2.For example, f H 0.5 () C( H k0.5) f ψ H 0.5 (O) C( H k0.5) f ψ 1 2 L2 (O) f ψ 1 2 H1 (O) C( H k0.5) f 1 2 L 2 () f 1 2 H 1 (). Similar arguments can be applied to prove the following theorem whose proof we omit. Theorem Let R n be a bounded domain of class H k1 for an integer k > n. Then for all 2 σ ( 0, 1, there exists constant Cσ depending on 4) H k0.5 and σ such that for all 0 l k1, f H max{k,l} () and g H l (), l j f l j g L 2 () C σ f H max{k,l} () g H l σ (). (23) j=1 Moreover, for a generic constant C depending on H k0.5, fg Hl () C f H max{k,l} () g Hl () f H max{k,l} (),g H l (). (24) By using Theorem 2.13, we can easily establish the following Theorem Let R n be a bounded H k1 -domain for an integer k > n. Then for each integers 2 l {0, 1} ( n 2, k1, there exists a generic constant C = C( H k0.5) such that fg H l () C f L () g H l () f H () g l L () f,g H l () L (). (25)

9 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type Poincaré-Type Inequalities We will make use of the following Poincaré-type inequalities, whose proofs are similar to the proof of the standard Poincaré inequality. Lemma Let k > n 2 be an integer and R3 be a bounded H k1 -domain with outward-pointing unit normal N. Weset Hτ 1 () { u : R 3 u H 1 (), u N =0on }, Hn() 1 { u : R 3 u H 1 (), u N =0on }. Then and u L 2 () C u L 2 () u H 1 τ (), (26) u L2 () C u L2 () u H 1 n(). (27) 2.5. Commutation with Mollifiers Our proof of elliptic regularity relies on a mollification procedure (rather than the use of difference quotients). Definition 2.16 (Standard mollifiers). Let η(x) =C exp ( 1 ) for x < 1andη vanishes outside the x 2 1 unit ball, where C is chosen so that η L1 (R n ) = 1. The standard mollifier η ɛ is defined by We will make use of the following η ɛ (x) = 1 ɛ η( x). n ɛ Lemma For f W 1, () and g L 2 () with compact support, there is a generic constant C independent of ɛ such that ( η ɛ,f g ) L2 () = η ɛ (fg) fη ɛ g L2 () C f W 1, () g L 2 () (28) for all 0 <ɛ<min { dist (, spt(f) ), dist (, spt(g) )}. Since we are dealing with problems on domains with boundaries, we make use of the horizontal convolution-by-layers operator, introduced in 10. We define the horizontal convolution-by-layers operator Λ ɛ as follows: Λ ɛ f(x h,x n )= ρ ɛ (x h y h )f(y h,x n )dy h for f(,x n ) L 1 (R n 1 ), R n 1 where ρ ɛ (x h )= 1 ɛ n 1 ρ( x h ɛ ),andρ C c (R n 1 ) is given by ρ(x) =C exp( 1 x 2 1 )if x < 1andρ(x) =0 if x h 1. The constant C is chosen so that R n 1 ρdx= 1. It follows that for ɛ>0, 0 ρ ɛ C c (R n 1 ) with spt(ρ ɛ ) B(0,ɛ). (Here, spt stands for support.) It should be clear that Λ ɛ smooths functions defined on R n along all horizontal subspaces, but does not smooth functions in the vertical x n -direction. On the other hand, we can restrict the operator Λ ɛ to act on functions f : R n 1 R as well, in which case Λ ɛ becomes the usual mollification operator. Associated to Λ ɛ, we need the following

10 384 C. H. A. Cheng and S. Shkoller JMFM Lemma For f W 1, (R n ) and g L 2 (R n ), there is a generic constant C independent of ɛ such that ( Λɛ,f g ) = L 2 (R Λɛ (fg) fλ n ) ɛ g C L 2 (R f W g L (29) n ) 1, (R n ) 2 (R n ) for all ɛ> The Piola Identity Lemma 2.19 (Piola identity). Letψ : R n R n be a diffeomorphism, and a ij n n be the cofactor matrix of ψ. Then a ji =0. (30) x j The proof can be found in Vector-Valued Elliptic Equations Let R n denote a bounded domain whose regularity will be specified below. In this section, we study a vector-valued elliptic equation (Lu) i = u i ( jk ) ui a = f i in, (31a) x j x k with special types of boundary conditions, where u =(u 1,...,u n )andf =(f 1,...,f n ) are vector-valued functions, and a jk is a two-tensor satisfying the positivity condition a jk ξ j ξ k λ ξ 2 ξ R n (32) for some λ>0. Since u R n, n boundary conditions are needed to solve the system uniquely. We consider a mixed-type boundary condition given by u w =0 on, (31b) ( P w a jk u ) N j g = 0 x k on, (31c) where w is a uniformly continuous vector field defined in a neighbourhood of which vanishes nowhere on, N is the outward-pointing unit normal to, g is a vector-valued function defined on, and P w : R n R n is the projection map given by P w (v) =v (v w) w 2 w = ( Id w w w 2 ) v. (33) The condition (31b) specifies the component of the vector u in the direction of w, while the condition jk ui (31c) specifies the (n 1) components of the Neumann derivative a N j. x k Integration by parts with respect to x j leads to the following identity: ( jk ) ui a ϕ i jk ui ϕ i jk ui dx = a dx a N j ϕ i dx x j x k x k x j x k jk ui ϕ i = a dx g i jk ur w r w i a N j x k x j x k w 2 ϕ i dx, which, in turn, motivates the following

11 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type 385 Definition 3.1. Let V = { v H 1 () } v w =0on. A function u Vis called a weak solution to (31) if jk ui ϕ i (u, ϕ) L 2 () a dx =(f, ϕ) L x k x 2 () g, ϕ ϕ V, (34) j where, denotes the duality pairing between distributions in H 1 2 () and functions in H 1 2 (). With the help of the Lax-Milgram theorem it is easy to conclude the following Theorem 3.2 (Weak solutions). Suppose that a jk L () satisfies the positivity condition (32), andw is a uniformly continuous vector field defined in a neighborhood of which vanishes nowhere on. Then for all f L 2 () and g H 0.5 (), there exists a unique weak solution to (31) in V, and the weak solution u satisfies u H1 () C f L2 () g H 0.5 (). (35) Remark 3.3. Let u H 2 () V be a weak solution to (31). Integrating by parts with respect to x j,we find that ( u i ( a jk ui ) ) f i ϕ i ( dx a jk ui N j g ) ϕ i ds =0 ϕ V. x j x k x k Since ϕ w =0on, the Neumann-type boundary condition (31c) is thus shown to hold. We next establish the regularity theory for weak solutions satisfying (34). Definition 3.4 (Partition-of-unity subordinate to an open cover). For a given collection of open sets {U m } K m=1 R n, there exists a partition of unity {ζ m } K m=1 subordinate to {U m } K m=1 such that ζ m Cc (R n ) for all 1 m K. In fact, if {ξ m } K m=1 is a smooth partition-of-unity subordinate to {U m } K m=1, by defining {ζ m } K m=1 by ζ m = ξm 2 K, j=1 ξ2 j then 0 ζ m 1, spt(ζ m ) U m, ζ m C c (R n ) for all 1 m K, and that K m=1 ζ m = The Case that the Coefficients a jk are of Class C k Now we study the regularity of the weak solution u to (31) when the coefficients a jk are of Sobolev class H k,k N, and the domain is C k1. To do so, we shall first establish this regularity result under the more restrictive assumption that the coefficients a jk are in C k (). Theorem 3.5 (Regularity for the case that a jk C k () and C k1 ). Suppose that for k N, R n is a bounded C k1 -domain, a jk C k () satisfies the positivity condition (32), w is C k1 in an open neighborhood U of, and w > 0 on. Then for all f H k 1 () and g H k 0.5 (), the weak solution u to (31) in fact belongs to H k1 (), and satisfies u H k1 () C f H k 1 () g H k 0.5 () (36) for a constant C depending on a C k (), w C k1 (U) and C k1. Proof. Our goal is to establish the regularity theory for weak solutions u V to (36). We prove this by induction and divide the proof into several steps as follows: Step 1: (Interior regularity) Suppose that u H l () for 1 l k. Let χ be a smooth function with spt(χ), and 0 <ɛ<dist(spt(χ), ). We define ϕ =( 1) l χ η ɛ 2l( η ɛ (χu) )

12 386 C. H. A. Cheng and S. Shkoller JMFM with no summation over the index l, and we let {η ɛ } ɛ>0 denote a sequence of standard mollifiers given in Definition We note that this choice of test function ϕ is in V, and can hence be used in the variational formulation (34). First, we see that (u, ϕ) L2 () = l η ɛ (χu) 2 L 2 (). (37) Since convolution is self-adjoint, the product rule shows that jk ui ϕ i a dx = η ɛ (a jk l 1 (χu i ) ), k l η ɛ (χu i ), j dx x k x j l 2 ( l 1 ) η ɛ (( l 1 r a jk ) r (χu i ) ), k l η ɛ (χu i ), j dx r r=0 l η ɛ (a jk u i ) χ, k l η ɛ (χu i ), j dx l 1 η ɛ (a jk χ, j u i,k) l1 η ɛ (χu i ) dx. Using the commutator notation A, B f = A(Bf) B(Af), the first term on the right-hand side of the identity above can be rewritten as η ɛ (a jk l 1 (χu i ) ), k l η ɛ (χu i ), j dx = a jk η ɛ l 1 (χu i ), k l η ɛ (χu i ), j dx ηɛ,a jk l 1 (χu i ), k l η ɛ (χu i ), j dx = a jk l η ɛ (χu i ), k l η ɛ (χu i ), j dx ( a jk ) l 1 η ɛ (χu i ), k l η ɛ (χu i ), j dx ηɛ,a jk l 1 (χu i ), k l η ɛ (χu i ), j dx ; thus, after rearranging terms, the positivity condition (32) implies that λ l1 ( η ɛ (χu) ) 2 L 2 () jk ui ϕ i a dx ( a jk ) l 1 η ɛ (χu i ), k l η ɛ (χu i ), j dx x k x j ηɛ,a jk l 1 (χu i ), k l η ɛ (χu i ), j dx l 2 ( l 1 ) r r=0 η ɛ (( l 1 r a jk ) r (χu i ), k ) l η ɛ (χu i ), j dx l η ɛ (a jk u i χ, k ) l η ɛ (χu i ), j dx l 1 η ɛ (a jk χ, j u i,k) l1 η ɛ (χu i ) dx. The last five integrals on the right-hand side of the inequality above can be estimated using Hölder s inequality and the commutation estimate (28), and we obtain that λ l1( η ɛ (χu) ) 2 l1( η L 2 () ɛ (χu i ) ). (38) L2 () jk ui ϕ i a x k dx C a x C l () u H l () j

13 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type 387 On the other hand, it is easy to see that f ϕ dx = l 1 η ɛ (χf i ) l1 η ɛ (χu i ) dx C f H l 1 () l1 ( η ɛ (χu) ) (39). L2 () Summing (37), (38) and (39), we find that l (η ɛ (χu) 2 λ l1( η L 2 () ɛ (χu) ) 2 L 2 () C f H l 1 () a C l () u l1 H () ( η l ɛ (χu) ) ; L 2 () therefore, by Young s inequality, l (η ɛ (χu) 2 λ L 2 () l1 ( η ɛ (χu) ) 2 L 2 () C f 2 H λ l 1 () a 2 C l () u 2 H l () λ l1 η ɛ (χu i ) 2 L 2 () which further implies that l1 ( η ɛ (χu) ) C L f 2 () λ H l 1 () a C l () u H l (). (40) Since f H k 1 () and a C k (), the assumption that u H l () implies that the right-hand side of (40) is bounded independent of the smoothing parameter ɛ. Therefore, we can pass to the limit as ɛ 0 in (40) and obtain that f H l 1 () a C l () u H l () l1 (χu) L 2 () C λ or χ l1 u L2 () C f λ H l 1 () ( a C l () λ) u H l (). (41) This implies that u H l1 loc (). So, we have shown that if u Hl () for 1 l k then, in fact, u H l1 loc () and u satisfies (41). Now, we note that by Theorem 3.2, u H 1 () and hence u Hloc 2 (). This allows us to integrate by parts in the variational formulation (34) and find that u The above identity implies that ( a jk u ) f x j x k u i ϕ dx =0 ϕ C c (). ( jk ) ui a = f i a.e. in. (42) x j x k Step 2: (Regularity for tangential derivatives of u in the w-direction near ) We now initiate the induction procedure. We assume that u H l () for 1 l k 1, and prove then that u H l1 (). Let {U m } K m=0, {ϑ m } K m=1, and{r m } K m=1 denote the system of local charts given in Proposition 2.1 with ε 1, and let 0 ζ m 1inCc (U m ) denote a partition-of-unity subordinate to the open covering U m as given in Definition 3.4. Wefixedm {1,...,K}, and work with the chart ϑ m : B(0,r m ) U m.on B(0,r m ), we define the new functions ζ = ζ m ϑ m, ũ = u ϑ m, w = w ɛ ϑ m, f = f ϑm, g = g ϑ m and ϕ = ϕ ϑ m. With A =( ϑ m ) 1, we define b rs =(a jk ϑ)a k sa j r. Then the matrix b is positive-define. In fact, since ϑ m Id L () 1, b rs ξ r ξ s =(a jk ϑ m )A s ka r jξ r ξ s λ A T ξ 2 λ 2 ξ 2. (43)

14 388 C. H. A. Cheng and S. Shkoller JMFM Setting x = ϑ m (y), the change-of-variables formula shows that the variational formulation (34) takes the form rs ũi ϕ i ũ ϕ dy b dy = f ϕ dy g ϕ ds ϕ y s y Ṽm, (44) r {y n=0} where Ṽm = { ϕ H 1 () } ϕ w =0on {y n =0}, ϕ =0onR n. With Δ 0 = n 1 2 α=1 denoting the horizontal Laplace operator, we define y 2 j ϕ i =( 1) l ζ w i Λ ɛ Δ l 0Λ ɛ ( ζũ w) ϑ 1 m, where Λ ɛ is the horizontal convolution-by-layers operator given by Λ ɛ φ(y h,y n )= ρ ɛ (y h z h )φ(z h,y n )dz h for φ(,y n ) L 1 (R n 1 ), R n 1 where y h =(y 1,...,y n 1 ). Recalling that = ( ),..., denotes the horizontal gradient, we note y 1 y n 1 that l v l w = l 1 v l1 w = n 1 α 1=1 n 1 α 1=1 n 1 α l =1 n 1 α l 1 =1 l v y α1 y αl l w y α1 y αl, l 1 v l 1 Δ 0 w, y α1 y αl 1 y α1 y αl 1 and so forth. Since ϕ w =0on, ϕ V and can be used as a test function. The use of ϕ as a test function in (34) implies that rs ũi ϕ i l (ũ, ϕ) L 2 () b dy C f y s y Hl () g H l 0.5 () Λɛ ( ζũ w) H1 (B r m). (45) Similar to (37), integrating by parts with respect to y h implies that (u, ϕ) L 2 () = l Λɛ ( ζũ w) 2 L 2 (B m). Now we focus on the second term on the left-hand side of (45). Integrating by parts in the horizontal direction (using ) yields B m rs ũi ϕ i b dy = y r y s = B m l 2 l Λ ɛ ( b rs ζũm,s w ) l Λ ɛ ( ζũ w), r dy Λ ɛ ( b rs l 1 ( ζũ w), s ) l Λɛ ( ζũ w), r dy ( l 1 ) ( l 1 k Λ ɛ b rs k ) l ( ζũ w), s Λɛ ( ζũ w), r dy k k=0 Bm l ( Λ ɛ b rsũ i ( ζ w i ) l ), s Λɛ ( ζũ w), r dy. (46) B m

15 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type 389 For the first term on the right-hand side of (46), as in Step 1, we find that ( Λ ɛ b rs l 1 ) l ( ζũ w), s Λɛ ( ζũ w), r dy = b rs Λ ɛ l 1 l ( ζũ w), s Λɛ ( ζũ w), r dy ( Λɛ,b rs l 1 ) l ( ζũ w), s Λɛ ( ζũ w), r dy = b rs l Λ ɛ ( ζũ w), s l Λ ɛ ( ζũ w), r dy ( b rs )Λ ɛ l 1 ( ζũ w), s l Λ ɛ ( ζũ w), r dy ( Λɛ,b rs l 1 ) l ( ζũ w), s Λɛ ( ζũ w), r dy. (47) B m The positivity condition (43) and the commutation estimate (29) imply that ( Λ ɛ b rs l 1 ) l ( ζũ w), s Λɛ ( ζũ w), r dy λ l Λɛ ( ζũ w) 2 2 C u l L 2 () H () l Λɛ ( ζũ w) u H 1 () H l (). (48) For the remaining terms on the right-hand side of (46), we apply Hölder s inequality and find that l 2 ( l 1 k k=0 ) Bm B m ( l 1 k Λ ɛ b rs k ) l ( ζũ w), s Λɛ ( ζũ w), r dy l ( Λ ɛ b rsũ i ( ζ w i ) l ), s Λɛ ( ζũ w), r dy l C u Hl () Λɛ ( ζũ w) u L 2 () H l (), (49) where C depends on a C l (), w C l1 (U) and C (). As a consequence, Young s inequality together l1 with (45) (48) implies that l Λɛ ( ζũ w) 2 L 2 (B m) λ l Λɛ ( ζũ w) 2 L 2 (B m) C δ u 2 H l () f 2 H l 1 () g 2 H l 1.5 () δ l Λɛ ( ζũ w) 2 L 2 (B m), which, by choosing δ>0 sufficiently small, shows that l Λɛ ( ζũ w) C H f 1 () H l 1 () g H l 0.5 () u Hl () for a constant C = C( a C l (), w C (U), l1 C l1). Since the estimate above is independent of the smoothing parameter ɛ, by passing to the limit as ɛ 0 we conclude that l ζ (ũ w) H1 () C u Hl () f H l 1 () g H l 0.5 (). Since both w and ϑ m are C k1 in the support of ζ, it follows that lũ ζ w H C f 1 () H l 1 () g H l 0.5 () u Hl (). (50)

16 390 C. H. A. Cheng and S. Shkoller JMFM Step 3: (Regularity for tangential derivatives of u in the w -directions near ) Estimate (50) provides regularity for the vector ζ l ũ w. Next, we establish the regularity of ζ l ũ w. We define ϕ i =( 1) l ζλɛ Δ l 0Λ ɛ ( ζũ i ) ( ζ w Λɛ Δ l 0Λ ɛ ( ζũ) ) w i w 2 =( 1) l ζλɛ Δ l 0Λ ɛ ( ζũ i ) ( ζλɛ Δ l 0Λ ɛ ( ζũ j ) ) w j w i w 2. Note that ϕ is the projection of the vector ζλ ɛ Δ l 0Λ ɛ ( ζũ) onto the affine space with normal w, soϕ V and can be used as a test function in (44). Following the similar computation in Step 2 above, we have that l Λɛ ( ζũ) 2 λ l L 2 () Λɛ ( ζũ) 2 4 L 2 () C δ f 2 H l 1 () g 2 H l 1.5 () u 2 H l () ( 1) l1 b rs ũ i, s ( ζλɛ Δ l 0Λ ɛ ( ζũ j m) ) w j w i w,r 2 dy C δ f 2 H l 1 () g 2 H l 1.5 () u 2 H l () ( 1) l1 b rs w ζ ( w 2 ũ, s Λɛ Δ l 0Λ ɛ ( ζũ j, r ) ) w j dy C δ f 2 H l 1 () g 2 H l 1.5 () u 2 H l () b rs w 2 l ( ζũ m,s w) ( Λ ɛ l Λ ɛ ( ζũ j, r ) ) w j dy. B m Applying estimate (50) and Young s inequality, b rs w 2 l ( ζũ m,s w) ( Λ ɛ l Λ ɛ ( ζũ j m,r) ) w m j dy C l ( ζ w ũ) L2 l Λ () ɛ ( ζ ũ) L2 () C δ f 2 H l 1 () g 2 H l 1.5 () u 2 H l () thus by choosing δ>0 sufficiently small, we conclude that δ l Λɛ ( ζũ) 2 L 2 (B m) 2δ l Λɛ ( ζũ) 2 L 2 (B m) 3δ l Λɛ ( ζũ) 2 L 2 (B m) δ l Λɛ ( ζ ũ) 2 L 2 () ; l Λ ɛ ( ζũ) u 2 C 2 H 1 () H l () f 2 H l 1 () g 2 H l 1.5 () Again, due to the ɛ-independence of the right-hand side, we conclude that ζ l ũ H 1 (B u m) C Hl () f H l 1 () g H l 0.5 () for a constant C = C( a C l (), w C l1 (U), C l1). Step 4: (Regularity for normal derivatives of u near ) Multiplying (42) byζ m and then composing with ϑ m, by the Piola identity (30) we obtain that ζũ ζ ( b rs ) ũ, s,r = ζ(f ϑ m ) a.e. in. Letting l 1 j j act on the equation above, we find that ζb rs l 1 j j ũ, rs = F (l,j) a.e. in (52) for some F (l,j) L 2 () satisfying F (l,j) L 2 () C f H l 1 () u Hl (),. (51)

17 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type 391 where the constant C depends on a C l (). Using (43), bnn > 0; thus (52) further implies that ζ l 1 j j ũ, nn = 1 b nn F (l,j) ζ b rs l 1 j ũ, rs. (r,s) (n,n) Now we argue by induction on 0 j l 1. When j =0,(51) shows that l 1ũ,nn ζ L2 C u () Hl () f H l 1 () g H l 0.5 () which, combined with (51), provides the estimate l 1 ζ 2ũ C L2 u () H l () f H l 1 () g H l 0.5 (). Repeating this process for j =1,...,l 1, we conclude that ζ l1 ũ L 2 (B m) C u Hl () f H l 1 () g H l 0.5 (). (53) The combination of (41) and (53), as well as the induction process, proves the theorem The Case that the Coefficients a jk are of Sobolev Class We are now in position to study the regularity of solution u to (31) when the coefficient a jk and the domain is of Sobolev class. We first prove the following rather technical Theorem 3.6 (Regularity for the case that a jk H k () and C ). Let R n be a bounded C -domain. Suppose that for an integer k > n 2 and 1 l k, ajk H k () satisfies the positivity condition a jk ξ j ξ k λ ξ 2 ξ R n, and w H max{k,l1} () (or w H max{k 1 2,l 1 2 } ()) such that w vanishes nowhere on. Then for all f H l 1 () and g H l 0.5 (), the weak solution u to (31) belongs to H l1 (), and satisfies u H l1 () C f H l 1 () g H l 0.5 () P ( a Hk ()) ( ) f L 2 () g H 0.5 () (54) for a constant C = C ( w H max{k,l1} ()) and a polynomial P. Proof. Let {U m,ϑ m } K m=1 be a collection of charts of given in Proposition 2.1, {ζ m } K m=1 a partitionof-unity subordinate to {U m } K m=1 given in Definition 3.4, and let E : H k1 () H k1 (R n ) denote a Sobolev extension operator. We define a ɛ = η ɛ (Ea), f ɛ = η ɛ (Ef), w ɛ = η ɛ (Ew). Finally, let g ɛ denote a smooth regularization of g defined by K ( ) g ɛ = ζm Λɛ ( ζm g) ϑ m ϑ 1 m. m=1 It follows that for ɛ 1 sufficiently small, a jk ɛ (x)ξ j ξ k λ 2 ξ 2 ξ R n,x. (55) Hence by Theorem 3.5, the solution u ɛ to the variational problem u ɛ ϕ dx a jk u ε ɛ ϕ dx = f x k x ɛ ϕ dx g ɛ ϕ ds ϕ V j satisfies u ɛ H k () for all k 1. We next establish an ɛ-independent upper bound for u ɛ H (). l1 Step 1: (Regularity for tangential derivatives of u in the w-direction near ) We fix m {1,...,K} and set ζ = ζ m ϑ m, ũ = u ɛ ϑ m, w = w ɛ ϑ m, f = fɛ ϑ m, g = g ɛ ϑ m and ϕ = ϕ ϑ m.

18 392 C. H. A. Cheng and S. Shkoller JMFM With A =( ϑ) 1, we define b rs ɛ positive-definite since using (55), =(a jk ɛ ϑ)a s k Ar j. Then, as ϑ Id L (B m) 1, the matrix b ɛ is b rs ɛ ξ r ξ s =(a jk ɛ ϑ)a s ka r jξ r ξ s λ 2 AT ξ 2 λ 8 ξ 2 ξ R n. (56) Setting x = ϑ m (y), and using the change-of-variables formula, we find that the variational formulation (34) can be written as ũ ϕ dy b rs ũ i ϕ i ɛ dy = f ϕ dy g ϕ ds ϕ y s y Ṽm, (57) r {y n=0} where Ṽm = { ϕ H 1 () } ϕ w =0on {y n =0}, ϕ =0onR n. With Δ0 denoting the horizontal Laplace operator and denoting the horizontal gradient defined in Step 2 in the proof of Theorem 3.5, we define ϕ i =( 1) l ζ w i Δ l 0( ζũ w), so that (ũ, ϕ) L2 () b rs ũ i ϕ i ɛ dy y s y r C C B m f H l 1 () g H l 0.5 ( {y n=0}) l ( ζũ w) H1 () l f H l 1 () g H l 0.5 () ( ζũ w) H 1 (), (58) where we have used Young s inequality for convolution to conclude the last inequality. We focus now on the left-hand side of (58). As in the proof of Theorem 3.5, we have that (ũ, ϕ) L 2 () = l ( ζũ w) 2. L 2 () Moreover, b rs ũ i ϕ i ɛ dy =( 1) l y s y r = B m B m b rs ɛ ũi, s ζ w i Δ l 0( ζũ w), r dy l b rs ɛ ( ζũ w), s l ( ζũ w),r dy B m B m l b rs ɛ ũi ( ζ w i l ), s ( ζũ w),r dy l 1 b rs ɛ ũi, s ( ζ w i ), r l1 ( ζũ w) dy. (59) For the first term on the right-hand side of (59), we make use of the positivity condition (56) and Young s inequality to conclude that l b rs l ɛ ( ζũ w), s ( ζũ w),r dy = b rs ɛ l ( ζũ w), s l l ( ζũ w), r dy,b rs l ɛ ( ζũ w), s ( ζũ w),r dy ( λ 8 δ) l ( ζũ w) 2 L 2 () C l δ,bɛ ( ζũ w) 2 L 2 (). (60) Then, Corollary 2.9 with σ = 1 shows that 8 l b rs l ɛ ( ζũ w), s ( ζũ w),r dy ( λ 8 δ) l ( ζũ w) 2 C L 2 () δ a 2 H k () uɛ 2. H l 7 8 () B m

19 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type 393 For the second and the third terms on the right-hand side of (59), we use the inequality (16), and find that l b rs ɛ ũi ( ζ w i l ), s ( ζũ w),r dy l 1 b rs ɛ ũi, s ( ζ w i l1 ), r ( ζũ w) dy B m B m C δ a 2 H k () uɛ 2 H l () δ l ( ζũi w i ) 2 L 2 (B m) for a constant C δ depending on w H max{k,l1} (). Choosing δ>0 sufficiently small in (60) and (61), we conclude that l ( ζũ w) L2 l ( ζũ w) () L2 () (62) C f H l 1 () g H l 0.5 () a Hk () u ɛ H l 7 8 () for a constant C = C ( w H max{k,l1} ()). Step 2: (Regularity for tangential derivatives of u in the w -directions near ) Now we estimate u ɛ in the directions perpendicular to w. Similar to Step 3 in the proof of Theorem 3.5, weuse ϕ i = ζδ l 0( ζũ) ( ζ w Δ l 0 ( ζũ) ) w w 2 as a test function in (57) and find that l ( ζũ) 2 L 2 () ( λ 8 δ) l ( ζũ) 2 L 2 () C f 2 H l 1 () g 2 H l 0.5 () C δ a 2 H k () uɛ 2 H l 7 8 () ( 1) l w j w 2 ( ζũ w)δ l 0( ζũ j ) dy ( 1) l1 b rs ɛ ũi l, s ζδ 0 ( ζũ j ) wj w i, w 2 r dy. Integrating by parts in the horizontal direction (using ), by Corollary 2.9 and (62) we obtain that ( 1) l w j w 2 ( ζũ w) 2l ( ζũ j ) dy l 1( w j w ( ζũ L l1 w)) ( ζũ j ) (B L 2 () m) (61) C δ u ɛ 2 H l 1 () δ l ( ζũ j ) 2 L 2 (B m) (63) and ( 1) l1 B m b rs ɛ ũi, s ζ 2l ( ζũ j ) wj w i, w 2 r dy C l (b ɛ ũ) L 2 (B m) b ɛ l ( ζũ w) L2 (B m) l,bɛ ( ζũ w) L2 (B m l ( ζũ) L 2 (B m) C δ a 2 H k () uɛ 2 H l 7 8 () δ l ( ζũ) 2 L 2 (B m), (64) in which the constant C δ also depends on w H max{k,l1} (). Therefore, choosing δ>0 sufficiently small in (63) and (64), we conclude that

20 394 C. H. A. Cheng and S. Shkoller JMFM lũi ζ l L2 ζ () ũ i L2 () C u ɛ H l 1 () f H l 1 () g H l 0.5 () a Hk () u ɛ H l 7 8 () for a constant C = C ( w H max{k,l1} ()). Step 3: (Regularity for normal derivatives of u near ) In this step, we follow the procedure of Step 4 in the proof of Theorem 3.5. Since u ɛ is a strong solution, it follows that u ɛ ( a jk u ɛ ) ɛ = f x j x ɛ in ; k thus the Piola identity (30) implies that ζ ( b rs ɛ ũ, ) s,r = ζ ( ũ (f ɛ ϑ) ) in. With ũ, n and ũ, nn denoting ũ y n ζb nn ɛ ũ, nn = ζ ũ (f ɛ ϑ) b nn and 2 ũ, respectively, we have that yn 2 ɛ,nũ, n (r,s) (n,n) Let G = ζ ũ (f ɛ ϑ) b nn ɛ,nũ, n (r,s) (n,n) brs ɛ,rũ, s b rs ɛ,rũ, s (r,s) (n,n) b rs ɛ ũ, sr,andfor0 j l 1 we define G (l,j) = l 1 j j G l 1 j j,b rs ɛ ũ, sr. Letting l 1 j j act on (66), we obtain that ζb nn ɛ l 1 j j ũ, nn = G (l,j) (r,s) (n,n) (65) in B m. (66) ζb rs ɛ l 1 j j ũ, rs (67) Now we estimate G (l,j) in L 2 (). First we note that l 1 j j ζ(ũ fɛ ϑ) C L u ɛ 2 () H l 1 () f H l 1 (). Moreover, since l k, by Proposition 2.7 with σ = 1 we find that 8 l 1 j j ( ζb nn,n ũ, n ) l 1 j L 2 () j (b rs ɛ,rũ, s ) L 2 () (r,s) (n,n) l 1 C j1 a l 1 j u ɛ L2 () = C j=0 C a Hk () u H l 7 8 (). Finally, by Corollary 2.9 with σ = 1 8, l 1 j j nn, ζb ɛ ũ, L2 nn () C ɛ a H k () u ɛ H l 7 8 (). (r,s) (n,n) l j a l j u ɛ L2 () j=1 l 1 j j rs, ζb ɛ ũ, L2 rs () Therefore, G (l,j) satisfies G (l,j) L2 () C u H l 1 () f H l 1 () a H () u ɛ k H l 7. 8 ()

21 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type 395 Now we argue by induction on 0 j l 1. By the positivity condition (55), b nn ɛ λ so that when 4 j = 0, the inequalities (65) and (67) show that l 1ũ,nn ζ L 2 () G (l,j) L 2 () b rs ɛ l 1ũ,rs ζ L () L 2 () (r,s) (n,n) C u H l 1 () f H l 1 () g H l 0.5 () a H k () uɛ l 7 H 8 () which, combined with (65), provides the estimate l 1 ζ 2ũ L2 () C u H l 1 () f H l 1 () g H l 0.5 () a Hk () u ɛ H l 7 8 () Repeating this process for j =1,...,l 1, we conclude that ζ lũ i L2 ζ l1ũ i () L2 () (68) C u ɛ H l 1 () f H l 1 () g H l 0.5 () a Hk () u ɛ H l 7 8 () for a constant C = C ( w H max{k,l1} ()). Step 4: (Completing the regularity theory) Letχ 0 be a smooth cut-off function so that spt(χ). Arguing as in Step 1 of the proof of Theorem 3.5, we find that χ l u ɛ L2 () χ l1 u ɛ L2 () C f H l 1 () a H () u ɛ k H l 7. (69) 8 (). Combining (68) and (69) establishes the inequality u ɛ H l1 () C f H l 1 () g H l 0.5 () ( 1 a H ()) u ɛ k H l 7 8 () for a constant C = C ( w H ()). Since the interpolation inequality provides max{k,l1} (70) u ɛ H l 7 8 () C uɛ 1 1 8l H l1 () uɛ 1 8l H 1 (), Young s inequality further shows that u ɛ H l1 () C δ f H l 1 () g H l 0.5 () P ( a Hk ()) u ɛ H 1 () δ u ɛ H l1 () (71) for a polynomial function P. Finally, choosing δ>0sufficiently small and then passing to the limit as ɛ 0, by the fact that a jk ɛ a jk in H k (), w ɛ w in H max{k,l1} (), f ɛ f in H l 1 (), g ɛ g in H l 0.5 (), we find that u ɛ converges to the unique weak solution u to (31), and the inequality (36) is established by substitution of the H 1 -estimate (35) in the inequality (71). Having established the regularity theory for the case that a jk H k () and C, we can now prove the following Corollary 3.7 (Regularity for the case that a jk H k () and H k1 ). Let R n be a bounded H k1 -domain for an integer k > n 2. Suppose that ajk H k () satisfies the positivity condition a jk ξ j ξ k λ ξ 2 ξ R n,

22 396 C. H. A. Cheng and S. Shkoller JMFM and for 1 l k, w H max{k,l1} () (or w H max{k 1 2,l 1 2 } ()) such that w vanishes nowhere on. Then for all f H l 1 () and g H l 0.5 (), the weak solution u to (31) belongs to H l1 (), and satisfies u H l1 () C f H l 1 () g H l 0.5 () P ( a H ()) ( ) (72) f k L2 () g H 0.5 () for a constant C = C ( w H (), max{k,l1} H k0.5) and a polynomial P. Proof. Using Definition 2.2, weletψ : O beanh k1 -diffeomorphism, where O is a bounded C -domain. Making the change-of-variables x = ψ(y), with A denoting ( ψ) 1 we can rewrite (31) as ū ( ā jk A r y ja s ū ) k = r y f ā jk A s A r j ū k in O, s y r y s ū w =0 on O, ( P w ā jk A r ja s ū ) k Nr ḡ = 0 on O, y s where we use the bar notation to denote the variable defined on O through the composition with ψ: ā = a ψ, ū = u ψ, w = w ψ, f = f ψ, ḡ = g ψ, and N is the outward-pointing unit normal to O. By Proposition 2.7, Corollaries 2.10, and2.11, we find that ā jk A s ka r j H k (O) C( H k0.5) a H (), k w H max{k,l1} () C( H k0.5) w H (), max{k,l1} f H l 1 (O) ḡ H l 0.5 ( O) C( H k0.5) f H l 1 () g H l 0.5 (). Theorem 3.6 then implies that ū H l1 (O) C f H l 1 (O) ḡ H l 0.5 ( O) P ( AāA T H (O)) ( f k L2 (O) ḡ H 0.5 ( O) C f H l 1 (O) g H l 0.5 () P ( a Hk (), H k0.5) ( f L 2 () g H 0.5 () for a constant C = C ( w H max{k,l1} (), H k0.5). Estimate (72) then follows from Corollary Corollary 3.8 (Regularity for the classical Dirichlet and Neumann problems). Let R n be a bounded H k1 -domain for an integer k > n 2,andajk H k () satisfies the positivity condition a jk ξ j ξ k λ ξ 2 ξ R n. Let l be an integer such that 1 l k. Then 1. For any f H l 1 (), the weak solution u H0 1 () to the Dirichlet problem ( jk u ) a = f in, x j x k u =0 on, belongs to H l1 (), and satisfies u H l1 () C f H l 1 () (73) for a constant C = C ( a Hk (), H k0.5). ) )

23 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type For any f H l 1 () and g H l 0.5 (), the weak solution v H 1 () to the Neumann problem v ( jk v ) a = f x j x k in, jk u a N j = g x k on, belongs to H l1 (), and satisfies v H l1 () C f H l 1 () g H l 0.5 () (74) for a constant C = C ( a H k (), H k0.5). Proof. It suffices to prove the case that u and v are both scalar functions. 1. Let w =(1, 0,...,0), and u be the solution to u ( a jk u ) =(f u, 0,...,0) in, x j x k u w =0 on, ( P w a jk u ) N j = 0 on. x k Then u = u 1 (in fact, u =(u, 0,...,0)); thus (72) implies that u H l1 () C f u H l 1 () C f H l 1 () u H l 1 () for a constant C = C ( a H k (), H k0.5). By interpolation and Young s inequality, u H l1 () C f H l 1 () C δ u H 1 () δ u H l1 () ; thus (73) follows from choosing δ>0 sufficiently small and the estimate for the weak solution. 2. Let w =(0, 1, 0,...,0), and v be the solution to v ( a jk v ) =(0,f,0,...,0) in, x j x k v w =0 on, ( P w a jk v ) N j =(0,g,0,...,0) on. x k Then v = v 2 (in fact, v =(0,v,0,...,0)); thus (74) follows from (72). In general, elliptic estimates with Sobolev class coefficients a jk have a nonlinear dependence on the Sobolev norm of a jk. There are, however, situations when the estimate becomes linear with respect to the Sobolev norm of a jk. Theorem 3.9 (Regularity estimate which is linear in the coefficient matrix a jk ). Suppose that the assumptions of Theorem 3.6 are satisfied with l =k, and that furthermore a Id L () ɛ 1. Then the solution u H k1 () to (31) satisfies u H k1 () C f H k 1 () g H k 0.5 () ( 1 a H ()) k u L () (75) for a constant C = C ( w H k1 ()). (Recall that w is an H k1 () vector field defined in a neighborhood of which vanishes nowhere on.)

24 398 C. H. A. Cheng and S. Shkoller JMFM Proof. By Theorem 3.6 we know that u H k1 () so Eq. (31) holds in the pointwise sense. We rewrite (31) as u Δu = f ( (a jk δ jk) u ) f x j x k in, u w =0 on, P w P w N j g k ( u ) = g N ( (δ jk a jk) u x ) on. We then conclude from Theorem 3.6 that u H k1 () C f H k 1 () g H k 0.5 () C f H k 1 () g H k 0.5 () ( (δ jk a jk) u ) H k 1 x j x k () Pw ( (δ jk a jk) u x k N j ) H k 0.5 () for a constant C = C ( w H ()). By Theorem 2.14, k1 ( (δ jk a jk) u ) H x j x k k 1 () C ( δ jk a jk) u x k H k () δ a L () u H k () δ a H k () u L () Cɛ u H k1 () C ( 1 a Hk ()) u L (). Similarly, by the trace estimate (and the fact that k 0.5 > n 1, where (n 1) is the dimension of ), 2 ( (δ P w jk a jk) u ) N j H C ( δ jk a jk) u H N j x k k 0.5 () x k k 0.5 () C δ a L () u H k 0.5 () δ a H k 0.5 () u L () Cɛ u H k1 () C ( 1 a Hk ()) u L () for a constant C = C ( ) n w H k1 (). The embedding H 2 δ () C 0,α () for some α>0 further suggests that u is uniformly Hölder continuous; thus u L () u L (). (75) then follows from the assumption that ɛ 1. Remark As we noted, inequality (75) is linear with respect to the highest-order norms. This permits the use of linear interpolation to extend this inequality to fractional-order Sobolev spaces. In the same way that we proved Theorem 3.6, we can prove the following complimentary result: Theorem Let R n be a bounded H k1 -domain for an integer k > n 2. Suppose that ajk H k () satisfies the positivity condition a jk ξ j ξ k λ ξ 2 ξ R n, and for 1 l k, w H max{k,l1} () (or w H max{k 1 2,l 1 2 } ()) such that w vanishes nowhere on. Then for all f H l 1 () and g H l 0.5 (), there exists a solution u to u i ( jk ) ui a = f i x j x k in, (76a) u w = 0 on, (76b) a jk ui x k N j w i = g on, (76c)

25 Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type 399 and satisfies u H l1 () C f H l 1 () g H l 0.5 () P ( a H ()) ( ) f k L2 () g H 0.5 () (77) for a constant C = C ( w H max{k,l1} (), H k0.5) and a polynomial P. 4. Regularity Theory: The Proof of Theorem 1.3 In this section, we prove our main regularity result given by Theorem 1.3. We first establish the following lemma which is also fundamental to the proof of Theorem 1.1. Lemma 4.1. Let R 3 be a bounded H k1 -domain with outward-pointing unit normal N. Then for every differentiable vector field w : R 3, the following identities hold: ( w ) P N = (curlw N) w N N on, (78a) divw = w N N 2H(w N) div (P N w) on, (78b) curlw N =div (w N) on, (78c) where H is the mean curvature of (in local chart (U,ϑ), H is given by H= 1 2 gαβ b αβ ). Proof. We define Θ(y) =ϑ(y 1,y 2, 0) y 3 (N ϑ)(y 1,y 2, 0), and G ij =Θ, i Θ, j with inverse G ij.letñ (N ϑ),and f y3=0 f Θiff N. Since Θ, 1,Θ, 2 Ñ, for every vector v R 3, ṽ can be expressed as the linear combination of Θ, 1,Θ, 2 and Ñ. In particular, we have ṽ i =(ṽ Ñ)Ñi (G αβ Θ j, β ṽ j )Θ i, α ṽ 3 Ñ i ṽ α Θ i, α (79a) and f, k Θ= f, 3 Ñ 3 G αβ f,β Θ k, α. (79b) To see (78a), we first note that w i N ϑ = w 3 Ñ i w α Θ i, α,3 = w 3,3 Ñ y3=0 i w α,3 Θ i, α w α Ñ i, α y3=0 ; (80) thus, since Ñ Θ, α = Ñ Ñ, α =0, ( w ) P N ϑ = w 3,3 Ñ i w α,3 Θ i, α w α Ñ i, α y3=0 N Moreover, by the identity w 3,3 Ñ k w α,3 Θ k, α w α Ñ k, α y3=0 Ñ k Ñ i = w α,3 ϑ i, α w α Ñ i, α. (81) (curlw N) i = ε ijk ε jrs w s, r N k =(δ is δ kr δ ir δ ks )w s, r N k =(w i, k w k, i )N k,

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions J. Math. Fluid Mech. 2019 21:36 c 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00021-019-0440-7 Journal of Mathematical Fluid Mechanics On the Existence of Strong Solutions to a Fluid Structure

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid : Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag SOLUTIONS Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, 2013. Tid : 09.00 13.00 Oppgave 1 a) La U R n være enhetsdisken x

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24 Level Set methods Sandra Allaart-Bruin sbruin@win.tue.nl Level Set methods p.1/24 Overview Introduction Level Set methods p.2/24 Overview Introduction Boundary Value Formulation Level Set methods p.2/24

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

On time splitting for NLS in the semiclassical regime

On time splitting for NLS in the semiclassical regime On time splitting for NLS in the semiclassical regime Rémi Carles CNRS & Univ. Montpellier Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 21 Splitting for NLS i t u + 1 2 u = f ( u 2) u,

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

Finite Elements Methods. Formulary for Prof. Estor's exam

Finite Elements Methods. Formulary for Prof. Estor's exam Finite Elements Methods Formulary for Prof. Estor's exam Finite Element Method in General One wants to obtain the equilibrium eqautions for the body, discretized by nite elements in the form M Ü + C U

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

Integral Equations on Multi-Screens

Integral Equations on Multi-Screens Integr.Equ.Oper.Theory DOI 10.1007/s00020-013-2085-x c Springer Basel 2013 Integral Equations and Operator Theory Abstract. In the present article, we develop a new functional framework for the study of

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

Self-improving property of nonlinear higher order parabolic systems near the boundary

Self-improving property of nonlinear higher order parabolic systems near the boundary Nonlinear Differ Equ Appl 7 200), 2 54 c 2009 Birkhäuser Verlag Basel/Switzerland 02-9722/0/0002-34 published online October 2, 2009 DOI 0007/s00030-009-0038-5 Nonlinear Differential Equations and Applications

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

Lipschitz Metrics for Non-smooth evolutions

Lipschitz Metrics for Non-smooth evolutions Lipschitz Metrics for Non-smooth evolutions Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu Alberto Bressan (Penn State) Nonsmooth evolutions 1 / 36 Well-posedness

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

An oscillatory bifurcation from infinity, and

An oscillatory bifurcation from infinity, and Nonlinear differ. equ. appl. 15 (28), 335 345 121 9722/8/3335 11, DOI 1.17/s3-8-724-1 c 28 Birkhäuser Verlag Basel/Switzerland An oscillatory bifurcation from infinity, and from zero Philip Korman Abstract.

Detaljer

Approximation of the Power of Kurtosis Test for Multinormality

Approximation of the Power of Kurtosis Test for Multinormality Journal of Multivariate Analysis 65, 166180 (1998) Article No. MV97178 Approximation of the Power of Kurtosis Test for Multinormality Kanta Naito Hiroshima University, Higashi-Hiroshima, 739, Japan Received

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

Almost invariant submanifolds for compact group actions

Almost invariant submanifolds for compact group actions J. Eur. Math. Soc., 5 86 c Springer-Verlag & EMS 000 Alan Weinstein Almost invariant submanifolds for compact group actions Received September 4, 999 / final version received November 9, 999 Abstract.

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor. 6-13 July 2013 Brisbane, Australia Norwegian 1.0 Brisbane har blitt tatt over av store, muterte wombater, og du må lede folket i sikkerhet. Veiene i Brisbane danner et stort rutenett. Det finnes R horisontale

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

PSi Apollo. Technical Presentation

PSi Apollo. Technical Presentation PSi Apollo Spreader Control & Mapping System Technical Presentation Part 1 System Architecture PSi Apollo System Architecture PSi Customer label On/Off switch Integral SD card reader/writer MENU key Typical

Detaljer

GEF2200 Atmosfærefysikk 2017

GEF2200 Atmosfærefysikk 2017 GEF2200 Atmosfærefysikk 2017 Løsningsforslag til sett 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.18r Unsaturated air is lifted (adiabatically): The rst pair of quantities

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 45 INNFØRING I KVANTEMEKANIKK DATO: Fredag 4 desember TID: 9 5 Antall vekttall: 4 Antall sider: 5 Tillatte hjelpemidler:

Detaljer

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Høgskolen i Buskerud. Finn Haugen (finn@techteach.no). Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Tid: 7. april 28. Varighet 4 timer. Vekt i sluttkarakteren: 3%. Hjelpemidler: Ingen trykte eller

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS English Exam: ECON2915 Economic Growth Date of exam: 25.11.2014 Grades will be given: 16.12.2014 Time for exam: 09.00 12.00 The problem set covers 3 pages Resources

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

Periodic solutions for a class of non-autonomous differential delay equations

Periodic solutions for a class of non-autonomous differential delay equations Nonlinear Differ. Equ. Appl. 16 (2009), 793 809 c 2009 Birkhäuser Verlag Basel/Switzerland 1021-9722/09/060793-17 published online July 4, 2009 DOI 10.1007/s00030-009-0035-8 Nonlinear Differential Equations

Detaljer

A Geometric Approach to an Asymptotic Expansion for Large Deviation Probabilities of Gaussian Random Vectors

A Geometric Approach to an Asymptotic Expansion for Large Deviation Probabilities of Gaussian Random Vectors journal of multivariate analysis 58, 12 (1996) article no. 36 A Geometric Approach to an Asymptotic Expansion for Large Deviation Probabilities of Gaussian Random Vectors K. Breitung Universita di Pavia,

Detaljer

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Hvordan føre reiseregninger i Unit4 Business World Forfatter: Hvordan føre reiseregninger i Unit4 Business World Forfatter: dag.syversen@unit4.com Denne e-guiden beskriver hvordan du registrerer en reiseregning med ulike typer utlegg. 1. Introduksjon 2. Åpne vinduet

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

Oppgave. føden)? i tråd med

Oppgave. føden)? i tråd med Oppgaver Sigurd Skogestad, Eksamen septek 16. des. 2013 Oppgave 2. Destillasjon En destillasjonskolonne har 7 teoretiske trinn (koker + 3 ideelle plater under føden + 2 ideellee plater over føden + partielll

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

Smart High-Side Power Switch BTS730

Smart High-Side Power Switch BTS730 PG-DSO20 RoHS compliant (green product) AEC qualified 1 Ω Ω µ Data Sheet 1 V1.0, 2007-12-17 Data Sheet 2 V1.0, 2007-12-17 Ω µ µ Data Sheet 3 V1.0, 2007-12-17 µ µ Data Sheet 4 V1.0, 2007-12-17 Data Sheet

Detaljer

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai 2008 09:00 13:00 Tillatte

Detaljer

Solutions of nonlinear differential equations

Solutions of nonlinear differential equations Nonlinear Differ. Equ. Appl. 17 (21), 249 27 c 29 Birkhäuser Verlag Basel/Switzerland 121-9722/1/2249-22 published online December 11, 29 DOI 1.17/s3-9-52-7 Nonlinear Differential Equations and Applications

Detaljer

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00 NTNU Side 1 av 2 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 45 43 71 70 Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai 2012 09:00 13:00 Tillatte hjelpemidler:

Detaljer

TDT4117 Information Retrieval - Autumn 2014

TDT4117 Information Retrieval - Autumn 2014 TDT4117 Information Retrieval - Autumn 2014 Assignment 1 Task 1 : Basic Definitions Explain the main differences between: Information Retrieval vs Data Retrieval En samling av data er en godt strukturert

Detaljer

Lie 2-Groups, Lie 2-Algebras, and Loop Groups

Lie 2-Groups, Lie 2-Algebras, and Loop Groups Lie 2-Groups, Lie 2-Algebras, and Loop Groups Alissa S. Crans Joint work with: John Baez Urs Schreiber & Danny Stevenson in memory of Saunders Mac Lane April 8, 2006 Internalization Often a useful first

Detaljer

Numerical Simulation of Shock Waves and Nonlinear PDE

Numerical Simulation of Shock Waves and Nonlinear PDE Numerical Simulation of Shock Waves and Nonlinear PDE Kenneth H. Karlsen (CMA) Partial differential equations A partial differential equation (PDE for short) is an equation involving functions and their

Detaljer

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016 Micky East York Semigroup University of York, 5 Aug, 206 Joint work with Igor Dolinka and Bob Gray 2 Joint work with Igor Dolinka and Bob Gray 3 Joint work with Igor Dolinka and Bob Gray 4 Any questions?

Detaljer

EXAM TTM4128 SERVICE AND RESOURCE MANAGEMENT EKSAM I TTM4128 TJENESTE- OG RESSURSADMINISTRASJON

EXAM TTM4128 SERVICE AND RESOURCE MANAGEMENT EKSAM I TTM4128 TJENESTE- OG RESSURSADMINISTRASJON Side 1 av 5 NTNU Norges teknisk-naturvitenskapelige universitet Institutt for telematikk EXAM TTM4128 SERVICE AND RESOURCE MANAGEMENT EKSAM I TTM4128 TJENESTE- OG RESSURSADMINISTRASJON Contact person /

Detaljer