Trigonometric Substitution
|
|
- Bjørg Nordli
- 6 år siden
- Visninger:
Transkript
1 Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different possibilities: They are both even powers. They are both odd powers. One exponent is odd and the other is even. We can rewrite this problem as: sin 4 (x) cos (x) cos(x) dx We want even powers of sin 4 (x)( sin (x)) (x) cos(x) dx Now we can use substitution: cos(x) = Let : sin(x) = t dt dx cos(x) dx = dt t 4 ( t) dt
2 t 4 t 6 dt = t 4 dt t 6 dt t 5 5 t7 7 sin 5 (x) sin7 (x) 5 7 And in the wise words of Professor Khan: These terms are like Hillary and Trump supporters and we cannot combine them. Another case is where we have a difficult term inside a radical in the denominator. dx x 4 x Note that the term in the radical has a form similar to the trigonometric identities above. Let : x = sin() dx = cos() d cos() d ( sin()) 4 4 sin () By substituting for sin(), we can turn the radical into the form of a trigonometric identity. cos() 4 sin () 4 sin () d In this case, we are using the identity sin () + cos () = which we can rewrite as cos () = sin (). cos 4 sin () cos () d cos 4 sin ()cos() d 4 sin () d csc () d 4 4 cot()
3 To substitute back, we must imagine a triangle with angle. Given our first subsitution x = sin(), we can rewrite it as sin() = x = opp. If our triangle has opposite hyp side x and hypotenuse, then the adjacent side must be 4 x. x 4 x Therefore: cot() = adj = 4 x opp x 4 cot() = 4 x 4 x = 4 x 4x Practice Problem 4 x x dx Let : x = sin() dx = cos() d ( sin()) cos() d ( sin()) 7 sin () cos() sin () d 7 sin () cos() sin () d sin () cos() cos () sin () cos() cos() d d
4 sin () d Using the double angle formulas: cos() d Using the double angle formulas again: = cos() d sin() sin() cos() sin() cos() Recall that we substituted x = sin(), which we can rewrite as sin() = x = opp hyp. If we imagine a triangle in which the opposite side is x and the hypotenuse is, then the adjacent side must be x. x x Therefore: cos() = adj hyp = x and = sin ( x ) sin() cos() = sin ( x ) x = sin ( x ) x x x 4
5 Practice Problem 6 0 x 6 x dx Let : x = 6 sin() dx = 6 cos() d For now, we will solve the problem as an indefinite integral. 6 sin() 6 cos() d 6 (6 sin()) 6 sin() cos() 6 6 sin () d 6 sin() cos() 6 sin () d sin() cos() 6 cos () sin() cos() 6 cos() 6 sin() d 6 cos() Recall that we substituted x = 6 sin(), which we can rewrite as sin() = x 6 = opp hyp. If we imagine a triangle in which the opposite side is x and the hypotenuse is 6, then the adjacent side must be 6 x. d d 6 x 6 x 5
6 Therefore: cos() = adj = 6 x hyp 6 6 cos() = 6 6 x 6 = 6 x Now we can use the original limits of the intergral to solve this. 6 x 0 Practice Problem 6 ( 6 0 ) = 6 dt t t 6 Note that the radical is of the form t 6. We cannot subsitute sin() into this since it will not satisfy the trigonometric identity. Let : x = 4 sec() dx = 4 sec() tan() d 4 sec tan() 6 sec () (4 sec()) 6 d() tan() 4 sec() 6 sec () d() tan() 6 sec() tan () d() tan() 6 sec() tan() d() cos() d 6 6
7 6 sin() Recall that we substituted x = 4 sec(), which we can rewrite as sec() = x 4 = hyp adj. If we imagine a triangle in which the hypotenuse is x and the adjacent side is 4, then the opposite side must be 6 x. x 6 x 4 Therefore: sin() = opp = 6 x hyp 4 6 sin() = 6 x x 64 Practice Problem 5 x a x dx Let : x = a sin() d dx = a cos() d a sin () a a sin ()a cos() d a 4 a 4 sin () cos() sin () d sin () cos() cos () d a 4 a 4 sin () cos () d (sin() cos()) d 7
8 Using the double angle formulas: a 4 ( sin() ) d a 4 sin () d 4 Using the double angle formulas again: a 4 cos(4) d 4 a 4 cos(4) d a 4 4 sin(4) a 4 4 sin() cos() a 4 ( sin() cos())( sin ()) a 4 sin() cos() sin () sin() cos() a 4 sin() cos() sin () cos() Recall that we substituted x = a sin(), which we can rewrite as sin() = x a = opp hyp. If we imagine a triangle in which the opposite side is x and the hypotenuse is a, then the adjacent side must be a x. a x a x
9 Given this information: = sin ( x a ) sin() = x a a x cos() = a We can substitute this back into our solution: a 4 sin() cos() sin () cos() a 4 sin ( x a ) x a x x a x a a 4 Practice Problem x 5x dx The terms inside the radical are not of the same form as the problems before. We can rewrite this problem to figure out the substitution. x (5x) dx Let : 5x = sin(t) 5 dx = cos(t) dt dx = cos(t) dt 5 ( 5 sin(t)) cos(t) dt sin (t) cos(t) sin (t) dt cos(t) sin (t) dt 5 ( cos(t)) dt 5
10 50 50 t 50 t sin(t) sin(t) cos(t) t sin(t) cos(t) Recall that we substituted 5x = sin(t), which we can rewrite as sin(t) = 5x = opp. hyp If we imagine a triangle in which the opposite side is 5x and the hypotenuse is, then the adjacent side is 5x. 5x t 5x Therefore: cos(t) = adj = 5x and t = sin ( 5x) hyp t sin(t) cos(t) Practice Problem 7 sin ( 5x ) 5x 5x sin ( 5x ) 5x 5x x + x dx This problem requires a different approach. We need to turn this into the form of a trigonometric substitution problem. x x + x dx = + x + ( ) dx x + x + dx 0
11 (x + ) dx Let : x + = sec() dx = sec() tan() d sec () sec() tan() d Now we use integration by parts: tan () sec() tan() d tan () sec() d Let : f(x) = tan() g (x) = tan() sec() d f (x) = sec () d g(x) = sec() tan () sec() d = tan() sec() sec () sec() d tan () sec() d = tan() sec() (tan () + ) sec() d tan () sec() d = tan() sec() tan () sec() d() + sec() d tan () sec() d = tan() sec() sec() d tan () sec() d = tan() sec() ln sec(x) + tan(x) tan () sec() d = tan() sec() ln sec(x) + tan(x) Recall that we substituted x+ = sec(), which we can rewrite as sec() = x+ If we imagine a triangle in which the hypotenuse is x + and the adjacent side is, then the opposite side must be x. = hyp. adj x + x
12 Therefore: tan() = opp = x adj tan() sec() ln sec(x) + tan(x) = x(x + ) = ln x + x + x(x + ) ln (x + ) + x Practice Problem 45 x + x dx For this problem, we can solve it with regular substitution: x x + x dx Let : + x = t x dx = dt (t )t dt t t dt 5 t = 5 t But we can also use trigonometric substitution: x + x dx Let : x = tan() dx = sec () d tan () + tan () sec () d tan () sec () sec () d
13 tan () sec () d tan() tan () sec () d tan()(sec ) sec () d tan() sec 5 () d tan() sec () d tan() sec() sec 4 () d tan() sec() sec () d Let : u = sec() du = sec() tan() d u 4 du u du u 5 5 u sec 5 () sec () 5 Recall that we substituted x = tan(), which we can rewrite as tan() = x = opp. If adj we imagine a triangle in which the opposite side is x and the adjacent side is, then the hypotenuse must be + x. + x x Therefore: sec() = hyp adj = +x. sec 5 () 5 sec () = 5 ( + x ) 5 ( + x ) = ( + x ) 5 5 ( + x )
14 Follow-up Questions 4 6 x x x dx x (x + x ) dx x (x + x + 4 4) dx x (x + x + ) + 4 dx x 4 (x + ) dx Let : x + = cos() dx = sin() d ( cos() ) 4 ( cos()) ( sin()) d ( cos() ) 4 cos ()( sin()) d 4 ( cos() ) sin ()( sin()) d 4 (4 cos () 4 cos() + )( sin ()) d 4 4 cos () sin () 4 cos() sin () + sin () d cos () sin () d 6 ( cos () sin ()) d 6 4 sin () d 6 cos() sin () d 4 cos() sin () d cos() sin () d sin () d 6 cos () cos(4) d 6 cos () 4 sin () d sin () d cos() d ( sin()) ( sin())
15 sin(4) 6 cos () ( sin()) sin(4) 6 cos () + sin() sin() sin(4) 6 cos () sin() cos() sin() cos() 6 cos () sin() cos() ( sin() cos())( cos () ) 6 cos () sin() cos() ( sin() cos())( cos () ) 6 cos () Recall that we substituted x + = cos(), which we can rewrite as cos() = x+ adj hyp =. If we imagine a triangle in which the adjacent side is x + and the hypotenuse is, then the opposide side must be 4 (x + ), or x x. x x x + Therefore: sin() = x x sin() cos() ( sin() cos())( cos () ) 6 cos () x x x + x x x + ( )(( x + x+ ) 6( ) ) (x + ) x x (x + ) x x (x + ) ( ) 6 (x + ) = (x + ) x x (x + ) You can find all my notes at If you have any questions, comments, or concerns, please contact me at alvin@omgimanerd.tech 5
Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2
Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C
DetaljerSlope-Intercept Formula
LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept
DetaljerSolutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.
Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.
DetaljerMoving Objects. We need to move our objects in 3D space.
Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position
DetaljerRight Triangle Trigonometry
0 Capter Trigonometry 70. f 8 7 8 Vertical asymptote: 8 0 y 7 0 7 8 9 9 ± 8 y Slant asymptote: ± 89 ;.,. y 7 8 y-intercept: 0, 8 -intercept:.8, 0 Section. Rigt Triangle Trigonometry You sould know te rigt
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte
DetaljerDynamic Programming Longest Common Subsequence. Class 27
Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins
DetaljerUniversitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.
1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på
DetaljerUnit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3
Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL
DetaljerUNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS
UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember
DetaljerGraphs similar to strongly regular graphs
Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree
DetaljerFYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)
FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere
DetaljerMaple Basics. K. Cooper
Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;
DetaljerSmartPass Mini User Manual BBNORGE.NO
SmartPass Mini User Manual BBNORGE.NO Intro Welcome to the usermanual for your SmartPass Mini system. The first time you start the SmartPass you have to request a License. This is to regiser your license
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:
DetaljerEndelig ikke-røyker for Kvinner! (Norwegian Edition)
Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker
DetaljerElektronisk innlevering/electronic solution for submission:
VIKINGTIDSMUSEET Plan- og designkonkurranse/design competition Elektronisk innlevering/electronic solution for submission: Det benyttes en egen elektronisk løsning for innlevering (Byggeweb Anbud). Dette
DetaljerKROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.
KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene
DetaljerTUSEN TAKK! BUTIKKEN MIN! ...alt jeg ber om er.. Maren Finn dette og mer i. ... finn meg på nett! Grafiske lisenser.
TUSEN TAKK! Det at du velger å bruke mitt materiell for å spare tid og ha det kjekt sammen med elevene betyr mye for meg! Min lidenskap er å hjelpe flotte lærere i en travel hverdag, og å motivere elevene
DetaljerNeural Network. Sensors Sorter
CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]
DetaljerTUSEN TAKK! BUTIKKEN MIN! ...alt jeg ber om er.. Maren Finn dette og mer i. ... finn meg på nett! Grafiske lisenser.
TUSEN TAKK! Det at du velger å bruke mitt materiell for å spare tid og ha det kjekt sammen med elevene betyr mye for meg! Min lidenskap er å hjelpe flotte lærere i en travel hverdag, og å motivere elevene
DetaljerPATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe
CARING OMSORG Is when we show that we care about others by our actions or our words Det er når vi viser at vi bryr oss om andre med det vi sier eller gjør PATIENCE TÅLMODIGHET Is the ability to wait for
DetaljerTUSEN TAKK! BUTIKKEN MIN! ...alt jeg ber om er.. Maren Finn dette og mer i. ... finn meg på nett! Grafiske lisenser.
TUSEN TAKK! Det at du velger å bruke mitt materiell for å spare tid og ha det kjekt sammen med elevene betyr mye for meg! Min lidenskap er å hjelpe flotte lærere i en travel hverdag, og å motivere elevene
DetaljerContinuity. Subtopics
0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity
Detaljer5 E Lesson: Solving Monohybrid Punnett Squares with Coding
5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to
DetaljerWindlass Control Panel
SIDE-POWER 86-08955 Windlass Control Panel v1.0.2 Windlass Systems Installasjon manual SLEIPNER MOTOR AS P.O. Box 519 N-1612 Fredrikstad Norway Tel: +47 69 30 00 60 Fax: +47 69 30 00 70 w w w. s i d e
DetaljerGol Statlige Mottak. Modul 7. Ekteskapsloven
Gol Statlige Mottak Modul 7 Ekteskapsloven Paragraphs in Norwegian marriage law 1.Kjønn To personer av motsatt eller samme kjønn kan inngå ekteskap. Two persons of opposite or same sex can marry 1 a. Ekteskapsalder.
DetaljerHan Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)
Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:
DetaljerTEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING
TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE KANDIDATER: (Fornavn, etternavn) Den årlige fremdriftsrapporteringen er et viktig tiltak som gjør instituttene og fakultetene
DetaljerRight Triangle Trigonometry
Section. Rigt Triangle Trigonometr. Reflection in te -ais and a vertical sift two units upward =. f Reflection in te -ais and a orizontal sift tree units to te left = ( + ) = = Section. Rigt Triangle Trigonometr
DetaljerECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems
Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in
DetaljerSVM and Complementary Slackness
SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations
DetaljerInformation search for the research protocol in IIC/IID
Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november
DetaljerFIRST LEGO League. Härnösand 2012
FIRST LEGO League Härnösand 2012 Presentasjon av laget IES Dragons Vi kommer fra Härnosänd Snittalderen på våre deltakere er 11 år Laget består av 4 jenter og 4 gutter. Vi representerer IES i Sundsvall
DetaljerEnkel og effektiv brukertesting. Ida Aalen LOAD september 2017
Enkel og effektiv brukertesting Ida Aalen LOAD.17 21. september 2017 Verktøyene finner du her: bit.ly/tools-for-testing Har dere gjort brukertesting? Vet du hva dette ikonet betyr? Mobil: 53% sa nei Desktop:
DetaljerMacbeth: Frozen Scenes
Macbeth: Frozen Scenes Using Frozen Scenes There are several ways to use these scenes 1. Along with the scene one can give the students the lines from the play and ask them to perform their scene with
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni
DetaljerØving 5 - Fouriertransform - LF
Øving 5 - Fouriertransform - LF Obligatoriske oppgaver See the notes Matlab: %x og t aksen x=:.:pi; t=:pi/:*pi; %sette opp funksjon og plotte hver frame for j=:length(t) %funksjonsverdier p innev rende
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Eksamen i: ECON1210 - Forbruker, bedrift og marked Eksamensdag: 26.11.2013 Sensur kunngjøres: 18.12.2013 Tid for eksamen: kl. 14:30-17:30 Oppgavesettet er
DetaljerMA2501 Numerical methods
MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for
DetaljerTB-615 / TB-617 Wireless slim keyboard. EN User guide SE Användarhandledning FI Käyttöohje DK Brugervejledning NO Bruksanvisning
TB-615 / TB-617 Wireless slim keyboard EN User guide SE Användarhandledning FI Käyttöohje DK Brugervejledning NO Bruksanvisning EN User guide You have bought a wireless keyboard to use with Windows XP,
DetaljerDen som gjør godt, er av Gud (Multilingual Edition)
Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,
DetaljerNorsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis)
Norsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis) 1. Gå til print i dokumentet deres (Det anbefales å bruke InDesign til forberedning for print) 2. Velg deretter print
DetaljerÅrsplan ENGELSK 5.trinn. Setningsmønster It starts at It finishes at I want to be a when I grow up
Årsplan ENGELSK 5.trinn Kompetansemål (Henta frå Kunnskapsløftet) Språklæring identifisere og bruke ulike situasjoner og læringsstrategier for å utvide egne ferdigheter i engelsk beskrive eget arbeid med
DetaljerHvordan føre reiseregninger i Unit4 Business World Forfatter:
Hvordan føre reiseregninger i Unit4 Business World Forfatter: dag.syversen@unit4.com Denne e-guiden beskriver hvordan du registrerer en reiseregning med ulike typer utlegg. 1. Introduksjon 2. Åpne vinduet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet
DetaljerTMA4240 Statistikk 2014
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Fremgangsmetode: P X 1 < 6.8 Denne kan finnes ved å sette opp integralet over
Detaljerstjerneponcho for voksne star poncho for grown ups
stjerneponcho for voksne star poncho for grown ups www.pickles.no / shop.pickles.no NORSK Størrelser XS (S) M (L) Garn Pickles Pure Alpaca 300 (350) 400 (400) g hovedfarge 100 (100) 150 (150) g hver av
DetaljerHvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)
INF283, HØST 16 Er du? Er du? - Annet Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 =
Detaljer6350 Månedstabell / Month table Klasse / Class 1 Tax deduction table (tax to be withheld) 2012
6350 Månedstabell / Month table Klasse / Class 1 Tax deduction table (tax to be withheld) 2012 100 200 3000 0 0 0 13 38 63 88 113 138 163 4000 188 213 238 263 288 313 338 363 378 386 5000 394 402 410 417
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag
DetaljerTMA4329 Intro til vitensk. beregn. V2017
Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember
DetaljerTEKSTER PH.D.-VEILEDERE FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE AKTUELLE VEILEDERE:
TEKSTER PH.D.-VEILEDERE FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE AKTUELLE VEILEDERE: Kjære , hovedveileder for Den årlige fremdriftsrapporteringen er et viktig tiltak som gjør
Detaljer0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23
UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk
DetaljerExercise 1: Phase Splitter DC Operation
Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your
DetaljerVekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk
Vekeplan 4. Trinn Veke 39 40 Namn: Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD Norsk Engelsk M& Mitt val Engelsk Matte Norsk Matte felles Engelsk M& Mitt val Engelsk Norsk M& Matte
DetaljerTMA4240 Statistikk Høst 2013
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 575 2 ). Ved bruk av tabell A.3 finner
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008
DetaljerHOW TO GET TO TØI By subway (T-bane) By tram By bus By car Fra flyplassen
HOW TO GET TO TØI TØI s offices are located on the 5th and 6th floors of the CIENS building in the Oslo Research Park (Forskningsparken). We recommend that one uses the subway (T-bane), tram or bus to
DetaljerTEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING
E-postmaler til bruk ved utsendelse av fremdriftsrapportering ph.d.- kandidater og veiledere TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE KANDIDATER: Kjære
DetaljerVedlegg 2 Dokumentasjon fra TVM leverandør
(Step 7) Payment selection or date modification state This screen is displayed after validation of a date in the calendar screen. The customer can: - Modify again the date by pressing the Validity begin:
DetaljerLøsningsførslag i Matematikk 4D, 4N, 4M
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y
DetaljerNewtons fargeskive. Regnbuens farger blir til hvitt. Sett skiva i rask rotasjon ved hjelp av sveiva.
Newtons fargeskive Regnbuens farger blir til hvitt. Sett skiva i rask rotasjon ved hjelp av sveiva. Se hva som skjer med fargene. Hvitt lys består av en blanding av alle farger. Når fargeskiva roterer
DetaljerDagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler
UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler Institutt for informatikk Dumitru Roman 1 Eksempel (1) 1. The system shall give an overview
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20 Forbruker, bedrift og marked, høsten 2004 Exam: ECON20 - Consumer behavior, firm behavior and markets, autumn 2004 Eksamensdag: Onsdag 24. november
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember
Detaljer2018 ANNUAL SPONSORSHIP OPPORTUNITIES
ANNUAL SPONSORSHIP OPPORTUNITIES MVP SPONSORSHIP PROGRAM CALLING ALL VENDORS! Here is your chance to gain company exposure while strengthening your dealer Association at the same time. Annual Sponsorship
DetaljerBostøttesamling
Bostøttesamling 2016 Teresebjerke@husbankenno 04112016 2 09112016 https://wwwyoutubecom/watch?v=khjy5lwf3tg&feature=youtube 3 09112016 Hva skjer fremover? 4 09112016 «Gode selvbetjeningsløsninger» Kilde:
DetaljerSTILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD
FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May
DetaljerStipend fra Jubileumsfondet skoleåret 2002-2003
Til skolen Rundskriv S 09-2002 Oslo, 15. februar 2002 Stipend fra Jubileumsfondet skoleåret 2002-2003 For nærmere omtale av H.M. Kong Olav V s Jubileumsfond viser vi til NKF-handboka kap. 12.3.4. Fondet
DetaljerTips for bruk av BVAS og VDI i oppfølging av pasienter med vaskulitt. Wenche Koldingsnes
Tips for bruk av BVAS og VDI i oppfølging av pasienter med vaskulitt Wenche Koldingsnes Skåring av sykdomsaktivitet og skade I oppfølging av pasienter med vaskulitt er vurdering og konklusjon vedr. sykdomsaktivitet
DetaljerSRP s 4th Nordic Awards Methodology 2018
SRP s 4th Nordic Awards Methodology 2018 Stockholm 13 September 2018 Awards Methodology 2018 The methodology outlines the criteria by which SRP judges the activity of Manufacturers, Providers and Service
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet
DetaljerOppfølging av etiske krav: Eksempel Helse Sør-Øst
Oppfølging av etiske krav: Eksempel Helse Sør-Øst Sauda, 21. september 2011 Grete Solli, spesialrådgiver, Helse Sør-Øst Magne Paulsrud, seniorrådgiver, Initiativ for etisk handel Helse Sør-Øst: nye etiske
DetaljerSmart High-Side Power Switch BTS730
PG-DSO20 RoHS compliant (green product) AEC qualified 1 Ω Ω µ Data Sheet 1 V1.0, 2007-12-17 Data Sheet 2 V1.0, 2007-12-17 Ω µ µ Data Sheet 3 V1.0, 2007-12-17 µ µ Data Sheet 4 V1.0, 2007-12-17 Data Sheet
DetaljerFullmakt. Fornavn Etternavn. Statsborgerskap Fødselsdato. DUF Sted/Dato. Signatur søker Signatur verge (hvis søkeren er under 18 år)
Fullmakt Herved gir jeg NOAS 1. Fullmakt for innsyn i og oppbevaring av mine saksdokumenter, inkludert eventuell dokumentasjon som inneholder personsensitive opplysninger slik de er definert i personvernforordningens
Detaljerallinurl:readnews.php?id= allinurl:top10.php?cat= allinurl:historialeer.php?num= allinurl:reagir.php?num= allinurl:stray-questions-view.php?
Following are Google Dork queries that can help you find sites that might be vulnerable for SQL injection attacks. Please note that they will not find sites that are vulnerable, they ll just predict sites
DetaljerPSY 1002 Statistikk og metode. Frode Svartdal April 2016
PSY 1002 Statistikk og metode Frode Svartdal April 2016 GANGEN I HYPOTESETESTING 1. Formuler en hypotese «Man får bedre karakterer hvis man leser pensum» 2. Formuler motstykket, nullhypotesen H 0 «Man
DetaljerGEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd
GEOV219 Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd Mener du at de anbefalte forkunnskaper var nødvendig? Er det forkunnskaper du har savnet? Er det forkunnskaper
DetaljerSERVICE BULLETINE 2008-4
S e r v i c e b u l l e t i n e M a t e r i e l l Materiellsjef F/NLF kommuniserer påminnelse omkring forhold som ansees som vesentlige for å orientere om viktige materiellforhold. Målgruppen for Servicbulletinen
DetaljerDen som gjør godt, er av Gud (Multilingual Edition)
Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,
DetaljerThe regulation requires that everyone at NTNU shall have fire drills and fire prevention courses.
1 The law The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses. 2. 3 Make your self familiar with: Evacuation routes Manual fire alarms Location of fire extinguishers
DetaljerGir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.
Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave
DetaljerHONSEL process monitoring
6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All
DetaljerPhysical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)
by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E
DetaljerDatabases 1. Extended Relational Algebra
Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---
DetaljerPARABOLSPEIL. Still deg bak krysset
PARABOLSPEIL Stå foran krysset på gulvet og se inn i parabolen. Hvordan ser du ut? Still deg bak krysset på gulvet. Hva skjer? Hva skjer når du stiller deg på krysset? Still deg bak krysset Det krumme
DetaljerTHE MONTH THE DISCIPLINE OF PRESSING
THE MONTH THE DISCIPLINE OF PRESSING Nehemiah 4:1-9 NIV 1 [a ] When Sanballat heard that we were rebuilding the wall, he became angry and was greatly incensed. He ridiculed the Jews, 2 and in the presence
DetaljerProsjektet Digital kontaktinformasjon og fullmakter for virksomheter Digital contact information and mandates for entities
Prosjektet Digital kontaktinformasjon og fullmakter for virksomheter Digital contact information and mandates for entities Nordisk Adressemøte / Nordic Address Forum, Stockholm 9-10 May 2017 Elin Strandheim,
DetaljerSimulert tilbakekalling av makrell - produkter kjøpt i Japan
Food Marketing Research & Information Center MainSafeTraceJapan Simulert tilbakekalling av makrell - produkter kjøpt i Japan Kathryn Anne-Marie Donnelly (Nofima), Jun Sakai, Yuka Fukasawa, Mariko Shiga
DetaljerGYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?
GYRO MED SYKKELHJUL Hold i håndtaket på hjulet. Sett fart på hjulet og hold det opp. Det er lettest om du sjølv holder i håndtakene og får en venn til å snurre hjulet rundt. Forsøk å tippe og vri på hjulet.
DetaljerIndependent audit av kvalitetssystemet, teknisk seminar 25-26 november 2014
Independent audit av kvalitetssystemet, teknisk seminar 25-26 november 2014 Valter Kristiansen Flyteknisk Inspektør, Teknisk vedlikehold Luftfartstilsynet T: +47 75 58 50 00 F: +47 75 58 50 05 postmottak@caa.no
DetaljerSafety a t t h e f A c t o r y
Safety a t t h e f A c t o r y Sikkerhet på fabrikken Safety at the factory NÅ har du god tid til å lese denne brosjyren! I en krisesituasjon har du ikke like god tid You have plenty of time to read this
DetaljerGradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)
Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill
DetaljerEMPIC MEDICAL. Etterutdanningskurs flyleger 21. april Lars (Lasse) Holm Prosjektleder Telefon: E-post:
EMPIC MEDICAL Etterutdanningskurs flyleger 21. april 2017 Lars (Lasse) Holm Prosjektleder Telefon: +47 976 90 799 E-post: Lrh@caa.no it-vakt@caa.no Luftfartstilsynet T: +47 75 58 50 00 F: +47 75 58 50
Detaljer