MA2501 Numerical methods
|
|
- Rune Caspersen
- 1 år siden
- Visninger:
Transkript
1 MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for f (x) in the interval (0, ). Moreover, as f (x) = 3x 2 3 = 3( x 2 ) < 0 for x (0, ), the function is strictly decreasing in (0, ) and there can thus be at most one zero in (0, ). The zero of f (x) in [0, ] is consequently unique. The function f 2 (x) = cos(x) cos(3x) satsifies the following relations f 2 () = cos() cos(3) > 0, f 2 (2) = cos(2) cos(6) < 0 and there must consequently be at least one zero for f 2 (x) in the interval (, 2). Moreover, as f 2(x) = 3 sin(3x) sin(x) < 0 for x (, 2) the function can have at most one zero in (, 2). The zero of f 2 (x) in [, 2] is thus unique. Alternatively one can use the trigonometric identity at page 92 in the textbok and rewrite f 2 in the form f 2 (x) = 4 sin(x) 2 cos(x). The zero of this function in the interval (, 2) is at x = π/2.
2 With a little bit of inspection we see that f 3 (x) = x 3 6x 2 + 2x 8 = (x 2) 3 which means that the zero of f 3 (x) in [.5, 3] is unique (x = 2) and of multiplicity 3. b) We will apply the bisection method (intervallhalvvering) to locate the zero of f 2 (x) in [, 2]. Starting with we find i) ii) iii) iv) a 0 =, f 2 (a 0 ) > 0 b 0 = 2, f 2 (b 0 ) < 0 c 0 = 2 (a 0 + b 0 ) =.5, f 2 (c 0 ) > 0. The zero of f 2 (x) is thus in the interval (c 0, b 0 ), so we set a = c 0 =.5, b = b 0 = 2 and start over. c = 2 (a + b ) =.75, f 2 (c ) < 0. The zero of f 2 (x) is thus in the interval (a, c ), so we set a 2 = a =.5, b 2 = c =.75 and start over. c 2 = 2 (a 2 + b 2 ) =.625, f 2 (c 2 ) < 0. The zero of f 2 (x) is thus in the interval (a 2, c 2 ), so we set a 3 = a 2 =.5, b 3 = c 2 =.625 and start over. c 3 = 2 (a 3 + b 3 ) =.5625, f 2 (c 3 ) > 0. The zero of f 2 (x) is thus in the interval (c 3, b 3 ). We may continue the process, but accurately locating the zero by means of the bisection method is too tedious for hand calculation. Four iterations of the bisection method thus locates the zero of f 2 (x) on [, 2] to the more narrow interval (.5625,.625). Newton s method, however, is in this case defined by the scheme x n+ = x n f 2(x n ) f 2 (x n) = x n cos(x n) cos(3x n ) 3 sin(3x n ) sin(x n ) () 2
3 Table : Newton iterates () from x 0 =.5 n x n for all n 0. Choosing x 0 =.5 and performing four iterations of () we find the iterates in Table. In fact, as may be seen by inspection, the exact solution to f 2 (x) = 0 is x = π We thus see that merely four iterations of () is sufficient to compute the exact solution to f 2 (x) = 0 to at least 6 significant digits. This is an example of the rapid convergence often exhibited by Newton s method when started sufficiently close to the exact solution. c) Not shown here. d) A suggested improvement is available as a function newton_improved (in newton_improved.m) from the course homepage. e) The zero of f (x) on [0, ] may be found using fzero by implementing a function f (in f.m) as function y = f(x) % f -- Implement function f from problem set, MA250. y = x.^3-3*x + ; and then calling fzero as >> x = fzero( f, [0, ]) x = The same procedure may be applied to functions f 2 (x) and f 3 (x). 3
4 Oppgave a) Vi vet at r = Ae e = A r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup Ax A x, x 0 x e x = A r A r x x = r A A A x som var det vi skulle vise. A A r Ax = A A r r = κ(a) b b b) «Problem» Vi finner at [ ] [ ] r =, ẽ =, [ ] [ ] ˆr =, ê = Vi observerer altså at løsningen med størst residual ( r = ) har klart minst feil ( ẽ = 0.00). Dette skyldes at matrisen A er dårlig kondisjonert. Spesielt finner vi at κ (A) = A A Videre er x =, ê = 0.93, ˆr = og b = Dermed er feilestimatet oppfylt for både ẽ og ê. Eksemplet viser altså at man må være forsiktig med å bruke residualet som eneste indikator på feilen hvis koeffisientmatrisen er dårlig kondisjonert. c) Vi velger eksaktløsning x = [,,..., ] T. For n = 0 kan vi da løse problemet ved matlab-setningene n = 0; x = ones([n, ]); A = hilb(n); b = A * x; xt = A \ b; e = norm(x - xt, inf) k = cond(a, inf) 4
5 n x x κ (A) Table 2: Feil og kondisjonstall for system basert på Hilbertmatrisen. n x x κ (A) Table 3: Feil og kondisjonstall for system basert på en tilfeldig matrise. Resultatene er oppsummert i Tabell 2. De samme eksperimentene med utgangspunkt i en tilfeldig matrise av tilfeldige tall, definert i matlab som A = rand(n), gir derimot resultatene i Tabell 3. Dine egne resultater vil sannsynligvis variere noe fra disse. Dette viser imidlertid at kondisjonstallet for Hilbertmatrisen er ganske ekstremt. På den annen side vil vi normalt måtte forvente at kondisjonstallet vokser med økende dimensjon på matrisen. Oppgave 2 Kincaid & Cheney, «Problem» Vi skal løse ligningssystemet 2x + 3x 2 = 8 x + 2x 2 x 3 = 0 3x + 2x 3 = 9 ved help av Gausseliminasjon med skalert delvis pivotering. Denne metoden er beskrevet i boka på side 280 og utover. 5
6 Vi skriver ligningssystemet på formen Ax = b og får x x 2 = 8 0. (2) x 3 9 Først beregner vi skaleringsfaktoren til hver rad i A. Skaleringsfaktoren er den største absoluttverdien i hver rad, det vil si s i = max j n a ij for hver rad i n. Skaleringsfaktorene beregnes kun én gang. Vi får s = 3, s 2 = 2, s 3 = 3. I skritt k velger vi som pivotligning den rad i A der forholdet a ik / s i, i I er størst. I er her mengden av «gjenværende» pivotrader. I skritt finner vi a s = 2/3, a 2 s 2 = /2, a 3 s 3 =, så vi velger ligning 3 som pivotrad. Ett skritt i Gaussprosessen gir da x /3 x 2 2 x 2 = /3 x 2 = x x 3 9 I skritt 2 beregner vi for de gjenværende radene i I = {, 2} a 2 s = 3/3 =, a 22 s 2 = så vi velger rad som pivotrad fordi den har lavest indeks. Ett skritt i Gaussprosessen gir da 0 3 4/3 x /3 x /3 x 2 = /9 x 2 = 5/ x x 3 9 Den siste pivotraden som vi ikke gjør noe med blir rad 2. Vi gjør tilbakesubstituering i samme motsatt rekkefølge av den rekkefølgen vi fikk for pivotradene, altså 2,, 3. Det gir x 3 = 5/9 5/3 = 3, x 2 = 3 (4/ ) = 2, x = 3 (9 2 3) =. 6
7 Kincaid & Cheney, «Problem» 8..4 Vi er gitt matrisen 2 2 A =. 3 2 a) Vi skal vise at A ikke kan LU-faktoriseres, det vil si A kan ikke skrives som et produkt av en nedre enhetstriangulær matrise L og en øvre triangulær matrise U. En matrise kan LU-faktoriseres hvis og bare hvis naiv Gausseliminasjon ikke stopper opp på grunn av null som pivotelement (se forøvrig side 38 i C & K). Vi utfører et skritt med naiv Gausseliminasjon: /2 0 /2 Vi ser at a 22 = 0. Matrisen A har dermed ingen LU-faktorisering. b) Vi skal vise at vi ved å bytte om radene i matrisen A kan produsere en matrise som har en LU-faktorisering. Vi ser at problemet med A er at a = a 2 og a 2 = a 22. Det betyr at eliminasjon av a 2 ved hjelp av a også vil eliminere a 22 ved «hjelp» av a 2. Ved å bytte om radene som rad 2, rad 3 og rad 3 2 får vi da B = Dermed gir ett skritt med Gausseliminasjon Matrisen B, oppnådd ved å permutere radene til A, har altså en LUfaktorisering. 7
MA2501 Numeriske metoder
MA2501 Numeriske metoder Løsningsforslag, øving 7 Oppgave 1 a) Vi vet at r = Ae e = A 1 r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup
MA2501 Numeriske metoder
MA250 Numeriske metoder Oppgave Løsningsforslag, øving 7 a) Vi vet at r = Ae e = A r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup Ax
TMA4329 Intro til vitensk. beregn. V2017
Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver
Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.
1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:
UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS
UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers
ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems
Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november
Elementære eliminasjonsmatriser
Elementære eliminasjonsmatriser Gitt en vektor a = [a 1,..., a n ] T, en matrise 1 0 0 0.......... M k = 0 1 0 0 0 a k+1 a k 1 0, a k 0,.......... 0 an a k 0 1 kalles elementære eliminasjonsmatriser eller
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008
TFY4170 Fysikk 2 Justin Wells
TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1220 Velferd og økonomisk politikk Exam: ECON1220 Welfare and politics Eksamensdag: 29.11.2010 Sensur kunngjøres: 21.12.2010 Date of exam: 29.11.2010
Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Oppgave 1 Vektorer a) Variablene i MATLAB kan være tall, vektorer eller matriser. Vi kan for eksempel gi vektoren x = [1, 0, 3] på denne
Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon Løsningsforslag Oppgave 1 Vektorer a) Variablene i MATLAB kan være tall, vektorer eller matriser. Vi kan for eksempel gi vektoren x = [1, 0, 3] på denne
TMA4240 Statistikk 2014
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Fremgangsmetode: P X 1 < 6.8 Denne kan finnes ved å sette opp integralet over
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May
SCE1106 Control Theory
Master study Systems and Control Engineering Department of Technology Telemark University College DDiR, October 26, 2006 SCE1106 Control Theory Exercise 6 Task 1 a) The poles of the open loop system is
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:
Trådløsnett med. Wireless network. MacOSX 10.5 Leopard. with MacOSX 10.5 Leopard
Trådløsnett med MacOSX 10.5 Leopard Wireless network with MacOSX 10.5 Leopard April 2010 Slå på Airport ved å velge symbolet for trådløst nettverk øverst til høyre på skjermen. Hvis symbolet mangler må
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember
Perpetuum (im)mobile
Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.
Numerical Simulation of Shock Waves and Nonlinear PDE
Numerical Simulation of Shock Waves and Nonlinear PDE Kenneth H. Karlsen (CMA) Partial differential equations A partial differential equation (PDE for short) is an equation involving functions and their
1 Oppgave 1 Skriveoppgave Manuell poengsum. 2 Oppgave 2 Code editor Manuell poengsum. 3 Oppgave 3 Skriveoppgave Manuell poengsum
MAT102 - Demoprøve Oppgaver Oppgavetype Vurdering Forside Dokument Ikke vurdert 1 Oppgave 1 Skriveoppgave Manuell poengsum 2 Oppgave 2 Code editor Manuell poengsum 3 Oppgave 3 Skriveoppgave Manuell poengsum
Information search for the research protocol in IIC/IID
Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs
Eksamen i TMA4123/TMA4125 Matematikk 4M/N
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.
GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd
GEOV219 Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd Mener du at de anbefalte forkunnskaper var nødvendig? Er det forkunnskaper du har savnet? Er det forkunnskaper
Kurskategori 2: Læring og undervisning i et IKT-miljø. vår
Kurskategori 2: Læring og undervisning i et IKT-miljø vår Kurs i denne kategorien skal gi pedagogisk og didaktisk kompetanse for å arbeide kritisk og konstruktivt med IKT-baserte, spesielt nettbaserte,
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Bokmål Eksamen i: ECON1210 Forbruker, bedrift og marked Exam: ECON1210 Consumer Behaviour, Firm behaviour and Markets Eksamensdag: 12.12.2014 Sensur kunngjøres:
x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved
NTNU Institutt for matematiske fag TMA35 Matematikk D eksamen 20. desember 200 Løsningsforslag Oppgaven kan, for eksempel, løses ved hjelp av Lagrange-interpolasjon eller Newtons interpolasjonsformel.
TMA4240 Statistikk Høst 2013
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 575 2 ). Ved bruk av tabell A.3 finner
Numerisk lineær algebra
Numerisk lineær algebra Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 29. Oktober 2007 Problem og framgangsmåte Vi vil løse A x = b, b, x R N,
TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA40 Numerisk løsning av part. diff.lign. med differansemetoder Vår 005 Løsningsforslag Øving 5 a) Vi skal undersøke stabilitet
Fasit MAT102 juni 2016
Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet
Endelig ikke-røyker for Kvinner! (Norwegian Edition)
Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker
SERVICE BULLETINE 2008-4
S e r v i c e b u l l e t i n e M a t e r i e l l Materiellsjef F/NLF kommuniserer påminnelse omkring forhold som ansees som vesentlige for å orientere om viktige materiellforhold. Målgruppen for Servicbulletinen
6350 Månedstabell / Month table Klasse / Class 1 Tax deduction table (tax to be withheld) 2012
6350 Månedstabell / Month table Klasse / Class 1 Tax deduction table (tax to be withheld) 2012 100 200 3000 0 0 0 13 38 63 88 113 138 163 4000 188 213 238 263 288 313 338 363 378 386 5000 394 402 410 417
Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler
Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai
Trådløsnett med Windows XP. Wireless network with Windows XP
Trådløsnett med Windows XP Wireless network with Windows XP Mai 2013 Hvordan koble til trådløsnettet eduroam med Windows XP Service Pack 3? How to connect to the wireless network eduroam with Windows XP
1. (a) Finn egenverdiene og egenvektorene til matrisen A =
1. (a) Finn egenverdiene og egenvektorene til matrisen A = ( ) 2 3. 1 4 Svar: λ = 5 med egenvektorer [x, y] T = y[1, 1] T og λ = 1 med egenvektorer [x, y] T = y[ 3, 1] T, begge strengt tatt med y 0. (b)
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur
FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7
FYS2140 Kvantefysikk Løsningsforslag for Oblig 7 Oppgave 2.23 Regn ut følgende intgral a) +1 3 (x 3 3x 2 + 2x 1)δ(x + 2) dx (1) Svar: For å løse dette integralet bruker vi Dirac deltafunksjonen (se seksjon
Ma Linær Algebra og Geometri Øving 1
Ma0 - Linær Algebra og Geometri Øving Øistein Søvik 0. september 0 Excercise Set. = 4 x6 x x = x 6 4 x x = x 4 4 4 x x. In each part, determine whether the equation is linear in x, x and x Før vi begynner
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 14 juni 2004 Tid for eksamen: 9.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: INF-MAT2350
TMA Kræsjkurs i Matlab. Oppgavesett 1/3
TMA4123 - Kræsjkurs i Matlab. Oppgavesett 1/3 22.02.2013 Dette oppgavesettet omhandler grunnleggende Matlab-funksjonalitet, slik som variabler, matriser, matematiske funksjoner og plotting. Den aller viktigste
0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23
UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk
Emneevaluering GEOV272 V17
Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom
EKSAMEN I MATEMATIKK 1000
EKSAMEN I MATEMATIKK 1000 Oppgave 1 a) Finn den deriverte av disse funksjonene: f(x) = x 3 e 5x og g(x) = ln(tan(x)) + x 3. b) Finn de følgende ubestemte integralene: i) (x 3 + xe x2 ) dx og ii) cos 2
Monteringsprosedyre for Soundstop - lydmatte
NORSOK STANDARD PIPING AND EQUIPMENT INSULATION R-004 5.7 Guidelines for acoustic insulation The acoustic pipe insulation classes can be met by various combinations of insulation materials and jacketing
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag
Right Triangle Trigonometry
0 Capter Trigonometry 70. f 8 7 8 Vertical asymptote: 8 0 y 7 0 7 8 9 9 ± 8 y Slant asymptote: ± 89 ;.,. y 7 8 y-intercept: 0, 8 -intercept:.8, 0 Section. Rigt Triangle Trigonometry You sould know te rigt
7.4 Singulærverdi dekomposisjonen
7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon
Newtons metode for system av ligninger
Newtons metode for system av ligninger Arne Morten Kvarving http://www.math.ntnu.no/ arnemort/m4-itersys.pdf Department of Mathematical Sciences Norwegian University of Science and Technology 15. Oktober
Endringer i neste revisjon av EHF / Changes in the next revision of EHF 1. October 2015
Endringer i neste revisjon av / Changes in the next revision of 1. October 2015 INFORMASJON PÅ NORSK 2 INTRODUKSJON 2 ENDRINGER FOR KATALOG 1.0.3 OG PAKKSEDDEL 1.0.2 3 ENDRINGER FOR ORDRE 1.0.3 4 ENDRINGER
1 Aksiomatisk definisjon av vanlige tallsystemer
Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON3610/4610 Resource Allocation and Economic Policy Eksamensdag: Torsday 28.
Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.
6-13 July 2013 Brisbane, Australia Norwegian 1.0 Brisbane har blitt tatt over av store, muterte wombater, og du må lede folket i sikkerhet. Veiene i Brisbane danner et stort rutenett. Det finnes R horisontale
Elektronisk termostat med spareprogram. Lysende LCD display øverst på ovnen for enkel betjening.
Elektronisk termostat med spareprogram. Lysende LCD display øverst på ovnen for enkel betjening. 27.5 LCD Electronic thermostat with program setting. Bright LCD display placed at the top of the heater
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Eksamen i: ECON1210 - Forbruker, bedrift og marked Eksamensdag: 26.11.2013 Sensur kunngjøres: 18.12.2013 Tid for eksamen: kl. 14:30-17:30 Oppgavesettet er
Independent Inspection
Independent Inspection Odd Ivar Johnsen Vidar Nystad Independent Inspection Mål: Felles forståelse og utøvelse av "Independent Inspection" i forbindelse med "Critical Maintenance Task". Independent Inspection
Page 2 of 3. Problem 1.
Page of 3 Problem. Derive formulas for the a nb coefficients in the Second-Order Upstream scheme (SOU) for the convection-diffusion equation for the concentration of diatom type algae with fall velocity
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 2 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:
Den som gjør godt, er av Gud (Multilingual Edition)
Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,
Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag
ADDENDUM SHAREHOLDERS AGREEMENT. by and between. Aker ASA ( Aker ) and. Investor Investments Holding AB ( Investor ) and. SAAB AB (publ.
ADDENDUM SHAREHOLDERS AGREEMENT by between Aker ASA ( Aker ) Investor Investments Holding AB ( Investor ) SAAB AB (publ.) ( SAAB ) The Kingdom of Norway acting by the Ministry of Trade Industry ( Ministry
LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse
LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse matrisenotasjon simpleksalgoritmen i matrisenotasjon eksempel negativ transponert egenskap: bevis følsomhetsanalyse
BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 33
BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 33 Oppgave 2 Litt aritmetikk a) Her har vi skrevet ut det som kommer opp i Octave-vinduet når vi utfører operasjonene. octave-3.2.4.exe:9> 2+2 4 octave-3.2.4.exe:10>
TB-615 / TB-617 Wireless slim keyboard. EN User guide SE Användarhandledning FI Käyttöohje DK Brugervejledning NO Bruksanvisning
TB-615 / TB-617 Wireless slim keyboard EN User guide SE Användarhandledning FI Käyttöohje DK Brugervejledning NO Bruksanvisning EN User guide You have bought a wireless keyboard to use with Windows XP,
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni
RF5100 Lineær algebra Leksjon 2
RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013 I. LINEÆRE SYSTEM SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på
BIBSYS Brukermøte 2011 Live Rasmussen og Andreas Christensen. Alt på et brett? -om pensum på ipad og lesebrett
BIBSYS Brukermøte 2011 Live Rasmussen og Andreas Christensen Alt på et brett? -om pensum på ipad og lesebrett Prosjektet epensum på lesebrett Vi ønsker å: Studere bruk av digitalt pensum i studiesituasjonen.
Newtons fargeskive. Regnbuens farger blir til hvitt. Sett skiva i rask rotasjon ved hjelp av sveiva.
Newtons fargeskive Regnbuens farger blir til hvitt. Sett skiva i rask rotasjon ved hjelp av sveiva. Se hva som skjer med fargene. Hvitt lys består av en blanding av alle farger. Når fargeskiva roterer
Eksamensoppgave i SANT2100 Etnografisk metode
Sosialantropologisk institutt Eksamensoppgave i SANT2100 Etnografisk metode Faglig kontakt under eksamen: Trond Berge Tlf.: 73598214 Eksamensdato: Mandag 26. mai 2014 Eksamenstid: 4 timer Studiepoeng:
Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk
Vekeplan 4. Trinn Veke 39 40 Namn: Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD Norsk Engelsk M& Mitt val Engelsk Matte Norsk Matte felles Engelsk M& Mitt val Engelsk Norsk M& Matte
Morten Walløe Tvedt, Senior Research Fellow, Lawyer. Seminar 6.juni 2008
Morten Walløe Tvedt, Senior Research Fellow, Lawyer Seminar 6.juni 2008 My Background: Marine and Fish Genetic Resource: Access to and Property Rights of Aquaculture Genetic Resources Norwegian Perspectives
EKSAMENSOPPGAVE I FAG TKP 4105
EKSAMENSOPPGAVE I FAG TKP 4105 Faglig kontakt under eksamen: Sigurd Skogestad Tlf: 913 71669 (May-Britt Hägg Tlf: 930 80834) Eksamensdato: 08.12.11 Eksamenstid: 09:00 13:00 7,5 studiepoeng Tillatte hjelpemidler:
Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006
Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en
Hvordan føre reiseregninger i Unit4 Business World Forfatter:
Hvordan føre reiseregninger i Unit4 Business World Forfatter: dag.syversen@unit4.com Denne e-guiden beskriver hvordan du registrerer en reiseregning med ulike typer utlegg. 1. Introduksjon 2. Åpne vinduet
Hvordan 3 konsulenter tester et konserndatavarehus
Hvordan 3 konsulenter tester et konserndatavarehus DNB sine testutfordringer Tidligere leveranser har blitt utsatt på grunn av dårlig testing Representanter fra forretning er negative til å akseptanseteste
Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag Oppgave 2 Litt aritmetikk a) Her har vi skrevet ut det som kommer opp i kommandovinduet når vi utfører operasjonene. > 2+2 4 > 3-2 1
Løsningsførslag i Matematikk 4D, 4N, 4M
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y
MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN. Wednesday 3 th Mars Time:
Side 1 av 8 Norwegian University of Science and Technology DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN Wednesday 3 th Mars 2010 Time: 1615-1745 Allowed
UNIVERSITETET I BERGEN
Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.
Lineære ligningssystem og matriser
Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan
KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.
KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene
Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x
Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +
Vedlegg 2 Dokumentasjon fra TVM leverandør
(Step 7) Payment selection or date modification state This screen is displayed after validation of a date in the calendar screen. The customer can: - Modify again the date by pressing the Validity begin:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.
Fasit eksamen i MAT102 4/6 2014
Fasit eksamen i MAT /6. (a Løs ligningssstemene. Svar: i ( x i = 3x + = 7 x + = ( 6, ii x z ii = x + z = 3x + 6 + z = +. er fri. (b Ved å bruke MATLAB-kommandoen rref på totalmatrisen til ligningssstemet
SAS FANS NYTT & NYTTIG FRA VERKTØYKASSA TIL SAS 4. MARS 2014, MIKKEL SØRHEIM
SAS FANS NYTT & NYTTIG FRA VERKTØYKASSA TIL SAS 4. MARS 2014, MIKKEL SØRHEIM 2 TEMA 1 MULTIPROSESSERING MED DATASTEGET Multiprosessering har lenge vært et tema i SAS Stadig ny funksjonalitet er med på
=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,
Eksamen i TMA4122 Matematikk 4M
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:
https://sandefjord.ist-asp.com/sandefjordpub/login.htm
Søknad om plass i barnehage eller SFO i Sandefjord kommune Application for a place in kindergarten or day care facilities for school children, this will be referred to as SFO. Søknad om plass skal legges