TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005"

Transkript

1 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA40 Numerisk løsning av part. diff.lign. med differansemetoder Vår 005 Løsningsforslag Øving 5 a) Vi skal undersøke stabilitet ved Fourier-metoden. Metodens karakteristiske polynom er gitt som ã(z, r) = + εr(z + z) λhr (z z ). Fourier-metoden sier at metoden er stabil dersom kravet ã(e iθ, r) θ [0, π], er oppfylt. Vi setter inn e iθ i ã og får ã(e iθ, r) = εr( (e iθ + e iθ )) λhr (eiθ e iθ ) = 4εr sin θ iαr sin θ, hvor α = λh. Siden a(eiθ, r) er ekvivalent med a(e iθ, r), får vi ved kvadrering a(e iθ, r) = 8εr sin θ + 6ε r sin 4 θ + 4α r sin θ. Vi bruker sin( θ ) = sin θ cos θ og deler så på 8 sin θ. Stabilitetskravet blir dermed at εr + ε r sin θ + α r cos θ 0 eller ekvivalent at α r ε + r(ε α ) sin θ 0. Dette skal holde for θ [0, π]. Vi må skille mellom to tilfeller:. Anta at α < ε. Da har vi stabilitet dersom α r ε + r(ε α ) 0, dvs. dersom r ε. (sett inn ε = α) 4. mars 005 Side av 8

2 . Anta at α ε. Da har vi stabilitet dersom α r ε 0, dvs dersom r ε α. b) Matrisen Q er gitt ved ε (ε α) (ε + α) ε (ε α) Q = (ε + α) ε (ε α) ε ε, mens F er gitt ved F = r[ε + α, 0,..., 0] T. Legg merke til at siste rad i Q er litt forskjellig fra de andre. Dette kommer av formen av randbetingelsene. c) For å kunne løse denne oppgaven må vi kjenne til hvordan determinanten til en matrise utvikles ved en av radene. Anta vi vil utvikle determinanten til en matrise A ved rad i, da gjelder det A = a i A i + a i A i + + a in A in hvor A ij = ( ) i+j det M ij hvor M ij er ko-faktor matrisen til A, dvs matrisen vi får når vi stryker rad i og søyle j. På grunn av formen til Q, er det lurt å utvikle determinanten om siste rad. Da får vi det(q λi) = 0 Q N + 0 Q N Q NN εq NN + (ε λ)q NN = ε( ) N det + (ε λ)( ) N det ε λ (ε α) (ε + α) ε λ (ε α) (ε + α) ε λ 0 (ε + α) (ε α) ε λ (ε α) (ε + α) ε λ (ε α) (ε + α) ε λ (ε α) (ε + α) ε λ Vi ser at det siste leddet er gitt slik som det skal, mens det første ikke er på riktig form. Vi må beregne denne determinanten for seg selv. Hvis vi prøver å utvikle denne nok en gang om siste rad, støter vi raskt på problemer. Det vi bør legge merke til dog, er at siste søyle har bare siste element ulik null. Vi kan derfor benytte regelen om at determinanten av den transponerte matrisen er lik determinanten av matrisen selv, dvs det A = det A T. Dette betyr at vi like 4. mars 005 Side av 8

3 godt kan utvikle determinanten om en av søylene til matrisen. Vi velger derfor å utvikle problemmatrisen over ved siste søyle. Vi får dermed at det(q λi) = (ε λ)t N (λ) + ( ε(ε α))t N (λ) = (ε λ)t N (λ) ε(ε α))t N (λ), som skulle vises. Videre ser vi at matrisene T M (λ) er tridiagonale, så vi kjenner egenverdiene til disse fra notatet om tridiagonale matriser. Rekurrensformelen fås dog på akkurat samme måte som over, og startbetingelsene er trivielle. d) Matrise-metoden sier at metoden er stabil når ρ(a). Vi må finne σ(q), siden σ(a) = rσ(q). Dette gjøres ved å finne nullpunktene til G (λ). Vi har at G (λ) = (ε λ)t (λ) ε(ε α)t 0 (λ) = (ε λ) ε(ε α). Vi har igjen to muligheter:. Anta at α < ε. Da er G (λ) = 0 hvis Stabilitetskravet er λ = ε ± ε(ε α). rλ 0 og rλ. Den første ulikheten er trivielt oppfylt, og den andre gir r ε + ε(ε α). Anta at α ε. Da er røttene gitt ved som gir For å få stabilitet krever vi at som er oppfylt når λ = ε ± i ε(α ε), σ(a) = rε ± ir ε(α ε). σ(a) = 4rε + 4r ε + εαr ε r, r ε + α. e) Vi setter R = ε α, slik at T M (x) = R M U M (x). Rekurrensformelen for T M gir da R M U M (x) = xrr M U M (x) R R M U M (x), som er ekvivalent med Startsbetingelsene gir at og U M (x) = xu M (x) U M (x). RU (x) = xr U (x) = x R U (x) = 4x R R U (x) = 4x. Dermed kjenner vi igjen denne rekurrens-relasjonen som Chebyshev-polynomene av andre sort, som er nettopp U M (x). 4. mars 005 Side 3 av 8

4 f) Vi har at λ = ε xr, så rekurrensrelasjonen for G N (λ) gir, når vi substituerer inn uttrykket for T M, følgende uttrykk H N (x) = G N (ε xr) = xrr N U N (x) ε(ε α)r N U N (x) = R N [x(ε α )U N (x) ε(ε α)u N (x)] = (ε α)r N [x(ε + α)u N (x) εu N (x)]. Vi kan dermed konkludere med at røttene til H N (x) ligger i intervallet (, ). La de korresponderende røttene til G N (λ) være gitt ved λ j. Vi har da at σ j (A) = rλ j = r(ε x j R), så kravet σ j (A) gir den trivielt oppfylte ulikheten og ulikheten som er oppfylt når r(ε x j R) 0 r(ε x j R), r ε + ε α g) Sammenligning av Fouriermetoden og matrisemetoden ( egenverditeknikker ) gir at vi ikke får de samme betingelsene: Fouriermetoden Matrisemetoden α ε r ε (strengest) r ε α α α < ε r ε (strengest) r ε+ ε α Fouriermetoden støtter ikke annet enn periodiske randkrav, mens systemet vårt har Dirichlet i venste endepunkt og Neumann i høyre endepunkt. På den andre side så krever matrisemetoden at iterasjonsmatrisa A er normal, AA T = A T A (symmetriske og skjev-symmetriske matriser har denne egenskapen). A er nesten symmetrisk så for en passende definisjon av nesten, så er den nesten normal. Begge teknikker brukes likevel for å indikere stabilitetskrav for metoder med litt ustandard randbetingelser fordi det er bedre med en viss indikasjon på hva som kreves for stabilitet enn ingen. Matrisene B og C er gitt ved D M... B =... DM, C = I M I M I M I M I M, I M I M 4. mars 005 Side 4 av 8

5 hvor matrisen D M er gitt ved D M =. Vi ønsker nå å løse ligningen hvor B og C inngår. Kall høyresiden f, og sett F = (I rb) og H = (I rc). Vi omskriver ligningen til F HU n+ = f. Først løser vi F y = f, og deretter løser vi HU n+ = y. Begge ligningene er tridiagonale og kan derfor løses med O(M ) operasjoner. NB: Husk at O(M ) operasjoner i denne sammenheng betyr O(n) operasjoner, siden matrisen har M rader og dermed M 4 elementer. I Matlab kan disse matrisene enkelt konstrueres med et Kronecker tensorprodukt. Definer matrisa D i Matlab som D M over. Vi kan da konstruere >> M = 3 >> D = diag ( ones (,M ), ) + diag( ones (,M), 0 ) + diag ( ones (,M ),) D = 0 0 >> B = kron ( eye (M), D) >> C = kron (D, eye (M) ) >> help kron BC er da det samme som kron(d, D). 3 Oppgave 3. i læreboka. We will use Fourier method to analyze the stability of the scheme u n+ l = ( 5µ + 6µ )u n l + 3 µ( 3µ)(un l + un l+ ) µ( 6µ)(un l + un l+ ). The scheme has the following stability function ã(z, µ) ã(z, µ) = ( 5µ + 6µ ) + 3 µ( 3µ)(z + z) µ( 6µ)(z + z ). Substituting z = e iθ, we obtain ã(e iθ, µ) = ( 5µ + 6µ ) µ( 3µ) cos θ µ( 6µ) cos θ. 6 Let us use cos θ = cos θ to express ã(e iθ, µ) in terms of x = cos θ: ã(x, µ) = 3 µ(6µ )x µ( 3µ)x + ( 7 3 µ + µ ). () We must find all values µ such that ã(e iθ, µ), θ [0, π], 4. mars 005 Side 5 av 8

6 or, equivalently, ã(x, µ), x [, ], Let us notice that according to the definition µ 0. We limit ourselves to this interval in the analysis. There are two cases to consider:. If µ(6µ ) = 0, i.e. µ = 0 or µ = 6 the plot of the function ã(x, µ) is a line. The maximum value of ã(x, µ) for x [, ] is either ã(, µ) or ã(, µ). We get ã(, µ) = 6 3 µ + 8µ, ã(, µ). It is easy to see that ã(, µ) for µ = 0 and µ = 6. Thus, the scheme is stable.. If µ(6µ ) 0, the plot of the function ã(x, µ) is a parabola so that there is one extremum point ( 3µ) x 0 = ( 6µ). The maximum value of ã(x, µ) for x [, ] can be in x =, x = or x = x 0. It is important to notice that we must consider the point x = x 0 only if x 0 [, ]. For the stability of the scheme we require and ã(, µ), ã(, µ) ã(x 0, µ), if x 0 [, ]. We obtain ã(, µ), ã(, µ) if µ 3. The point x 0 is located in the interval [, ] if x 5 5. Because for µ [, 3 ] parabola () is has minimum in x 0 (why?) and it is entirely located in the upper half plane the value ã(x 0, µ) can not have maximum at x 0. Finally, the scheme is stable if µ [0, 3 ]. 4 Oppgave 3. i læreboka. Vi skal drøfte stabiliteten til FM-skjemaet u n+ l (µ ζ)(un+ l un+ l + u n+ l+ ) = un l + (µ + ζ)(un l un l + u n l+ ) for forskjellige valg av ζ. Først benytter vi matrisemetoden. La x = som alltid u n = [u n,..., u n d ]T. d+. Vi setter Vi må først bestemme systemmatrisen A x. Vi har at skjemaet kan skrives som A + x un+ = A x un, hvor A + x = + (µ ζ) (µ ζ) (µ ζ) + (µ ζ) (µ ζ) (µ ζ) + (µ ζ) 4. mars 005 Side 6 av 8

7 og (µ + ζ) (µ + ζ) A x = (µ + ζ) (µ ζ) (µ + ζ). (µ + ζ) (µ + ζ) Begge matrisene er TST (tridiagonal, symmetrisk og Toeplitz) og egenverdiene er gitt ved λ + j λ j = + (µ ζ) = (µ + ζ) + (µ ζ) cos( πj d+ ) = + (µ ζ) sin ( πj x (µ + ζ) cos( πj d+ ) = (µ + ζ) sin ( πj x ) j =,..., d ) j =,..., d. Selve systemmatrisen er gitt ved A x = (A + x ) A x. Siden komponentmatrisene er tridiagonale og derfor normale, er systemmatrisen selv en normal matrise. Fordi matriser A + x og A x er TST kan vi skrive A + x = QD+ Q T og A x = QD Q T, der Q er den ortonormale matrisen med egenvektorene (egenvektorene er like for A + x og A x ) og D+ og D diagonale matriser med de respektive egenverdiene (Lemma 0.5 i boka). Dermed følger det umiddelbart at A x = (QD + Q T ) QD Q T = Q(D + ) Q T QD Q T = Q(D + ) D Q T. Dette viser at egenverdiene til A x er gitt som (λ + j ) λ j, dvs egenverdiene er gitt som λ j = (µ + ζ) sin ( πj x ) + (µ ζ) sin ( πj x j =,..., d. ) Vi vet at 0 sin ( πj x ). Anta at verdien er s for å slippe å skrive så mye. λ j betyr da for våre reelle tall: og vi skiller i to tilfeller: (µ + ζ)s + (µ ζ)s. Nevneren er positiv, + sµ sζ > 0 ζ < µ + /(s). Da ganger vi opp nevneren og venstre ulikhet gir som betyr at vi må kreve for stabilitet. Høyre ulikhet blir sµ + sζ sµ sζ ζ s sµ sζ + sµ sζ som kun krever µ > 0 for stabilitet, og dette er alltid tilfredstilt i denne oppgaven (noe annet ville innebære negativ tid). 4. mars 005 Side 7 av 8

8 . Nevneren er negativ, ζ > µ + /(s). Når nevneren er negativ må vi endre på fortegnet til ulikheten når vi ganger opp. Venstre ulikhet gir sµ + sζ sµ sζ som betyr at ζ /(s). Men høyre ulikhet gir nå µ 0 som ikke er sant i denne oppgaven, dermed er aldri skjemaet stabilt når nevneren er negativ. Siden 0 s har vi at strengeste stabilitetsgrense kommer når s =, dermed har vi at skjemaet kun er stabilt når ζ. Vi skal så benytte Fouriermetoden på samme skjema. Stabilitetsfunksjonen er gitt ved ã(z, µ) = + (µ + ζ)(z + z) (µ ζ)(z + z). Vi setter z = e iθ og får ã(e iθ, µ) = (µ + ζ) + (µ + ζ)(eiθ + e iθ ) + (µ ζ) (µ ζ)(eiθ + e iθ ) = (µ + ζ) sin ( θ ) + (µ ζ) sin ( θ ) θ [0, π]. Vi ser at stabilitetsfunksjonen sammensvarer med uttrykket for egenverdiene fra matrisemetoden, så vi kan konkludere med at Fouriermetoden gir samme stabilitetskrav. Legg merke til at hvis vi setter ζ = 0, så får vi Crank Nicolsons metode, så vi kan forvente at ζ er en slags relaksasjonsparameter, dvs at den skal øke konvergenshastigheten. 4. mars 005 Side 8 av 8

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Navn: Bård Skaflestad (946867) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (964) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER

Detaljer

EKSAMEN I MATEMATIKK 3 (TMA4110)

EKSAMEN I MATEMATIKK 3 (TMA4110) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Fremgangsmetode: P X 1 < 6.8 Denne kan finnes ved å sette opp integralet over

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Løsningsforslag Øving 4 1 a) Bølgeligningen er definert ved u tt c 2 u xx = 0. Sjekk

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving Oppgaver fra boken: :, 9,,, 5, 9, 5, 67 Det er oppgavene i boldface som

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er matrisen inverterbar når v T u 1.

a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er matrisen inverterbar når v T u 1. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Oppgave 1 a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er

Detaljer

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Notasjon i rettingen:

Notasjon i rettingen: UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 207 Notasjon i rettingen: R Rett R Rett, men med liten tulle)feil

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

TMA4135 Matematikk 4D Høst 2014

TMA4135 Matematikk 4D Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA435 Matematikk 4D Høst 04 Eksamen. desember 04 Integralet er en konvolusjon, så vi har Laplace-transformasjon gir yt) y cos)t)

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003 Norges teknisk naturvitenskapelige universitet NTNU Side 1 av 9 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 3 apittel 8.2: Likevektspunkter og deres stabilitet La oss si

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 04 Løsningsforslag. Eksamen 6. mai Løsning: Oppgave a) dy dx y y y )y ) : gy), så likevektsløsningene

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,

Detaljer

TMA4100 Matematikk1 Høst 2008

TMA4100 Matematikk1 Høst 2008 TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Numerisk løsning av PDL

Numerisk løsning av PDL Numerisk løsning av PDL Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 6. November 2007 Problem og framgangsmåte Fram til nå har vi sett på ordinære

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7 FYS2140 Kvantefysikk Løsningsforslag for Oblig 7 Oppgave 2.23 Regn ut følgende intgral a) +1 3 (x 3 3x 2 + 2x 1)δ(x + 2) dx (1) Svar: For å løse dette integralet bruker vi Dirac deltafunksjonen (se seksjon

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

TMA Kræsjkurs i Matlab. Oppgavesett 1/3

TMA Kræsjkurs i Matlab. Oppgavesett 1/3 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 1/3 22.02.2013 Dette oppgavesettet omhandler grunnleggende Matlab-funksjonalitet, slik som variabler, matriser, matematiske funksjoner og plotting. Den aller viktigste

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

Løsningsførslag i Matematikk 4D, 4N, 4M

Løsningsførslag i Matematikk 4D, 4N, 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 TTK5 Reguleringsteknikk, Vår Løsningsforslag øving Oppgave Vi setter inntil videre at τ = e τs. a) Finn først h s) gitt ved h s) = T i s T s) + T i s) ) ) ) ) + ζ s ω + s ω Vi starter med amplitudeforløpet.

Detaljer

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A = Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (

Detaljer

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag. Side 1 av 6. Faglig kontakt under eksamen: Navn: Brynjulf Owren (93518)

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag. Side 1 av 6. Faglig kontakt under eksamen: Navn: Brynjulf Owren (93518) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (93518) EKSAMEN I NUMERISK LØSNING AV DIFFERENISALLIGNINGER (75316)

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TEP4145 KLASSISK MEKANIKK Mandag 21. mai 2007 kl Løsningsforslaget er på i alt 9 sider.

LØSNINGSFORSLAG TIL EKSAMEN I TEP4145 KLASSISK MEKANIKK Mandag 21. mai 2007 kl Løsningsforslaget er på i alt 9 sider. NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TEP4145

Detaljer

Pensum i lineæralgebra inneholder disse punktene.

Pensum i lineæralgebra inneholder disse punktene. Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA423/TMA425 Matematikk 4M/4N Vår 203 Løsningsforslag Øving 2 La y = yx være funksjonen som tilfredstiller differensialligningen

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

EKSAMEN I TMA4180 OPTIMERINGSTEORI

EKSAMEN I TMA4180 OPTIMERINGSTEORI Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 4 Faglig kontakt under eksamen: Marte Pernille Hatlo 7359698 / 97537854 EKSAMEN I TMA48 OPTIMERINGSTEORI Fredag 2. juni

Detaljer

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1 TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

Kap. 6 Ortogonalitet og minste kvadraters problemer

Kap. 6 Ortogonalitet og minste kvadraters problemer Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

16 Ortogonal diagonalisering

16 Ortogonal diagonalisering Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen

Detaljer

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010 LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER Onsdag 10. august 2005 Tid: 09:00 13:00

EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER Onsdag 10. august 2005 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

Eksamen i TMA4122 Matematikk 4M

Eksamen i TMA4122 Matematikk 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk

Detaljer

MAT1120 Oppgaver til plenumsregningen torsdag 25/9

MAT1120 Oppgaver til plenumsregningen torsdag 25/9 MAT1120 Oppgaver til plenumsregningen torsdag 25/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 5.1 Denisjon av egenverdier, egenvektorer, egenrom. Teorem 1 s. 306: Egenverdiene til en triangulær

Detaljer

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA40 Matematikk 3 Haust 0 Løysingsforslag Øving Oppgåver frå læreboka kap 5, s 7-73 5 Eigenrommet som svarar til λ = 5 er det

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

NORMALFORDELINGER, KOVARIANSMATRISER OG ELLIPSOIDER

NORMALFORDELINGER, KOVARIANSMATRISER OG ELLIPSOIDER NORMALFORDELINGER, KOVARIANSMATRISER OG ELLIPSOIDER SIE 3080 STOKASTISKE OG ADAPTIVE SYSTEMER Oddvar Hallingstad 0. februar 00 Vi skal her utlede noen nyttige formler for arbeidet med kovariansmatriser

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = = 10 =

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = = 10 = Eksamen. desember 205 Eksamenstid 4 timar IR2072 Diskret Matematikk Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve.......................................................................................

Detaljer