TMA4240 Statistikk Høst 2013
|
|
- Anette Aamodt
- 8 år siden
- Visninger:
Transkript
1 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, ). Ved bruk av tabell A.3 finner vi a) 1) 2) 3) P (X > 3000) 1 P (X < 3000) P (Z < ) P (Z < 0.55) P (3000 <X<3500) P ( <Z< 575 P ( 0.55 < Z < 0.32) P (Z <0.32) P (Z < 0.55) ) 575 P (X >3500 X >3000) P (X >3500 \ X>3000) P (X >3000) P (X >3500) P (X >3000) P (Z >0.32) P (Z > 0.55) 1 P (Z <0.32) 1 P (Z < 0.55) ov6-lsf-b 16. september 2013 Side 1
2 b) Dersom fødelsvekten er mindre enn c gram, P (X < c) 0.01, vil barnet bli klassifisert som undervektig. La n 100 være antall barn og Y antall av disse barna som var undervektige ved fødselen. Vi antar at fødelsvekten for de ulike barna er uavhengige av hverandre. Fødelsvekten til hvert barn kan da beskrives av en bernoulli variabel med med suksesssannsynlighet (undervektig) p P (X < c) Da vil Y være binomisk fordelt med parametere n 100,p0.01, Y b(y; 100, 0.01). Når Y er en binomisk fordelt variabel med fordeling b(y; n, p), n! 1 og p! 0, np! µ vil vi kunne bruke Poisson-tilnærming til den binomiske fordelingen, dvs b(y; n, p)! p(y; µ). Vi bruker poisson-tilnærmingen Y p(y; 1) og finner da ved bruk av tabell A.2 P (Y > 0) 1 P (Y < 0) P (Y > 1 \ Y > 0) P (Y > 1 Y > 0) P (Y > 0) P (Y > 1) P (Y > 0) 1 P (Y < 1) 1 P (Y < 0) Oppgave 2 a) The probability that the lamp lights up when the procedure is performed once, is P (X >25) P ((X 20)/4 > (25 20)/4) P (Z >1.25) P (Z < 1.25) , where Z has the standard normal distribution. If the procedure is performed three times, let the amounts of by-product be X 1, X 2, X 3. Then the probability that the lamp lights up at least once is P (X 1 > 25 [ X 2 > 25 [ X 3 > 25) 1 P (X 1 apple 25, X 2 apple 25, X 3 apple 25) 1 (P (X i apple 25)) 3 1 (1 P (X i > 25)) 3 1 ( ) Let Y be the number of times the lamp lights up when the procedure is performed 100 times. Then Y has the binomial distribution with parameters n 100 and p , ov6-lsf-b 16. september 2013 Side 2
3 and P (Y 15) P (Y 14.5) P! Y np p p np(1 p) P (Z >1.28) P (Z apple 1.28) 0.100, using the normal approximation with continuity correction. (The exact binomial probability is ) (You are not penalized if you have not applied the continuity correction. If you use 15 instead of 14.5 in the normal approximation, you get 0.074, and if you use 14 (arising from P (Y 15) 1 P (Y apple 14)), you get not very good approximations.) b) Let n be the number of times the procedure is performed, and let X 1, X 2,...,X n be the amounts of by-product. The total amount of by-product, Y P n i1 X i, has the normal distribution with mean 20n and variance 4 2 n. We want to find n such that Y 20n 0.01 apple P (Y 500) P 4 p n n 4 p n P Z n 4 p, n that is, (500 20n)/(4 p p n) z , or 125 5n z 0.01 n, and we have a p p quadratic inequality 5n + z 0.01 n 125 apple 0in n. The left hand side is a downwardpointing parabola (as a function of p n) having zeros z 0.01 ± p z /(2 5), that is, 5.24 and 4.77, meaning that 0 apple p n apple 4.77 and n apple 22.8, that is, n apple 22 since n is an integer. Oppgave 3 Betrakt et parallellsystem av to uavhengige komponenter, der levetiden til hver av komponentene er eksponensialfordelt med parameter,dvs F X (x) 1 e x for x 0. Da komponentene danner et paralellsystem, vil systemet fungere dersom minst en av komponentene fungerer. Vi lar dermed levetiden til systemet betegnes ved V max(x 1,X 2 ), og fordelingen til V finnes ved å benytte at komponenten med lengst levetid er mindre eller lik v hvis og bare hvis begge komponentene er mindre eller lik v: F V (v) P(V apple v) P(max(X 1,X 2 ) apple v) P(X 1 apple v \ X 2 apple v) Uavh. P(X 1 apple v) P(X 2 apple v) (F X (v)) 2 (1 e v ) 2 1 2e v +e 2 v. Vi har videre f V (v) d dv F V (v) 2 e v 2 e 2 v. Forventningen til V er gitt ved ov6-lsf-b 16. september 2013 Side 3
4 Figur 1: Paralellkopling av to komponenter ov6-lsf-b 16. september 2013 Side 4
5 E(V ) Ved delvis integrasjon får vi dermed Z 1 1 vf V (v) dv. E(V ) Z 1 1 vf V (v) dv Z 1 0 (2 ve v 2 ve 2 v ) dv 3 2. Oppgave 4 Betrakt et seriesystem sammensatt av n uavhengige komponenter der levetiden til hver komponent følger en Weibull-fordeling med skalaparameter og formparameter, gitt ved F X (x) 1 e ( x) for x 0. Da vi har et seriesystem, vil systemet fungere frem til første komponent svikter. Vi lar dermed levetiden til systemet betegnes ved U min(x 1,X 2,...,X n ). F U (u) P(U apple u) P(min(X 1,X 2,...,X n ) apple u) 1 P(min(X 1,X 2,...,X n ) >u) 1 P(X 1 >u\ X 2 >u\ \X n >u) Uavh. 1 ny P(X i >u) i1 1 (1 F X (u)) n 1 (1 (1 e ( x) )) n 1 (e ( x) ) n 1 e (n1/ x). Dette er en Weibull-fordeling med skalaparameter n 1/ og formparameter. Oppgave 5 a) Vi må i tillegg anta at hver gjennomlesning av teksten er uavhengig av hverandre. Vi har 2 og s 8 og ønsker å finne sannsynligheten for at antall trykkfeil, N, er større enn 10. Vi har µ s P (N >10) 1 P (N apple 10) 1 X10 i P (N i) ov6-lsf-b 16. september 2013 Side 5
6 ov6-lsf-b 16. september 2013 Side 6
7 Vi har nå gitt N 12 og p 0.6 og œnsker å finne sannsynligheten for at korrekturleseren oppdager alle trykkfeilene. P (X 12 N 12) b) Y k antall trykkfeil som gjenstår etter k uavhengige gjennomlesninger. Vi finner først simultanfordelingen til Y 1 og N. Vi har n P (X x N n) p x (1 p) n x,x0, 1,...,n x Simultanfordelingen til Y 1 og N er da gitt ved P (Y 1 u, N n) P (Y 1 u N n) P (N n) P (N X u N n) P (N n) P (X n u N n) P (N n) n p n u (1 p) u P (N n) n u for u 0, 1,... og n u, u +1,... Vi finner deretter marginalfordelingen til Y 1. P (Y 1 u) 1X P (Y 1 u, N n) nu 1X n p n u (1 p) u e n u nu 1X n + u p n (1 p) u e n n0 1X 1 n!u! pn (1 p) u e s ( s) n+u n0 ( s)u e s X 1 (1 p) u ( ps) n u! n! n0 ( s)u e s (1 p) u e ps u! ( s(1 p))u s(1 e p). u! s ( s)n n! s ( s)n+u (n + u)! Vi ser at marginalfordelingen til Y 1 er Y 1 Poisson( s(1 p)). ov6-lsf-b 16. september 2013 Side 7
8 Siden fordelingen for Y 1 er den samme som for N bortsett fra at parameteren er endret, vil mønsteret gjenta seg slik at også Y 2 blir poissonfordelt, og parameteren i fordelinga til Y 2 blir s(1 p)(1 p) s(1 p) 2. Tilsvarende blir Y 3 Poisson( s(1 p) 3 ) og generelt Y k Poisson( s(1 p) k ). ov6-lsf-b 16. september 2013 Side 8
TMA4240 Statistikk 2014
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Fremgangsmetode: P X 1 < 6.8 Denne kan finnes ved å sette opp integralet over
TMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 55 2. Ved bruk av formelheftet finner
TMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Løsningsskisse Oppgave 1 Da komponentene danner et parallellsystem, vil systemet fungere dersom minst
TMA4240 Statistikk Høst 2009
TMA44 Statistikk Høst 9 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b Løsningsskisse Oppgave X er en stokastisk variabel med sannsynlighetstetthet { f(x),
Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 5, blokk I Løsningsskisse Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag.
Oppgave 1 a) La X være massen til et tilfeldig valgt egg, målt i gram. Sannsynligheten for at et tilfeldig valgt egg veier mer enn 60 g er
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 5 Løsningsskisse Oppgave 1 a La X være massen til et tilfeldig valgt egg, målt i gram. Sannsynligheten for at
TMA4240 Statistikk Høst 2012
TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 5 blokk I Løsningsskisse Oppgave 1 X N(18,2.5 2 ) P(X < 15) = P ( X 18 < 15 18 ) = P(Z < 1.2)
for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere
TMA4240 Statistikk 2014
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 X og Y er uavhengige Poisson-fordelte stokastiske variable, X p(x;5 og Y p(y;1.
TMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Løsningsskisse Oppgave X er kontinuerlig fordelt med sannsynlighetstetthet f X (x) = { x exp( x ) x
Forelesning 27. mars, 2017
Forelesning 27. mars, 2017 AVSNITT 5.5 Ordningsobservatorene AVSNITT 6.1 Observatorer og deres fordelinger Ordningsobservatorene La X 1,..., X n være n uavhengige stokastiske variable som alle har samme
Oppgave 1 En ansatt skal overvåke et prosjekt der en lapp velges tilfeldig fra en boks som inneholder 10 lapper nummerert fra 1 til 10.
TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk I Løsningsskisse Oppgave 1 En ansatt skal overvåke et prosjekt der en lapp velges tilfeldig
0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23
UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk
6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6
3 6.2 Normalfordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Normalfordeling: Sannsynlighetstettheten til en normalfordelt stokastisk variabel, X, med forventning
Trigonometric Substitution
Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different
TMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.
Bioberegninger, ST november 2006 Kl. 913 Hjelpemidler: Alle trykte og skrevne hjelpemidler, lommeregner.
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: Førsteamanuensis Jarle Tufto Telefon: 99 70 55 19 Bioberegninger, ST1301 30.
x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt
TMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5 Løsningsskisse Oppgave 1 En lottorekke kan oppfattes som et ikke-ordnet utvalg på
Slope-Intercept Formula
LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte
TMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator
TMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe
Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.
TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2
TMA4240 Statistikk H2015
TMA4240 Statistikk H2015 Funksjoner av stokastiske variabler (kapittel 7+notat) Fokus på start med kumulativ fordeling 7.2 Funksjon av en SV (inkludert en-entydighet). Fordeling til max/min (fra notat).
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2
ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019 Løsningsforslag Øving 8 Oppgaver fra boka.12.1 X har pdf p X (k)
Binomisk sannsynlighetsfunksjon
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige
TMA4240 Statistikk 2014
TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten
Notasjon. Løsninger. Problem. Kapittel 7
3 Notasjon Kapittel 7 Funksjoner av stokastiske variabler Har n stokastiske variabler, X 1, X 2,..., X n, med kjent fordeling f( 1, 2,..., n ) og kumulativ fordeling F( 1, 2,..., n ). Ser på Y = u(x 1,
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May
Hvordan føre reiseregninger i Unit4 Business World Forfatter:
Hvordan føre reiseregninger i Unit4 Business World Forfatter: dag.syversen@unit4.com Denne e-guiden beskriver hvordan du registrerer en reiseregning med ulike typer utlegg. 1. Introduksjon 2. Åpne vinduet
INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning
INF5820 Natural Language Processing - NLP H2009 jtl@ifi.uio.no HMM Tagging INF5830 Lecture 3 Sep. 7 2009 Today More simple statistics, J&M sec 4.2: Product rule, Chain rule Notation, Stochastic variable
Eksamensoppgave i TMA4265 Stokastiske Prosesser
Institutt for matematiske fag Eksamensoppgave i TMA4265 Stokastiske Prosesser Faglig kontakt under eksamen: Jo Eidsvik Tlf: 901 27 472 Eksamensdato: Desember 1, 2016 Eksamenstid (fra til): 09:00 13:00
SVM and Complementary Slackness
SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations
TMA4245 Statistikk Eksamen 9. desember 2013
Eksamen 9. desember 2013 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Løsningsskisse Oppgave 1 a) Define the following events: A: Getting an ace as your first card B: Getting
6.1 Kontinuerlig uniform fordeling
Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4240 H2006: Eirik Mo 2 6.1 Kontinuerlig uniform fordeling Kontinuerlig uniform fordeling: Sannsynlighetstettheten til den kontinuerlige uniforme
Ekstreme bølger. Geir Storvik Matematisk institutt, Universitetet i Oslo. 5. mars 2014
Ekstreme bølger Geir Storvik Matematisk institutt, Universitetet i Oslo 5. mars 2014 Bølger Timesvise max-bølger ved bøye utenfor østkyst av USA (17/12/1991-23/2-1992) Størrelse på bølger varierer sterkt
Eksamensoppgave i TMA4265 Stokastiske prosesser
Institutt for matematiske fag Eksamensoppgave i TMA4265 Stokastiske prosesser Faglig kontakt under eksamen: Andrea Riebler Tlf: 4568 9592 Eksamensdato: 16. desember 2013 Eksamenstid (fra til): 09:00 13:00
TMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har
Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3
Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL
Kap. 6, Kontinuerlege Sannsynsfordelingar
Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform Onsdag Normal Onsdag Eksponensial I dag Gamma I dag Kji-kvadrat I dag Student-T (Kap
TMA4240 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte
TMA4245 Statistikk Høst 2016
TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet
TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
TMA4240 Statistikk Vår 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Blandet drops a) Tippekupong På en tippekupong er det gitt 2 fotballkamper.
Følgelig vil sannsynligheten for at begge hendelsene inntreffer være null,
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har
Maple Basics. K. Cooper
Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn
Dynamic Programming Longest Common Subsequence. Class 27
Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet
Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2
Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C
Stationary Phase Monte Carlo Methods
Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations
Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Observatorar og utvalsfordeling Torstein Fjeldstad Institutt for matematiske fag, NTNU 08.10.2018 I dag Til no i emnet Observatorar Utvalsfordelingar Sentralgrenseteoremet 2 Til no i emnet definisjon av
A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.
Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:
TMA4240 Statistikk 2014
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Løsningsskisse Oppgave Scriptet run confds.m simulerer n data x,..., x n fra en normalfordeling med
FINAL EXAM IN STA-2001
Page 1 of 3 pages FINAL EXAM IN STA-2001 Exam in: STA-2001 Stochastic processes. Date: Tuesday the 21. of February, 2012. Time: 09:00 13:00. Place: Aud.max. Approved aids: 4 pages of your own notes. Approved
Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B
Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling
TB-615 / TB-617 Wireless slim keyboard. EN User guide SE Användarhandledning FI Käyttöohje DK Brugervejledning NO Bruksanvisning
TB-615 / TB-617 Wireless slim keyboard EN User guide SE Användarhandledning FI Käyttöohje DK Brugervejledning NO Bruksanvisning EN User guide You have bought a wireless keyboard to use with Windows XP,
Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.
Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en observator er fordelingen av verdiene observatoren tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg er en tilfeldig
Moving Objects. We need to move our objects in 3D space.
Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position
Graphs similar to strongly regular graphs
Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree
TMA4329 Intro til vitensk. beregn. V2017
Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver
Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.
TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett
Øvingsforelesning 2. Mengdelære, funksjoner, rekurrenser, osv. TMA4140 Diskret Matematikk. 10. og 12. september 2018
Mengdelære, funksjoner, rekurrenser, osv. Øvingsforelesning 2 TMA4140 Diskret Matematikk 10. og 12. september 2018 Dagens øvingsforelesning Spørsmål til emnene i forrige uke Oppgaver fra midtsemesterprøver
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
TMA4240 Statistikk Høst 2008
TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har
Kap. 6, Kontinuerlege Sannsynsfordelingar
Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet
Bernoulli forsøksrekke og binomisk fordeling
Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke i) gjentar et forsøk n ganger ii) hvert forsøk gir enten suksess eller fiasko iii) sannsynligheten for suksess er p i alle forsøkene
Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.
1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på
Oppfriskning av blokk 1 i TMA4240
Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for
5 E Lesson: Solving Monohybrid Punnett Squares with Coding
5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to
1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling
1 Section 6-2: Standard normalfordelingen 2 Section 6-3: Anvendelser av normalfordelingen 3 Section 6-4: Observator fordeling 4 Section 6-5: Sentralgrenseteoremet Oversikt Kapittel 6 Kontinuerlige tilfeldige
FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)
FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere
Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.
Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.
ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen
ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!
TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum
Løsningsførslag i Matematikk 4D, 4N, 4M
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y
TMA4240 Statistikk Høst 2013
TMA0 Statistikk Høst 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Et venn-diagram for (A [ B) 0 = A 0 \ B 0 er vist i figur.
Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes
Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG
Databases 1. Extended Relational Algebra
Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---
Tabell 1: Beskrivende statistikker for dataene
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);
TMA4240 Statistikk Høst 2009
TMA440 Statistikk Høst 009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Løsningsskisse Oppgave a) n 8, i x i 675, x 37.5, i y i 488, i x i 375, i x iy i
Den som gjør godt, er av Gud (Multilingual Edition)
Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember
Administrasjon av postnummersystemet i Norge Post code administration in Norway. Frode Wold, Norway Post Nordic Address Forum, Iceland 5-6.
Administrasjon av postnummersystemet i Norge Frode Wold, Norway Post Nordic Address Forum, Iceland 5-6. may 2015 Postnumrene i Norge ble opprettet 18.3.1968 The postal codes in Norway was established in
PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe
CARING OMSORG Is when we show that we care about others by our actions or our words Det er når vi viser at vi bryr oss om andre med det vi sier eller gjør PATIENCE TÅLMODIGHET Is the ability to wait for
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag
Diskrete sannsynlighetsfordelinger.
Diskrete sannsynlighetsfordelinger. Dekkes av kapittel 5 i læreboka. Husk: f(x) er punktsannsynligheten til en diskret X dersom: 1. f(x) 0 2. x f(x) =1 3. f(x) =P (X = x) Vi skal nå sepå situasjoner der
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg
Kontinuerlige sannsynlighetsfordelinger.
Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a
MA2501 Numerical methods
MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for
Information search for the research protocol in IIC/IID
Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs
Perpetuum (im)mobile
Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.
Oppgave. føden)? i tråd med
Oppgaver Sigurd Skogestad, Eksamen septek 16. des. 2013 Oppgave 2. Destillasjon En destillasjonskolonne har 7 teoretiske trinn (koker + 3 ideelle plater under føden + 2 ideellee plater over føden + partielll
EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE
Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE Faglig kontakt under eksamen: Hans Bonesrønning Tlf.: 9 17 64
Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)
Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per: