TMA4240 Statistikk 2014

Størrelse: px
Begynne med side:

Download "TMA4240 Statistikk 2014"

Transkript

1 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Løsningsskisse Oppgave Scriptet run confds.m simulerer n data x,..., x n fra en normalfordeling med forventningsverdi µ og varians σ ved å trekke n ganger fra en standard normalfordeling y i N(0, ) og utføre lineærtransformasjonen x i µ + σ y i, i,..., n Fra uttrykket kan vi greit regne på at da vil x i N(µ, σ ). (I Matlab trekker man fra en standard normalfordeling med funksjonen randn ). Kjører vi scriptet får vi et histogram av n 0000 simulerte data x,..., x n, som f.eks. kan se slik ut Figur : Histogram av n 0000 simulerte data fra N(, ) Histogrammet til høyre er standardisert, altså transformert slik at areal under histogramsøylene blir. I plottet er det i grønt også tegnet inn kurven for normalfordelingen med forventning og standardavvik. Vi ser at de simulerte dataene overlapper normalfordelingen de kommer fra veldig bra. Dette siden vi simulerer såpass mange datapunkter. Det resulterende gjennomsnittet ˆµ n n i x i.0047 er veldig nærme den sanne forventningsverdien som også ligger innenfor det estimerte konfidensintervalet [ ]. ov9-lsf-b 6. oktober Side

2 Trekker vi stedet n data (setter altså parameteren n i scriptet til 00000) kan histogrammet f.eks. se ut som i Fig. med estimert forventningsverdi ˆµ og estimert 9% konfidensinterval [0.989,.007]. Igjen er estimatet tilnærmet likt sann forventnigsverdi, som ligger innenfor konfidensintervalet, og overlappen mellom dataene og normalkurven er enda bedre. Figur : Histogram av n simulerte data fra N(, ) Trekker vi n 000 data (setter altså parameteren n i scriptet til 000) kan histogrammet f.eks. se ut som i Fig.3. med estimert forventningsverdi ˆµ og estimert 9% konfidensinterval [ ]. Estimatet er fortsatt bra, men ikke like nærme som i tilfellene med høyere n. Vi ser også at estimert konfidensinterval er litt bredere, og at overlappen mellom dataene og normalkurven er dårligere (dette er også fordi vi har så liten oppløsning på histogrammet). Figur 3: Histogram av n 000 simulerte data fra N(, ) Det estimerte konfidensintervalet er beregnet som [ ˆµ.96 ˆσ n, ˆµ +.96 ] ˆσ n ov9-lsf-b 6. oktober Side

3 Når datamengden vokser og estimatet på standardaviket ikke varierer mye ser vi at faktoren ˆσ n går mot 0, altså blir konfidensintervalet smalere jo større datamengden er. Vi merker oss også at vi her har brukt kvantilen z fra en normalfordeling selv om vi her bruker estimert varians. Med ukjent varians burde vi egentlig brukt kvantiler fra t-fordeling, men siden datamangden er så stor (n 000) vil t-fordeling med n frihetsgrader være tilnærmet lik standard normalfordeling. Oppgave a) P (X < 6.74) P ( X < ) Φ( ) Φ() P (6.74 < X < 6.86) P (X < 6.86) P (X < 6.74) P ( X < ) Φ() Eventuelt P ( X µ ) > 0.06) P (X µ < 0.06) + P (X µ > 0.06) P ( X µ µ < ) + P (X > ) Φ( ) + Φ() ( Φ()) 0.38 P ( X µ ) > 0.06) P (6.74 < X < 6.86) b) Y N(µ, σ ) P ( Y µ ) > 0.06) P (Y µ > 0.06) ( P ( Y µ 0.06 ())) 0.06 Y i X i er lineærkombinasjon av uavhengige normalfordelte variable. Dermed er Y normalfordelt med E(Y ) µ og V ar(y ) σ Y µ σ N(0, ) ov9-lsf-b 6. oktober Side 3

4 P ( Z 0.0 < y µ σ < Z 0.0 ) 0.9 P (Y Z 0.0 σ < µ < Y + Z 0.0 σ ) 0.9 D.v.s 9% konf. int. blir: [Y Z 0.0. σ, Y + Z 0.0 σ ] Innsatt tall: y x 6.76, σ 0.06, z [6.76 (.96) 0.06, (.96) 0.06 ] [6.707, 6.83] Oppgave 3 a) La V være målt vekt, slik at V N(µ, σ ) N(0, 0. ). Vi får ( ) V µ 0. 0 P (V > 0.) P > P (Z > ) σ 0. P (Z ) P ( V µ > 0.) P (V µ > 0.) + P (V µ < 0.) ( V µ P > 0. ) ( V µ + P < 0. ) σ 0. σ 0. P (Z > ) + P (Z ) P (Z ) + P (Z ) P (Z ) La V n n i V i, slik at V N(µ, σ /n). Vi får P ( V µ > 0.) P ( V µ > 0.) + P ( V µ < 0.) ( V µ P σ/ n > 0. ) ( V µ 0./ + P σ/ n < 0. ) 0./ P (Z > ) + P (Z ) P (Z ) + P (Z ) P (Z.4) b) Vi har X N(µ A, σ ) og X N(µ B, σ ) som er uavhengig av hverandre. Vi får ved fremgangsmåte : E[ˆµ A ] E[X ] µ A Var[ˆµ A ] Var[X ] σ E[ˆµ B ] E[X ] µ B Var[ˆµ B ] Var[X ] σ ov9-lsf-b 6. oktober Side 4

5 Vi har Y N(µ A + µ B, σ ) og Y N(µ A µ B, σ ) som er uavhengig av hverandre. Vi får ved fremgangsmåte : E[ µ A ] E[(Y + Y )/] (E[Y ] + E[Y ]) (µ A + µ B + µ A µ B ) µ A Var[ µ A ] Var[(Y + Y )/] 4 (Var[Y ] + Var[Y ]) 4 (σ + σ ) σ / E[ µ B ] E[(Y Y )/] (E[Y ] E[Y ]) (µ A + µ B µ A + µ B ) µ B Var[ µ B ] Var[(Y Y )/] 4 (Var[Y ] + Var[Y ]) 4 (σ + σ ) σ / Begge fremgangsmåtene gir forventningsrette estimatorer, så vi velger den med minst varians, dvs. fremgangsmåte : µ A og µ B. c) Vi har µ A u (Y, Y ) (Y + Y )/ og µ B u (Y, Y ) (Y Y )/, som gir oss at Y w ( µ A, µ B ) µ A + µ B og Y w ( µ A, µ B ) µ A µ B. Fra transformasjonsformelen for to variabler har vi da at g µa, µ B ( µ A, µ B ) f Y,Y (w ( µ A, µ B ), w ( µ A, µ B )) J hvor J δw /δ µ A δw /δ µ A δw /δ µ B δw /δ µ B. ov9-lsf-b 6. oktober Side

6 Siden Y og Y er uavhengige, har vi f Y,Y (y, y ) f Y (y )f Y (y ) og vi får følgende: g µa, µ B ( µ A, µ B ) f Y,Y (w ( µ A, µ B ), w ( µ A, µ B )) J f Y (w ( µ A, µ B ))f Y (w ( µ A, µ B )) σ exp ( σ exp σ σ ( µ A + µ B (µ A + µ B )) σ ( µ A µ B (µ A µ B )) ) exp [ ( µa σ + µ B ) (( µ A + µ B ) (µ A + µ B ) + (µ A + µ B ) + ( µ A µ B ) ( µ A µ B ) (µ A µ B ) + (µ A µ B ) ] ( ) exp [ µ σ σ A + µ A µ B + µ B µ A µ A µ A µ B µ B µ B + µ A + µ A µ B + µ B + µ A µ A µ B + µ B µ A µ A + µ A µ B + µ B µ A µ B µ B + µ A µ A µ B + µ ] B ( ) exp [ µ σ σ A + µ B 4 µ A µ A 4 µ B µ B ] + µ A + µ B ( σ σ exp σ exp ) exp g µa ( µ A )g µb ( µ B ) [ ( µa σ µ A ) + ( µ B µ B ) ] σ ( µ A µ A ) σ ( µ B µ B ) og dermed er µ A og µ B uavhengige ( µ A N(µ A, σ /) og µ B N(µ B, σ /)). Oppgave 4 a) La Z λt u(t ), som er en strengt monoton og deriverbar funksjon for alle T. Vi har T Z/(λ) w(z) og w (Z) /(λ). Dette gir g Z (z) f(w(z)) w (z) λe λ(z/(λ)) (/(λ)) e z/, z > 0 0, ellers b) Vi har λt χ. Dersom levetiden til kompononentene T i er uavhengig, kan vi bruke ov9-lsf-b 6. oktober Side 6

7 følgende resultat n n λt i χ n i λ T i χ n i Vi finner et α konfidensintervall fra ( ) n P χ α/,n < λ t i < χ α/,n α i i ( ) χ α/,n P n i t < λ < χ α/,n i n i t α i ( ) χ 0.9/,0 P < λ < χ 0.0, ( 0.8 P < λ < 3.40 ) P ( < λ < ) 0.90 Så et 90% konfidensintervall for λ er ( , ). ov9-lsf-b 6. oktober Side 7

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Løsningsskisse Oppgave 1 Da komponentene danner et parallellsystem, vil systemet fungere dersom minst

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6) TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA440 Statistikk Høst 009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Løsningsskisse Oppgave a) n 8, i x i 675, x 37.5, i y i 488, i x i 375, i x iy i

Detaljer

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44, Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.

Detaljer

Løsningsforslag eksamen 27. februar 2004

Løsningsforslag eksamen 27. februar 2004 MOT30 Statistiske metoder Løsningsforslag eksamen 7 februar 004 Oppgave a) Y ij = µ i + ε ij, der ε ij uavh N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig variasjon)

Detaljer

Dekkes av kap , 9.10, 9.12 og forelesingsnotatene.

Dekkes av kap , 9.10, 9.12 og forelesingsnotatene. Estimering 2 -Konfidensintervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesingsnotatene. En (punkt-)estimator ˆΘ gir oss et anslag på en ukjent parameterverdi, men gir oss ikke noen direkte informasjon

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

Norske hoppdommere og Janne Ahonen

Norske hoppdommere og Janne Ahonen TMA440 Statistikk H010 9.8: To uvalg (siste del) 9.9: Parvise observasjoner 9.10-9.11: Andelser 9.1: Varians Mette Langaas Foreleses onsdag 0.oktober, 010 Norske hoppdommere og Janne Ahonen Janne Ahonen

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 9.8: To uvalg (siste del) 9.9: Parvise observasjoner 9.10-9.11: Andelser 9.12: Varians Mette Langaas Foreleses onsdag 20.oktober, 2010 2 Norske hoppdommere og Janne Ahonen Janne

Detaljer

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som: Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2 Besvar alle oppgavene. Hver deloppgave har lik vekt. Oppgave I En kommune skal bygge ny idrettshall og vurderer to entreprenører, A og B. Begge gir samme pristilbud, men kommunen er bekymret for forsinkelser.

Detaljer

LØSNINGSFORSLAG ) = Dvs

LØSNINGSFORSLAG ) = Dvs LØSNINGSFORSLAG 12 OPPGAVE 1 D j er differansen mellom måling j med metode A og metode B. D j N(µ D, 0.1 2 ). H 0 : µ D = 0 mot alternativet H 1 : µ D > 0. Vi forkaster om ˆµ D > k Under H 0 er ˆµ D =

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 5 blokk I Løsningsskisse Oppgave 1 X N(18,2.5 2 ) P(X < 15) = P ( X 18 < 15 18 ) = P(Z < 1.2)

Detaljer

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt

Detaljer

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall

Detaljer

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november

Detaljer

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum

Detaljer

Forslag til endringar

Forslag til endringar Forslag til endringar Bakgrunn: Vi har ingen forelesningar veka etter påske. Eg skal bort 18. og 19. april. Eksamen er 30.mai Forslag til endringar: Ekstra forelesningar onsdag 16.mars og onsdag 30 mars

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

Kp. 9.8 Forskjell mellom to forventninger

Kp. 9.8 Forskjell mellom to forventninger andeler I analysene skal vi se på situasjonene der σx og σ Y er kjente; normalantakelse a σx og σ Y er ukjente men σ X = σ Y ; normalantakelse og b σx og σ Y er ukjente og σ X σ Y ; normalantakelse 3 og

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X

Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X Me me me me metallic hvit 4.4: Tilnærming til normalfordeling Tilnærming til normalfordeling: binomisk og Poisson kan tilnærmes v.h.a. normalfordeling under bestemte forhold (ved "mange" delforsøk/hendelser)

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Løsningsskisse Oppgave X er kontinuerlig fordelt med sannsynlighetstetthet f X (x) = { x exp( x ) x

Detaljer

Løsningsforslag til oppgaver brukt i STA100

Løsningsforslag til oppgaver brukt i STA100 Universitetet i Stavanger Løsningsforslag til oppgaver brukt i STA100 Oppgave 1 a) Populasjonen er alle studenter ved Universitetet i Stavanger, og utvalget er de (ca 100) studentene hun velger ut i undersøkelsen

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

TMA4240 Statistikk Høst 2018

TMA4240 Statistikk Høst 2018 TMA4240 Statistikk Høst 2018 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 5 Dette er andre av tre innleveringer i blokk 2. Denne øvingen skal oppsummere pensum

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

Oppgave 1 a) La X være massen til et tilfeldig valgt egg, målt i gram. Sannsynligheten for at et tilfeldig valgt egg veier mer enn 60 g er

Oppgave 1 a) La X være massen til et tilfeldig valgt egg, målt i gram. Sannsynligheten for at et tilfeldig valgt egg veier mer enn 60 g er Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 5 Løsningsskisse Oppgave 1 a La X være massen til et tilfeldig valgt egg, målt i gram. Sannsynligheten for at

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! I dag I dag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve 3 a og b (inkl SME) Om eksamen (Truleg) 10 punkt.

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 9.6: Prediksjonsintervall 9.8: To utvalg, differanse µ 1 µ 2 Mette Langaas Foreleses mandag 18.oktober, 2010 2 Prediksjonsintervall for fremtidig observasjon,

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

Oppgave 14.1 (14.4:1)

Oppgave 14.1 (14.4:1) MOT30 Statistiske metoder, høste006 Løsninger til regneøving nr. 0 (s. ) Modell: Oppgave 4. (4.4:) Y ijk = µ + α i + β j + (αβ) ij + ε ijk, der ε ijk uavh. N(0, σ ) der µ er gjennomsnittseffekten, α i

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (fra til): 09:00

Detaljer

Oppgave 1. Kilde SS df M S F Legering Feil Total

Oppgave 1. Kilde SS df M S F Legering Feil Total MOT30 Statistiske metoder, høste0 Løsninger til regneøving nr. 0 (s. ) Oppgave Y ij = µ i + ε ij, der ε ij uavh. N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Kap. 8: Utvalsfordelingar og databeskrivelse

Kap. 8: Utvalsfordelingar og databeskrivelse Kap. 8: Utvalsfordelingar og databeskrivelse Utvalsfordelingar Utvalsfordeling for gjennomsnitt (med kjent varians) ( X ) Sentralgrenseteoremet (SGT) Utvalsfordeling for varians (normalfordeling) Utvalfordeling

Detaljer

(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1

(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2011, s. 1 (Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 a) Data: x 1, x 2, x 3, x 4, x 5 Gjennomsnitt: x = 1 5 (x 1

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

Forelesning 3. april, 2017

Forelesning 3. april, 2017 Forelesning 3. april, 2017 APPENDIX TIL KAP. 6 Sentralgrenseteoremet AVSNITT 6.3 Anvendelser av sentralgrenseteoremet Histogrammer S-kurver Q-Q-plot Diverse eksempler MGF for følger av uavhengige identisk

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30

Detaljer

Tabell 1: Beskrivende statistikker for dataene

Tabell 1: Beskrivende statistikker for dataene Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);

Detaljer

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( )

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( ) Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg Løsgssksse Oppgave Det er oppgtt oppgavetekste at estmatore er forvetgsrett, så v vet allerede at Eˆµ µ. Varase tl ˆµ er τ Varˆµ

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren

Detaljer

Estimatorar. Torstein Fjeldstad Institutt for matematiske fag, NTNU

Estimatorar. Torstein Fjeldstad Institutt for matematiske fag, NTNU Estimatorar Torstein Fjeldstad Institutt for matematiske fag, NTNU 11.10.2018 I dag Repetisjon Er dataa mine normalfordelt? Estimatorar Eigenskapar til S 2 Kahoot 2 Repetisjon Obervator Ein observator

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x) er sannsynlighetstettheten til en kontinuerlig X dersom: 1. f(x) 0 for alle x R 2. f(x)dx =1 3. P (a

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

STK1100 våren 2019 Mere om konfidensintevaller

STK1100 våren 2019 Mere om konfidensintevaller STK1100 våren 2019 Mere om konfidensintevaller Svarer til avsnitt 8.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Konfidensintervall for µ i store utvalg Anta at de stokastiske

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (frå til): 09:00

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Eksamensoppgave i TMA4240 / TMA4245 Statistikk

Eksamensoppgave i TMA4240 / TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 / TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato: 10. august 2017 Eksamenstid (fra til): 09.00-13.00

Detaljer

Løsning eksamen desember 2016

Løsning eksamen desember 2016 Løsning eksamen desember 016 Oppgave 1 a) En drone har to uavhengige motorer. Vi innfører hendelsene A: motor 1 svikter B: motor svikter Dronen er avhengig av at begge virker, slik at sannsynligheten for

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Løsningsskisse Matlabøving Beskrivende analyse Oppgave 1 a) Finn, for hvert datasett,

Detaljer

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1) MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen: ECON2130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 29.05.2019 Sensur kunngjøres: 19.06.2019 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

Løsningsforslag statistikkeksamen desember 2014

Løsningsforslag statistikkeksamen desember 2014 Løsningsforslag statistikkeksamen desember 2014 Oppgave 1 a i. To hendelser er disjunke hvis det er intet overlapp mellom hendelsene, altså hvis A B = Ø. Siden vi har en sannsynlighet for å finne A B som

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA44 Statistikk Høst 9 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b Løsningsskisse Oppgave X er en stokastisk variabel med sannsynlighetstetthet { f(x),

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker

Detaljer

Foreleses onsdag 13.oktober, 2010

Foreleses onsdag 13.oktober, 2010 TMA440 Statistikk H010 Statistisk inferens: 9.4: Konfidensintervall for µ 8.7: Student-t fordeling 8.6: Fordeling til S Mette Langaas Foreleses onsdag 13.oktober, 010 Estimering Mål: finne sannheten om

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

Løsningsforslag STK1110-h11: Andre obligatoriske oppgave.

Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Oppgave 1 a) Legg merke til at X er gamma-fordelt med formparameter 1 og skalaparameter λ. Da er E[X] = 1/λ. Små verdier av X tyder derfor på at

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Eksamensoppgave i ST0103 Brukerkurs i statistikk Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1 Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s AR2-modell: Oppgave X t φ X t φ 2 X t 2 Z t Antas å være kausal slik at X t ψ j Z t j er ukorrelert med Z t+,

Detaljer

Løsningsforslag oblig 1 STK1110 høsten 2014

Løsningsforslag oblig 1 STK1110 høsten 2014 Løsningsforslag oblig STK høsten 4 Oppgave I forbindelse med en studie av antioksidanter og antocyanider, ble innholdet av antocyan i 5 beger med blåbær målt. De målte verdiene var (i mg per gram): 55

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A

Detaljer

n n i=1 x2 i n x2 n i=1 Y i og x = 1 n i=1 (x i x)y i = 5942 og n T = i=1 (x i x) 2 t n 2

n n i=1 x2 i n x2 n i=1 Y i og x = 1 n i=1 (x i x)y i = 5942 og n T = i=1 (x i x) 2 t n 2 TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 12, blokk II Denne øvingen består av oppgaver om enkel lineær regresjon. De handler

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,

Detaljer

Løsning eksamen desember 2017

Løsning eksamen desember 2017 Løsning eksamen desember 017 Oppgave 1 Innfører hendelsene D: enheten er defekt K: enheten blir kassert a i Disse sannsynlighetene kan leses ut av oppgaveteksten: P D = 0, 10 P K D = 0, 07 P K D = 0, 95

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer