Forelesning 27. mars, 2017

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Forelesning 27. mars, 2017"

Transkript

1 Forelesning 27. mars, 2017 AVSNITT 5.5 Ordningsobservatorene AVSNITT 6.1 Observatorer og deres fordelinger

2 Ordningsobservatorene La X 1,..., X n være n uavhengige stokastiske variable som alle har samme marginalfordeling f (x), og kumulative fordelingsfunksjon F(x). Vi tenker oss så at vi ordner X-ene i stigende rekkefølge, og innfører: Y 1 = Den minste verdien av X 1,..., X n Y 2 = Den nest-minste verdien av X 1,..., X n Y n = Den største verdien av X 1,..., X n Vi er interessert i å finne simultanfordelingen til Y 1,..., Y n, samt marginalfordelingen til Y 1 og Y n.

3 Ordningsobservatorene Vi lar G i (y) = P(Y i y), i = 1,..., n, og ser først på G n (y). G n (y) = P(Y n y) = P(X 1 y,..., X n y) = P(X 1 y) P(X n y) = F (y) F(y) = [F(y)] n Herav får vi att tettheten til Y n er gitt ved: g n (y) = n[f(y)] n 1 f (y)

4 Ordningsobservatorene Vi ser så på G 1 (y): 1 G 1 (y) = P(Y 1 > y) = P(X 1 > y,..., X n > y) = P(X 1 > y) P(X n > y) = [1 F(y)] [1 F(y)] = [1 F(y)] n Dvs. G 1 (y) = 1 [1 F(y)] n. Herav får vi att tettheten til Y 1 er gitt ved: g 1 (y) = n[1 F(y)] n 1 ( f (y)) = n[1 F(y)] n 1 f (y)

5 Ordningsobservatorene Eksempel 1 EKSEMPEL: Betrakt et system av n komponenter som alle har samme levetidsfordeling: f X (x) = λe λx, x > 0. Da er den kumulative fordelingsfunksjonen gitt ved: F X (x) = 1 e λx, x > 0. Y 1 = min{x 1,..., X n } (levetid for et seriesystem) Y n = max{x 1,..., X n } (levetid for et parallellsystem). Da er tetthetene for Y 1 og Y n gitt ved: g 1 (y) = n[1 F(y)] n 1 f (y) = (nλ)e nλy g n (y) = n[f(y)] n 1 f (y) = n[1 e λy ] n 1 λe λy.

6 Ordningsobservatorene Eksempel 1 Tettheten for Y 1 : (λ = 0.5, n = 5)

7 Ordningsobservatorene Eksempel 1 Tettheten for Y 5 : (λ = 0.5, n = 5)

8 Ordningsobservatorene Eksempel 2 EKSEMPEL: Betrakt et system av n komponenter som alle har samme levetidsfordeling: f X (x) = λx, 0 < x < 2/λ. Da er den kumulative fordelingsfunksjonen gitt ved: F X (x) = 1 2 λx 2, 0 < x < 2/λ. Y 1 = min{x 1,..., X n } (levetid for et seriesystem) Y n = max{x 1,..., X n } (levetid for et parallellsystem). Da er tetthetene for Y 1 og Y n gitt ved: g 1 (y) = n[1 F(y)] n 1 f (y) = n[1 1 2 λy 2 ] n 1 λy g n (y) = n[f(y)] n 1 f (y) = n[ 1 2 λy 2 ] n 1 λy.

9 Ordningsobservatorene Eksempel 2 Tettheten for Y 1 : (λ = 0.5, n = 5)

10 Ordningsobservatorene Eksempel 2 Tettheten for Y 5 : (λ = 0.5, n = 5)

11 Simultantettheten for ordningsobservatorene Simultantettheten for Y 1,..., Y n : g(y 1,..., y n ) = { n! f (y1 ) f (y n ) y 1 < < y n 0 ellers Spesielt hvis n = 2: g(y 1, y 2 ) = { 2! f (y1 ) f (y 2 ) y 1 < y 2 0 ellers

12 Simultantettheten for ordningsobservatorene La > 0 være et lite tall, og la y 1 < y 2 y n. Vi skal finne: P[Y 1 (y 1, y 1 + ],..., Y n (y n, y n + ]] La så π : {1,..., n} {1,..., n} betegne en vilkårlig permutasjon av tallene 1,..., n. Vi har da: P[Y 1 (y 1, y 1 + ],..., Y n (y n, y n + ]] = Alle π P[X π(1) (y 1, y 1 + ],..., X π(n) (y n, y n + ]] = n! f (y 1 ) f (y n ). Dividerer vi med n på begge sider av ligningen og lar 0, får vi tettheten til Y 1,..., Y n.

13 Tettheten for den ite minste ordningsobservatoren Tettheten for Y i er gitt ved: HUSK: g(y) = g 1 (y) = g n (y) = n! (i 1)!(n i)! [F(y)]i 1 [1 F(y)] n i f (y). n! (1 1)!(n 1)! [F(y)]1 1 [1 F(y)] n 1 f (y) = n[1 F(y)] n 1 f (y) n! (n 1)!(n n)! [F(y)]n 1 [1 F(y)] n n f (y) = n[f(y)] n 1 f (y)

14 Tettheten for den ite minste ordningsobservatoren La > 0 være et lite tall. Vi skal finne P[Y i (y, y + ]]. Vi kan tenke på denne situasjonen som en trinomisk forsøksrekke, der ite forsøk betår i å observere X i og sjekke om en av tre muligheter har inntruffet: X i y. Dette har sannsynlighet F(y). X i (y, y + ]. Dette har sannsynlighet f (y). X i > y +. Dette har sannsynlighet 1 F(y + ). For at begivenheten {Y i (y, y + ]} skal inntreffe, må {X i y} inntreffe (i 1) ganger, {X i (y, y + ]} inntreffe nøyaktig en gang, og {X i > y + } inntreffe (n i) ganger.

15 Tettheten for den ite minste ordningsobservatoren Dette gir følgende trinomiske sannsynlighet: P[Y i (y, y + ]] = n! (i 1)!1!(n i)! [F(y)]i 1 [f (y) ] [1 F (y + )] n i Vi kan så dividere med på begge sider, og la 0. Dette gir formelen for tettheten til Y i.

16 Ordningsobservatorene Eksempel 1 EKSEMPEL: Betrakt et system av n komponenter som alle har samme levetidsfordeling: f X (x) = λe λx, x > 0. Da er den kumulative fordelingsfunksjonen gitt ved: F X (x) = 1 e λx, x > 0. Y i = den i-te minste av X j -ene (levetid for et (n i + 1)-av-n-system) Da er tetthetene for Y i gitt ved: g i (y) = = = n! (i 1)!(n i)! [F (y)]i 1 [1 F(y)] n i f (y) n! (i 1)!(n i)! [1 e λy ] i 1 e (n i)λy λe λy n! (i 1)!(n i)! [1 e λy ] i 1 λ e (n i+1)λy

17 Ordningsobservatorene Eksempel 1 Tetthetene for Y 1,..., Y 5 : (λ = 0.5, n = 5)

18 Ordningsobservatorene Eksempel 2 EKSEMPEL: Betrakt et system av n komponenter som alle har samme levetidsfordeling: f X (x) = λx, 0 < x < 2/λ. Da er den kumulative fordelingsfunksjonen gitt ved: F X (x) = 1 2 λx 2, 0 < x < 2/λ. Y i = den i-te minste av X j -ene (levetid for et (n i + 1)-av-n-system) Da er tetthetene for Y i gitt ved: g i (y) = = n! (i 1)!(n i)! [F(y)]i 1 [1 F (y)] n i f (y) n! (i 1)!(n i)! [1 2 λy 2 ] i 1 [1 1 2 λy 2 ] n i λy

19 Ordningsobservatorene Eksempel 2 Tetthetene for Y 1,..., Y 5 : (λ = 0.5, n = 5)

20 Simultantettheten for den ite og den jte ordningsobservatoren Vi antar at 1 i < j n, og skal finne simultantettheten for Y i og Y j. For y i < y j er denne gitt ved: g(y i, y j ) = n! (i 1)!(j i 1)(n j)! [F(y i )] i 1 [F(y j ) F(y i )] j i 1 [1 F (y j )] n j f (y i ) f (y j ).

21 Simultantettheten for den ite og den jte ordningsobservatoren La > 0 være et lite tall, og la y i < y j. Vi skal finne: P[Y i (y i, y i + ], Y j (y j, y j + ]]. Vi kan tenke på denne situasjonen som en multinomisk forsøksrekke, der ite forsøk betår i å observere X i og sjekke: X i y i. Dette har sannsynlighet F(y i ). X i (y i, y i + ]. Dette har sannsynlighet f (y i ). X i (y i +, y j ]. Dette har sannsynlighet F(y j ) F (y i + ). X i (y j, y j + ]. Dette har sannsynlighet f (y j ). X i > y j +. Dette har sannsynlighet 1 F(y j + ). For at begivenheten {Y i (y i, y i + ], Y j (y j, y j + ]} skal inntreffe, må {X i y} inntreffe (i 1) ganger, {X i (y i, y i + ]} inntreffe nøyaktig en gang, {X i (y i +, y j ]} inntreffe (j i 1) ganger, {X i (y j, y j + ]} inntreffe nøyaktig en gang, og {X i > y j + } inntreffe (n j) ganger.

22 Observatorer og deres fordelinger En observator [engelsk: statistic] er en størrelse som kan beregnes ut fra et sett med data. Før vi observerer datasettet er det selvsagt knyttet usikkerhet til hvilke dataverdier vi vil observere. En observator betraktes på dette stadiet som en stokastisk variabel, og betegnes da med stor bokstav. Så snart data er samlet inn, kan vi beregne verdien av observatoren. Denne verdien betegnes da med liten bokstav.

23 Observatorer empiriske størrelser EMPIRISK FORVENTNINGSVERDI: X = 1 n n i=1 X i EMPIRISK MEDIAN: Finn ordningsobservatoren Y 1,..., Y n. Empirisk median = Y n/2 + Y n/2+1 2 (n like) eller Y (n+1)/2 (n odde) EMPIRISK VARIANS: S 2 = 1 n 1 n (X i X) 2 i=1 EMPIRISK STANDARDAVVIK: S = S 2

24 Observatorer Eksempel EKSEMPEL: La X 1,..., X 10 være uavhengige og Weibull-fordelte med parametre α = 3 (formparameter) og β = 2 (skalaparameter). Tettheten til X 1,..., X 10 blir dermed: Da blir: f (x; α, β) = { α β α x α 1 e (x/β)α x 0 0 eller E[X i ] = β Γ(1 + 1 α ) = 2 Γ( ) = MED[X i ] = β (ln(2)) 1/α = 2 (ln(2)) 1/3 = Vi simulerer X 1,..., X ganger og beregner empirisk middelverdi, median, varians og standardavvik i hver simulering.

25 Observatorer Eksempel Histogram for X: (α = 3, β = 2, n = 10) 17.5 % 15.8 % 14.0 % 12.3 % 10.5 % 8.8 % 7.0 % 5.3 % 3.5 % 1.8 % 0.0 % Middelverdi av middelverdiene er 1.78.

26 Observatorer Eksempel Histogram for empirisk MED(X): (α = 3, β = 2, n = 10) 17.5 % 15.8 % 14.0 % 12.3 % 10.5 % 8.8 % 7.0 % 5.3 % 3.5 % 1.8 % 0.0 % Middelverdi av de empiriske medianverdiene er 1.77.

27 Observatorer Eksempel Histogram for empirisk V (X): (α = 3, β = 2, n = 10) 17.5 % 15.8 % 14.0 % 12.3 % 10.5 % 8.8 % 7.0 % 5.3 % 3.5 % 1.8 % 0.0 % Middelverdi av de empiriske variansene er 0.42.

28 Observatorer Eksempel Histogram for empirisk SD(X): (α = 3, β = 2, n = 10) 15.0 % 13.5 % 12.0 % 10.5 % 9.0 % 7.5 % 6.0 % 4.5 % 3.0 % 1.5 % 0.0 % Middelverdi av de empiriske standardavvikene er 0.63.

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA44 Statistikk Høst 9 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b Løsningsskisse Oppgave X er en stokastisk variabel med sannsynlighetstetthet { f(x),

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

Midtveiseksamen i STK1100 våren 2017

Midtveiseksamen i STK1100 våren 2017 Midtveiseksamen i STK1100 våren 2017 Denne midtveiseksamenen består av 20 oppgaver. Det er ett riktig svaralternativ for hvert spørsmål. Hvis svaret er oppgitt som et desimaltall, er det rundet av til

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Funksjoner av stokastiske variabler (kapittel 7+notat) Fokus på start med kumulativ fordeling 7.2 Funksjon av en SV (inkludert en-entydighet). Fordeling til max/min (fra notat).

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

Forelesning 3. april, 2017

Forelesning 3. april, 2017 Forelesning 3. april, 2017 APPENDIX TIL KAP. 6 Sentralgrenseteoremet AVSNITT 6.3 Anvendelser av sentralgrenseteoremet Histogrammer S-kurver Q-Q-plot Diverse eksempler MGF for følger av uavhengige identisk

Detaljer

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Vår 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Blandet drops a) Tippekupong På en tippekupong er det gitt 2 fotballkamper.

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Løsningsskisse Oppgave 1 Da komponentene danner et parallellsystem, vil systemet fungere dersom minst

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

To-dimensjonale kontinuerlige fordelinger

To-dimensjonale kontinuerlige fordelinger To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}

Detaljer

Poissonprosesser og levetidsfordelinger

Poissonprosesser og levetidsfordelinger Poissonprosesser og levetidsfordelinger Poissonfordeling som grensetilfelle for binomisk fordeling La X være binomisk fordelt med fordeling P (X = x) = ( ) n p x (1 p) n x, for x = 0, 1,... n. (1) x Forventningsverdien

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ:

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ: Punktestimator STK00 - Bootstrapping og simulering - Kap 7 og eget notat Geir Storvik 8. april 206 Trekke ut informasjon om parametre fra data x,..., x n Parameter av interesse: θ Punktestimator: Observator,

Detaljer

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

Bootstrapping og simulering Tilleggslitteratur for STK1100

Bootstrapping og simulering Tilleggslitteratur for STK1100 Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent

Detaljer

TMA4240 Statistikk Høst 2013

TMA4240 Statistikk Høst 2013 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 575 2 ). Ved bruk av tabell A.3 finner

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

Forslag til endringar

Forslag til endringar Forslag til endringar Bakgrunn: Vi har ingen forelesningar veka etter påske. Eg skal bort 18. og 19. april. Eksamen er 30.mai Forslag til endringar: Ekstra forelesningar onsdag 16.mars og onsdag 30 mars

Detaljer

Notasjon. Løsninger. Problem. Kapittel 7

Notasjon. Løsninger. Problem. Kapittel 7 3 Notasjon Kapittel 7 Funksjoner av stokastiske variabler Har n stokastiske variabler, X 1, X 2,..., X n, med kjent fordeling f( 1, 2,..., n ) og kumulativ fordeling F( 1, 2,..., n ). Ser på Y = u(x 1,

Detaljer

6.5 Normalapproksimasjon til. binomisk fordeling

6.5 Normalapproksimasjon til. binomisk fordeling ....3.4.5..5..5..5...4.6.8....4.6.8....3.4..5..5 Kaittel 6: Kontinuerlige sannsynsfordelingar TMA445 Statistikk Ka 6.5-6.8. 6.5: Normal aroksimasjon til binomisk fordeling, 6.6-6.8: Eksonensialfordeling,

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5 Løsningsskisse Oppgave 1 En lottorekke kan oppfattes som et ikke-ordnet utvalg på

Detaljer

La U og V være uavhengige standard normalfordelte variable og definer

La U og V være uavhengige standard normalfordelte variable og definer Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

Foreleses onsdag 8. september 2010

Foreleses onsdag 8. september 2010 TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er

Detaljer

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

L12-Dataanalyse. Introduksjon. Nelson Aalen plott. Page 76 of Introduksjon til dataanalyse. Levetider og sensurerte tider

L12-Dataanalyse. Introduksjon. Nelson Aalen plott. Page 76 of Introduksjon til dataanalyse. Levetider og sensurerte tider Page 76 of 80 L12-Dataanalyse Introduksjon Introduksjon til dataanalyse Presentasjonen her fokuserer på dataanalyseteknikker med formål å estimere parametere (MTTF,, osv) i modeller vi benytter for vedlikeholdsoptimering

Detaljer

6.1 Kontinuerlig uniform fordeling

6.1 Kontinuerlig uniform fordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4240 H2006: Eirik Mo 2 6.1 Kontinuerlig uniform fordeling Kontinuerlig uniform fordeling: Sannsynlighetstettheten til den kontinuerlige uniforme

Detaljer

Eksempel: kast med to terninger

Eksempel: kast med to terninger Kapittel 3 TMA4245 V2007: Eirik Mo 2 Eksempel: kast med to terninger I et eksperiment kaster vi to terninger og registerer antall øyne på hver terning. Utfallsrom S={(,),(,2),(,3),...,(,), (2,),...,(2,),...,(,)}

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

Transformasjoner av stokastiske variabler

Transformasjoner av stokastiske variabler Transformasjoner av stokastiske variabler Notasjon merkelapper på fordelingene Sannsynlighetstettheten og den kumulative fordelingen til en stokastisk variabel X betegnes hhv. f X og F X. Indeksen er altså

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet

Detaljer

Sum to terninger forts. Eksempel: kast med to terninger. Sum to terninger forts. Kapittel 3. TMA4240 H2006: Eirik Mo

Sum to terninger forts. Eksempel: kast med to terninger. Sum to terninger forts. Kapittel 3. TMA4240 H2006: Eirik Mo 3 Sum to terninger forts. Kapittel 3 TMA4240 H200: Eirik Mo 2 3 4 5,,2,3,4,5, 2 2, 2,2 2,3 2,4 2,5 2, Andre 3 3, 3,2 3,3 3,4 3,5 3, terning 4 4, 4,2 4,3 4,4 4,5 4, 5 5, 5,2 5,3 5,4 5,5 5,,,2,3,4,5, Med

Detaljer

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).

Detaljer

Livsforsikring et eksempel på bruk av forventningsverdi

Livsforsikring et eksempel på bruk av forventningsverdi et eksempel på bruk av forventningsverdi Ø. Borgan og A.B. Huseby Department of Mathematics University of Oslo, Norway STK 1100 Beregning av rettferdig forsikringspremie Vi skal benytte forventninger av

Detaljer

Dagens tekst. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Dagens tekst. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Dagens tekst Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

Eksamensoppgåve i TMA4240 Statistikk

Eksamensoppgåve i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik

Detaljer

ECON2130 Kommentarer til oblig

ECON2130 Kommentarer til oblig ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,

Detaljer

Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med

Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 5, blokk I Løsningsskisse Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag.

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet

Detaljer

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger f(x,y) NTNU Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4240 Statistikk (F2 og E7) 3.4: Foreleses mandag 30.august y=hoyde x=vekt Ole.Petter.Lodoen@math.ntnu.no p.1/18 Oppsummering

Detaljer

Normal- og eksponentialfordeling.

Normal- og eksponentialfordeling. Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 8 I løpet av uken blir løsningsforslag lagt

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x) er sannsynlighetstettheten til en kontinuerlig X dersom: 1. f(x) 0 for alle x R 2. f(x)dx =1 3. P (a

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Geir Storvik April 014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk

Detaljer

Ekstraoppgaver for STK2120

Ekstraoppgaver for STK2120 Ekstraoppgaver for STK2120 Geir Storvik Vår 2011 Ekstraoppgave 1 Anta X 1 og X 2 er uavhengige med X 1 N(1.0, 1.0) og X 2 N(2.0, 1.5). La X = (X 1, X 2 ) T. Definer c = ( ) 2.0 3.0, A = ( ) 1.0 0.5 0.0

Detaljer

TMA4245 Statistikk Vår 2007

TMA4245 Statistikk Vår 2007 TMA4245 Statistikk Vår 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har lært.

Detaljer

Regneregler for forventning og varians

Regneregler for forventning og varians Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene

Detaljer

Oppgave 1 a) La X være massen til et tilfeldig valgt egg, målt i gram. Sannsynligheten for at et tilfeldig valgt egg veier mer enn 60 g er

Oppgave 1 a) La X være massen til et tilfeldig valgt egg, målt i gram. Sannsynligheten for at et tilfeldig valgt egg veier mer enn 60 g er Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 5 Løsningsskisse Oppgave 1 a La X være massen til et tilfeldig valgt egg, målt i gram. Sannsynligheten for at

Detaljer

Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen

Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Prosjektoppgave STK-MAT2011 Sindre Froyn Salgsopsjon A B K S 0 T S 0 : porteføljeprisen ved tiden t = 0. K: garantert salgspris

Detaljer

Løsningsforslag oblig 1 STK1110 høsten 2014

Løsningsforslag oblig 1 STK1110 høsten 2014 Løsningsforslag oblig STK høsten 4 Oppgave I forbindelse med en studie av antioksidanter og antocyanider, ble innholdet av antocyan i 5 beger med blåbær målt. De målte verdiene var (i mg per gram): 55

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Eksamensdag: Torsdag 2. juni 24 Tid for eksamen: 4.3 8.3 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: STK429

Detaljer

Stokastisk variabel. Eksempel augefarge

Stokastisk variabel. Eksempel augefarge Dagens tekst Kap 3: Stokastiske variable og sannsynsfordelingar Stokastisk variabel: Diskret sannsynsfordeling: Kontinuerleg sannsynsfordeling: Kummulativ sannsynsfordeling: Diskret simultanfordeling Kontinuerleg

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 11/5-15/5

Fasit til utvalgte oppgaver MAT1110, uka 11/5-15/5 Fasit til utvalgte oppgaver MAT0, uka /5-5/5 Øyvind Ryan (oyvindry@i.uio.no May, 009 Oppgave 5.0.a Ser at f(x, y = (, 3, og g(x, y = (x, y. g(x, y = 0 hvis og bare hvis x = y = 0, og dette er ikke kompatibelt

Detaljer

EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert )

EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert ) Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: Håkon Tjelmeland 73593538/48221896 Ola Diserud 93218823 EKSAMEN I TMA4245 STATISTIKK

Detaljer

Øving 7: Statistikk for trafikkingeniører

Øving 7: Statistikk for trafikkingeniører NTNU Veg og samferdsel EVU kurs Trafikkteknikk Oslo / høsten 2007 Øving 7: Statistikk for trafikkingeniører Det anbefales generelt å arbeide i grupper med 2-3 studenter i hver gruppe. Bruk gjerne Excel

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. Rea181 EKSAMENSDATO: 1. juni 28 KLASSE: Ingeniørutdanning. TID: kl. 9. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl.

Detaljer

Kapittel 5: Tilfeldige variable, forventning og varians.

Kapittel 5: Tilfeldige variable, forventning og varians. Kapittel 5: Tilfeldige variable, forventning og varians. Tilfeldige variable Tilfeldige variable kalles også stokastiske variable. En tilfeldig variabel er en variabel som får sin numeriske verdi bestemt

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 55 2. Ved bruk av formelheftet finner

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no Versjon per 18. februar 2004 Innhold 1 EMPIRISKE STATISTISKE MÅL 1 1.1 Forventningsverdi, varians og standardavvik.....................

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

Utvalgsfordelinger (Kapittel 5)

Utvalgsfordelinger (Kapittel 5) Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap

Detaljer

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal Formelsamling V-2016 MAT110 Statistikk 1 Per Kristian Rekdal Figur 1: Statistikk. 3 Innhold 1 Beskrivende statistikk 9 1.1 Populasjon og utvalg.................................. 9 1.2 Statistiske mål

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 10. oktober 2012. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012) 1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians.

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. H. Goldstein Revidert januar 2008 Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. Dette notatet er ment å illustrere noen begreper fra Løvås, kapittel

Detaljer