Solutions of nonlinear differential equations

Størrelse: px
Begynne med side:

Download "Solutions of nonlinear differential equations"

Transkript

1 Nonlinear Differ. Equ. Appl. 17 (21), c 29 Birkhäuser Verlag Basel/Switzerland /1/ published online December 11, 29 DOI 1.17/s Nonlinear Differential Equations and Applications NoDEA Solutions of nonlinear differential equations Nadzeya Bedziuk and Aleh Yablonski Abstract. We consider an ordinary nonlinear differential equation with generalized coefficients as an equation in differentials in the algebra of new generalized functions. The solution of such an equation is a new generalized function. In this article we formulate necessary and sufficient conditions for when the solution of the given equation in the algebra of new generalized functions is associated with an ordinary function. Moreover, a class of all possible associated functions is described. Mathematics Subject Classification (2). Primary 34A36; Secondary 46F3. Keywords. Algebra of new generalized functions, Differential equations with generalized coefficients, Functions of finite variation. 1. Introduction The dynamics of many real systems or phenomena can be described by nonlinear differential equations with generalized coefficients. Unfortunately, the theory of generalized functions allows one to only formulate such equations and it is inapplicable to solving them. Therefore different interpretations of the solution of nonlinear differential equations were proposed by many mathematicians. In general, different interpretations of the same equation lead to different solutions see, e.g., [2,6,8,14,15,18]. In order to choose an adequate interpretation of the given equation, one has to consider additional reasons which arise from the modeling of the real dynamics of the system. In this paper we consider the following nonlinear equation with generalized coefficients ẋ(t) =f(t, x(t)) L(t), (1.1) where t [a; b] R and L(t) is a derivative in the distributional sense. Generally, since L(t) is a distribution and the function f(t, x(t)) is not smooth, the product f(t, x(t)) L(t) is not well defined and the solution of Eq. (1.1) essentially depends on the interpretation.

2 25 N. Bedziuk and A. Yablonski NoDEA We investigate Eq. (1.1) by using the algebra of mnemofunctions (new generalized functions). It is worth mentioning that the first algebra of new generalized functions was proposed by Colombeau [5]. Definitions of other algebras can be found in [7,16]. The general methods of construction of such algebras were proposed by Antonevich and Radyno [1]. In this paper we interpret Eq. (1.1) as an equation in differentials in the algebra of new generalized functions from [1]. Such an approach allows us to investigate ordinary and stochastic differential equations from a common ground [11, 12]. The algebraic interpretation states that the solution of Eq. (1.1) is an element of the algebra of new generalized functions. However, a problem arises with finding conditions on coefficients of equation in differentials which allow us to associate an ordinary function with the solution of this equation. If such an ordinary function exists, we call it a solution of Eq. (1.1). The sufficient conditions under which the solution exists and the set of possible solutions in this sense were described in [17]. In this paper we prove necessary conditions for some classes of coefficients. 2. The algebra of mnemofunctions In this section we recall the definition of the algebra of mnemofunctions from [1] (see also [11, 17]). First we define an extended real line R using a construction typical for non-standard analysis. Let R = {(x n ) n=1 : x n R for all n N} be a set of real sequences. We call two sequences {x n } R and {y n } R equivalent if there is a natural number N such that x n = y n for all n>n. The set R of equivalence classes is called the extended real line and any of the classes a generalized real number. It follows easily that R R, as one may associate with any ordinary number x R a class containing a stationary sequence x n = x. The product xỹ of two generalized real numbers is defined as the class of sequences equivalent to the sequence {x n y n }, where {x n } and {y n } are the arbitrary representatives of the classes x and ỹ respectively. It is evident that R is an algebra. For any segment T =[a; b] R one can construct an extended segment T in a similar way. Consider the set of sequences of infinitely differentiable functions {f n (x)} on R. We call two sequences {f n (x)} and {g n (x)} equivalent if there is a natural number N such that f n (x) =g n (x) for all n>n and x R. The set of classes of equivalent functions is denoted by G(R) and its elements are called mnemofunctions. Similarly, one can define the space G(T) for any interval T =[a; b]. If we endow all these spaces with the natural operations of addition and multiplication they become algebras. For each distribution f we can construct a sequence f n of smooth functions such that f n converges to f (e.g., one can consider the convolution of f with some δ-sequence). This sequence defines the mnemofunction which corresponds to the distribution f. Thus, the space of distributions is a subset

3 Vol. 17 (21) Solutions of nonlinear DE 251 of the algebra of mnemofunctions. However, in this setting, the infinite set of mnemofunctions corresponds to one distribution (e.g., by taking different δ-sequences). We say that the mnemofunction f =[{f n }] is associated with a function f from some topological space if f n converges to f in this space. Let f =[{f n (x)}] and g =[{g n (x)}] be mnemofunctions. Then there is a composition defined by f g =[{f n (g n (x))}] G(R). In the same way one can define the value of the mnemofunction f at the generalized real point x =[{x n }] R as f( x) =[{f n (x n )}]. Let H denote the subset of R of the nonnegative infinitely small numbers : H = { h R : h =[{h n }], h n >, lim h n =}. For each h =[{h n }] H and f =[{f n (x)}] G(R) we define a differential d h f G(R) byd h f =[{fn (t + h n ) f n (t)}]. The construction of the differential was proposed by Lazakovich [1]. 3. Main results In this section we formulate the main results of this article. Using the introduced algebras we can now give an interpretation of Eq. (1.1). We replace the ordinary functions in Eq. (1.1) by the corresponding mnemofunctions and then write the equation in differentials in the algebra G(T) d h X( t) = f( t, X( t))d h L( t), (3.1) with initial value X [ã; h) = X, where h = [{h n }] H, ã = [{a}] T, t =[{t n }] T, X =[{Xn }], f =[{fn }], X =[{Xn}], L =[{Ln }] are elements of G(T). Moreover, f and L are associated with f and L, respectively. If X is associated with some function X, then we say that X is a solution of Eq. (1.1). It was shown in [11] that under some minor restrictions on the initial conditions there exists a unique solution of Eq. (3.1). The purpose of the present paper is to investigate when the solution X of Eq. (3.1) converges to some ordinary function and to describe all possible limits. Let L(t), t T =[a; b] be a right-continuous function of finite variation. We assume that L(t) = L(b) ift>band L(t) = L(a) ift<a. Denote the total variation of function L on the interval [u; v] T by Vu v L. Suppose that f is a Lipschitz continuous function with constants M 1 and M 2 with respect to t and x, respectively, and that it also has bounded growth, i.e., there exists a constant K such that for all x R and t T f(t, x) K(1 + x ). (3.2)

4 252 N. Bedziuk and A. Yablonski NoDEA In this paper we consider specific types of representatives of the mnemofunctions. We take the following convolutions with δ-sequence as representatives of L from Eq. (3.1) L n (t) =(L ρ n )(t) = 1/n L(t + s)ρ n (s)ds, (3.3) where ρ n C (R), ρ n, supp ρ n [; 1/n] and 1/n ρ n (s)ds =1. In the same way we set f n (t, x) =(f ρ n )(t, x) = f(t + u, x + v) ρ n (u, v)dudv, (3.4) [,1/n] 2 where ρ n C (R 2 ), ρ n, supp ρ n [, 1/n] 2, ρ [,1/n] 2 n (u, v)dudv =1. By using representatives we can rewrite Eq. (3.1) as follows: { xn (t + h n ) x n (t) =f n (t, x n (t))(l n (t + h n ) L n (t)), x n [a;a+hn)(t) =x (3.5) n(t). The solution of Eq. (3.5) is constructed inductively starting from the interval [a; a + h n ) where the initial conditions are given. Let t be an arbitrary point in T. There exists m t N and τ t [a; a + h n ) such that t = τ t + m t h n. Set t k = τ t + kh n, k =, 1,...,m t. Then the solution of Eq. (3.5) is defined explicitly as m t 1 x n (t) =x n(τ t )+ f n (t k,x n (t k ))(L n (t k+1 ) L n (t k )). (3.6) k= The solution x of Eq. (3.1) is associated with some function if and only if the sequence of the solutions x n of Eq. (3.5) converges. Therefore, we have to investigate a limiting behavior of the sequence x n. Consider the function F n :[ ;+ ] [; 1] given by F n (x) = 1/n x ρ n (s)ds. (3.7) Since ρ n (s), then F n is a non-increasing function, F n (x) 1and F n (+ ) =,F n ( ) = 1. Denote the inverse function of F n by Fn 1, i.e., : [; 1] [ ;+ ] and F 1 n Fn 1 (u) =sup{x : F n (x) =u}. (3.8) In order to describe the limits of the sequence x n, we consider the integral equation t x(t)=x + f(s, x(s))dl c (s)+ (ϕ( L(s)f(s, ),x(s ), 1) x(s )), a a<s t (3.9) where t T, L c is a continuous part of the function L, L(s) =L(s+) L(s ) is a size of the jump of the function L at the point s, and for any function z

5 Vol. 17 (21) Solutions of nonlinear DE 253 and x R, ϕ(z,x,u) denotes the solution of the integral equation ϕ(z,x,u) =x + z(ϕ(z,x,v))µ(dv), (3.1) [;u) where µ(du) is a probability measure defined on the Borel subsets of the interval [; 1]. As it was shown in [17] there exists a unique solution of Eq. (3.9) iff is a Lipschitz continuous function. Definition 3.1. We say that the function σ : [; 1] [; 1] belongs to class G if there is a system of pairwise disjoint intervals (a i ; b i ] [; 1], i I such that σ(u) = { bi, u (a i ; b i ], u, u / i I (a i; b i ]. (3.11) The following theorems describe the limits of the sequence X n. Theorem 3.2 ([3]). Let f be a Lipschitz continuous function satisfying Eq. (3.2), L is a right-continuous function of finite variation. Suppose that t T x n(τ t ) x dt and F n (Fn 1 (u) δh n ) σ(u) as n and h n for all δ (; 1) and for any continuity point u [; 1] of σ. Thenσ belongs to the class G and x n (t) x(t) dt T as n and h n, wherex n (t) is a solution of Eq. (3.5) and x(t) is a solution of the Eq. (3.9) with the measure µ generated by the function σ. Theorem 3.3. Let L be a right-continuous function of finite variation. Suppose that for each Lipschitz continuous function f satisfying Eq. (3.2), the solution of Eq. (3.5) x n converges in L 1 (T) as n, h n. If the function L is continuous, then the limit of x n is a solution of Eq. (3.9). IfL is discontinuous, then there exists a function σ G such that F n (Fn 1 (u) δh n ) σ(u) as n, h n, for all δ (, 1) and for any continuity point u [; 1] of σ, and the limit of x n is a solution of Eq. (3.9) with the measure µ generated by the function σ. 4. Auxiliary statements Suppose that for any t T and n N the partition of the interval [; 1] is given by = ξ n (t) ξ1 n (t) ξp+2(t) n = 1, where p depends on n. Consider the recurrent sequence ϕ n k (t) =ϕn k (z,x,t) fort T,k =, 1,...,p+2,n N,x R, z is a Lipschitz continuous function, { ϕ n k+1 (t) =ϕ n k (t)+z(ϕn k (t))(ξn k+1 (t) ξn k (t)) ϕ n (4.1) (t) =x.

6 254 N. Bedziuk and A. Yablonski NoDEA For each u [; 1], t T, n =1, 2,..., define σ n (u, t) andφ n (u, t) as follows { ξ σ n n (u, t) = k (t),ξk 1 n (t) <u ξn k (t) (4.2),u= { ϕ φ n n (u, t) = k (t),ξk 1 n (t) <u ξn k (t) (4.3) x, u =. It is easy to see that φ n is a solution of the following integral equation, φ n (u, t) =x + z(φ n (s, t))σ n (ds, t). [;u) Lemma 4.1 ([17]). Suppose that there is a nonincreasing left-continuous function σ(u),u [; 1] such that σ n (u, t) σ(u) dt as n for any continuity point u of σ. Then σ belongs to the class G and φ n (u, t) φ(u) dt T T as n for any continuity point u of φ, whereφ(u) is a solution of the equation φ(u) =x + z(φ(s))dσ(s). [;u) For any fixed point t, let us denote φ n (u, t) andσ n (u, t) asφ n (u) and σ n (u), respectively. Lemma 4.2. Suppose that there exists an x R such that for each Lipschitz continuous function z : R R of bounded growth number sequence φ n (1) = ϕ n p n (z,x) converges as n. Then the sequence of measures generated by the functions σ n converges weakly. Proof. By the definition of σ n (u) it is evident that σ n (u) u. Therefore, we can represent the interval [; 1] as a union of the disjoint sets A, B, andc, where { } A = u : lim σn (u) =u, { } B = u : lim σn (u) lim σ n (u) >u, { } C = u : lim σn (u) > lim σ n (u) =u. Let us consider Lipschitz continuous functions z q,ε for q, ε Q, ε> defined as follows: 1, p x + q 1 z q,ε (p) = ε (x + q + ε p), x+ q<p x + q + ε, p > x+ q + ε.

7 Vol. 17 (21) Solutions of nonlinear DE 255 Consider an arbitrary point u B. By the definition of the set B we have that lim σ n (u) =b>u.foreachn N there exists a number m such that ξ n m 1 <u ξ n m. Then for large enough n we have σ n (u) =ξ n m (b + u)/2. In this case for each function z q,ε such that u q<q+ ε (b + u)/2, we conclude that φ n (1) = x + ξ n m. Since φ n (1) converges, σ n (u) =ξ n m converges as well. At the same time convergence of σ n (u) leads to the following equality: lim σn (u) = lim σ n (u) =b>u. (4.4) Consider an arbitrary point u C. By the definition of the set C we have that u = lim σ n (u) < lim σ n (u) =d. Aslim σ n (u) =d, there is a subsequence {n k } such that lim nk σ n k (u) =d. Suppose that there exists a subsequence {n i } such that lim ni σ ni (u) =s, where u<s<d.butifwe take the subsequence {n k } {n i } then the same arguments as in (4.4) imply that lim ni σ ni (u) =b, which leads to the contradiction with the definition of n i. Thus, we can represent the sequence {n} as a disjoint union {n } {n }, where lim n σ n (u) =d and lim n σ n (u) =u. According to Helly s selection principle [4], σ n is a weakly compact sequence, which means that from each subsequence of σ n one can select a subsequence that converges weakly. Let us show that the whole sequence σ n also converges weakly. Suppose that there exist two subsequences converging to different functions: σ n σ, σ n σ and σ σ. Using Lemma 4.1, we obtain that σ and σ belong to the class G, which implies that u = 1 is a continuity point for both σ and σ.moreover,φ n (u) φ (u) andφ n (u) φ (u) for each continuity point of σ and σ, respectively. In addition, φ and φ satisfy the integral equations φ (u)=x+ z(φ (s))dσ (s), [;u) φ (u)=x+ z(φ (s))dσ (s). [;u) (4.5) According to the conditions of the lemma φ n (1) converges, therefore φ (1) = φ (1). Let us fix an arbitrary continuity point u [; 1] of both σ and σ such that σ (u) σ (u) and suppose that σ (u) <σ (u). Since σ (u) and σ (u) are two different limits of subsequences of σ n (u), then u belongs to the set C. As it was shown above in this case, the sequence {n} is the disjoint union {n } {n }, where lim n σ n (u) =d and lim n σ n (u) =u. Consequently σ (u) =u and σ (u) =d>u. Now consider Eq. (4.5) for the function z = z q,ε, where q, ε Q and u q < q + ε < d. Denote their solutions by φ q,ε and φ q,ε, respectively. Taking wq,ε = min{1, inf{t q : σ (t) ε}} one can write φ q,ε explicitly as

8 256 N. Bedziuk and A. Yablonski NoDEA x + σ (t), if t q, x + q + ε εe (σ (t) q)/ε (1 σ (s)/ε)e σ (s)/ε, if q<t wq,ε, φ q,ε(t) = q s<t x + q + ε εe (σ (w q,ε ) q)/ε e σ (w q,ε )/ε (1 σ (s)/ε)e σ (s)/ε, if t>wq,ε. q s w q,ε Letting ε in the given formula, we obtain that wq,ε wq = min(1, inf{t q : σ (t) > }) andwq,ε wq.moreover, { x + σ φ q(1) = lim φ ε q,ε(1) = (q), if q<wq x + σ (wq)+ σ (wq), if q = wq. Similarly, one can obtain φ u(1) = lim q u φ q(1) = { x + σ (u), if u<w u x + σ (w u)+ σ (w u), if u = w u. Since u is a continuity point of σ, then σ (wu)=asu = wu and φ u(1) = x + σ (u) =x + u. Let us consider φ q,ε. Taking into account that ε d u, we obtain that φ q,ε(1) = x + σ (u) =x + d. Letting ε, and then q u we obtain that φ u (1) = x + d. Thus, it is shown that φ u(1) = x + u and φ u (1) = x + d, where u d. According to the conditions of the lemma φ q,ε(1) = φ q,ε(1). Therefore, φ u(1) = φ u (1), which leads to the contradiction. Hence, σ n (u) σ(u) for all continuity points u [; 1] of σ. Remark 4.3. Lemma 4.2 holds under weaker conditions: the sequence of measures generated by the functions σ n converges weakly if the number sequence φ n (1) = ϕ n p n (z,x) converges for a countable set of functions z q,ε of the given type, where q, ε Q. Let j be a number such that t j 1/n < t j+1. Set ξk n(t) =F n( t j+k ), t T, n N and k =, 1,...,p+ 2, where p =[1/(nh n )]. Note that ξk n(t) depends on t T, since t j+k depends on t. Denote the sequence which is defined by formula (4.3) byϕ n k (z,x,t) and let σn i (u, t) be the sequence of functions which is given by formula (4.2). The following lemma from [13] gives the necessary and sufficient conditions for σi n (u, t) to satisfy the statement of Lemma 4.1 and Lemma 4.2. Lemma 4.4 ([13]). Suppose that F n (Fn 1 (u) δh n ) σ(u) as n and h n for all δ (; 1) and all continuity points u [; 1] of σ. Then, σ n (u, t) σ(u) dt T as n and h n for all continuity points u [; 1] of σ. Conversely, if there exists such a function σ(u, t), u [; 1], t T that σ(u, t) L 1 (T) for any u [; 1], σ(u, t) is left continuous and nondecreasing

9 Vol. 17 (21) Solutions of nonlinear DE 257 on u for any t T, and for each continuous function z : [; 1] R, we have that 1 1 z(u)σ n (du, t) z(u)σ(du, t) dt, T Then σ(u, t) does not depend on t, i.e., σ(u, t) = σ(u) and F n (Fn 1 (u) δh n ) σ(u) for all continuity points u [; 1] of σ and for any δ (; 1). Proposition 4.5. Let ϕ(z,x,u) be a solution of Eq. (3.1) with real-valued function z such that z(x) z(y) K 1 x y and z(x) K 2 (1 + x ) for all x, y R. Then the following inequalities hold for all x, y R, u, v [; 1], u<v ϕ(z,x,u) ϕ(z,y,u) x y exp(k 1 ) ϕ(z,x,u) ( x + K 2 )exp(k 2 ) ϕ(z,x,u) x K 2 ( x +1)exp(K 2 ) ϕ(z,x,u) x ϕ(z,y,u)+y x y K 1 exp(k 1 ) ϕ(z,x,u) ϕ(z,x,v) K 2 (1 + ( x + K 2 )exp(k 2 ))µ([u, v)) Proof. By using the Gronwall inequality, see [9], these statements are easily shown from the definition of ϕ(z,x,u). Hereafter we denote the constant which depends only on M 2, K, T, and Va b L by C. It does not depend on n, h n and t T and its value can change from one formula to another. Proposition 4.6. Let the function f be Lipschitz continuous with constant M 2 satisfying Eq. (3.2). Then for the solutions x and x n of Eqs. (3.9) and (3.5), respectively, the following inequalities hold for all t, s T, t>sand l, n N x(t) C(1 + x ) (4.6) x n (t) C(1 + x n (τ t ) ) (4.7) x(t) x(s) C(1 + x )V t s L x n (t + lh n ) x n (t) C(1 + x n (τ t ) t+lh )V n+ 1 n t L (4.8) Proof. The proof of these inequalities is standard and uses the definitions of x and x n, the Gronwall inequality, inequality (3.2), and the Lipschitz continuity of f. 5. Proof of the main theorem In this section we prove Theorem 3.3. Let us recall the conditions of the theorem. The function L is right-continuous of finite variation. For any Lipschitz continuous function f of bounded growth, the solution of Eq. (3.5) x n converges in L 1 (T)asn, h n. Let us show that if L has no discontinuity points, then the limit of x n is a solution of the integral equation (3.9); and if L has at least one point of discontinuity, then there exists a function σ G such that F n (Fn 1 (u) δh n ) σ(u) as

10 258 N. Bedziuk and A. Yablonski NoDEA n, h n, for all δ (, 1) and for all continuity points u [, 1] of σ. Moreover, the limit of x n is a solution of the integral equation (3.9) with the measure µ generated by σ. Proposition 5.1. Under the conditions of Theorem 3.3 there exists an x R such that x n (τ t ) x dt. (5.1) T Proof. As was shown above, each point t can be represented as t = τ t + m t h n, where τ t [a, a + h n ], m t N and the solution of Eq. (3.5) can be written as follows m t 1 x n (t) =x n (τ t )+ f n (t k,x n (t k ))[L n (t k+1 ) L n (t k )]. (3.6) k= Set f, then x n (t) =x n (τ t )=x n(τ t ). According to the conditions of Theorem 3.3, x n converges in L 1 (T) and therefore x n(τ t ) converges. Taking an arbitrary function g C(T), consider the following limit I = lim b g(t)x n(τ t )dt = lim [ b a hn ] a+khn g(t)x n a k=1 a+(k 1)h n Directly from the definition of fractional part we obtain I = lim 1 [ b a hn ] ( { }) t a a + h n dt. h n g(h n s + a +(k 1)h n )h n x n(a + h n s)ds. k=1 Since the function g is bounded on T then by the Lebesgue dominated convergence theorem we have I = lim 1 b a g(t)dt x n(a + h n s)ds = b Denote x = lim 1 x n(a + h n s)ds, then a g(t)dt lim 1 x n(a + h n s)ds. I = b a g(t)x dt. Since x n(τ t ) converges in L 1 (T), then x n(τ t ) x in L 1 (T). Remark 5.2. Without loss of generality we can say that the initial conditions x n(τ t ) are bounded, i.e., there exists a constant C R such that x n(τ t ) C for any t T, n N. If the initial conditions x n(τ t ) are unbounded, we can construct new bounded initial conditions such that the solution of Eq. (3.5) with the new initial conditions converges to the same limit as the solution x n (t) ofeq.(3.5) with unbounded initial conditions. Proposition 5.3. Theorem 3.3 holds for the continuous function L.

11 Vol. 17 (21) Solutions of nonlinear DE 259 Proof. Let y be a solution of the integral equation (3.9). Since L is continuous, then L c = L and Eq. (3.9) can be represented as follows y(t) =x + t a f(s, y(s))dl c (s), where x is a limit of the initial conditions x n(τ t ). According to Proposition 5.1, the value x exists and it is unique. We will show that b a x n(t) y(t) dt as. Then, due to the uniqueness of the limit, x will coincide with y. Taking into account the explicit forms of x n and y, inequalities (4.6), (4.7), and also properties of f n and f with the help of standard methods one can show that x n (t) y(t) x n (τ t ) x m t 1 + f n (t k,x n (t k ))[L c n(t k+1 ) L c n(t k )] k= x n (τ t ) x + C/n + C(1 + x n (τ t ) + x ) m t 1 + C x n (t k ) y(t k ) [L c (t k+1 ) L c (t k )]. k= t a f(s, y(s))dl c (s) sup u v h n+1/n V v u L c Applying the Gronwall inequality to the above expression we obtain that [ x x n (t) y(t) n (τ t ) x + C/n + C(1 + x n (τ t ) + x ) sup Vu v L c] exp(cva b L c ). u v h n+1/n Taking the integral over T and considering the limit as n we obtain that b a x n (t) y(t) dt. Thus Theorem 3.3 holds for the continuous function L. Now let us show that Theorem 3.3 holds for the discontinuous function L. By the conditions of Theorem 3.3, the solution of Eq. (3.5) converges for any Lipschitz continuous function f of bounded growth. But, of course, for two different functions f the solutions of Eq. (3.5) differ. In order to emphasize that x n substantially depends on the function f, we denote it as x n = x n (f), and its value at point t as x n (t) =x n (f,t). Thus, we need to show that if for any Lipschitz continuous function f of bounded growth the function sequence x n (f) converges in L 1 (T), then F n (Fn 1 (u) δh n ) converges for all δ (, 1) and almost all (in general, for all except for no more than countable number of points) u [, 1].

12 26 N. Bedziuk and A. Yablonski NoDEA For the arbitrary fixed Lipschitz continuous function f, using Remark 5.2 it can be shown that inequality (4.7) takes the form x n (t) C(1+C ). Introduce the function f(t, C(1 + C )), if x>c(1 + C ), f(t, x) = f(t, x), if x C(1 + C ), f(t, C(1 + C )), if x< C(1 + C ). As f coincides with f for all x n (f,t), it means that the solution x n (f) of Eq. (3.5) will always coincide with the solution x n ( f). Therefore, hereafter we can regard f as a bounded function with respect to x. Combining this condition with inequality (Eq. 3.2) we obtain that f(t, x) K(1 + C(1 + C )). (5.2) For any t T define t k = t k (t) =τ t + kh n, k =, 1, 2,... as above. Pick any point T. Letq N be a number such that t q 1 (t) < t q (t). (5.3) Note that t q (t + h n )=t q (t), i.e., t q (t) is a periodic function with period h n. Proposition 5.4. For any Lipschitz continuous function f of bounded growth and for each T there exists x + () R such that lim b x n (t q (t)) x + () dt =. (5.4) Proof. For each δ (; 1) we introduce the following function 1, if t + δ/2, g(δ,, t) = 2(δ + t)/δ, if + δ/2 <t + δ,, if t>+ δ. Set f δ (t, x) =f(t, x)g(δ,, t), then { f δ f(t, x), if t + δ/2, (t, x) =, if t + δ. Moreover, the function f δ is Lipschitz continuous with respect to x and it satisfies (Eq. 3.2) with the same constants as f does. Using the argument preceding inequality (5.2), we claim that this inequality holds for the function f. Then function f δ is also Lipschitz continuous with respect to t. Let x δ n = x n (f δ )andx n = x n (f) be solutions of Eq. (3.5) with functions f δ and f, respectively. Note that x δ n(t) =x n (t) ift<+ δ/2 1/n and x δ n(t q (t)) = x n (t q (t)) for large enough n and t T. Moreover,x δ n(t) =c δ n(t) ift>+ δ where c δ n is some h n -periodic function. Now x δ n converges to x δ in L 1 (T), therefore the sequence of functions c δ n also converges in L 1 ([ + δ, b]). Denote the limit of c δ n by c δ. The same arguments as in Proposition 5.1 imply that the function c δ does not depend on t, i.e., it is a constant. Let us show that the number sequence c δ converges as δ. Consider arbitrary numbers δ 1,δ 2 (, 1) and corresponding functions f δ1, f δ2. Note that fn δ1 (t, x) =fn δ2 (t, x) only if t ( + min{δ 1,δ 2 }/2 1/n, + max{δ 1,δ 2 }].

13 Vol. 17 (21) Solutions of nonlinear DE 261 Let r and r be numbers such that t r 1 + min{δ 1,δ 2 }/2 1/n < t r t r + max{δ 1,δ 2 } <t r +1. Then from equality (3.6) weget x δ 1 n (t) x δ2 n (t) mt 1 = = k= [f δ1 r [f δ1 k=r n (t k,x δ1 n (t k )) fn δ2 (t k,x δ2 n (t k ))][L n (t k+1 ) L n (t k )] n (t k,x δ1 n (t k )) fn δ2 (t k,x δ2 n (t k ))][L n (t k+1 ) L n (t k )]. Using inequality (4.8) with the help of standard methods it can be shown that x δ 1 n (t) x δ2 n (t) C(1 + xn (t r ) )V +max{δ1,δ2}+hn 1/n+min{δ L 1,δ 2}/2 n C(1 + x n (τ t ) )V +max{δ 1,δ 2}+h n+1/n 1/n+min{δ 1,δ 2}/2 L. Taking the integral over the interval [ + max{δ 1,δ 2 },b] and letting n we obtain that c δ 1 c δ2 (b max{δ1,δ 2 }) = lim b +max{δ 1,δ 2} x δ 1 n (t) x δ2 n (t) dt b lim C (1 + x n(τ t ) )dt V +max{δ1,δ2}+hn+1/n 1/n+min{δ 1,δ 2}/2 L +max{δ 1,δ 2} C(1 + x +max{δ )V 1,δ 2} +min{δ L. 1,δ 2}/2 Since L is a right-continuous function, the above inequality implies that c δ is a Cauchy sequence. Thus, there exists lim δ c δ = x + (). Now let us recall that c δ n is h n -periodic function and x δ n(t q (t)) = x n (t q (t)) for large enough n. Then x n (t q (t)) c δ n(t q (t)) = x δ n(t q (t)) c δ n(t). Since for t>+ δ we have that f δ (t, x) =andx δ n(t) =c δ n(t), then using inequality (4.7) we deduce that x δ n(t q (t)) c δ n(t) = x δ n(t q (t)) x δ n(t) C(1 + x δ n (t q (t)) +δ+h )V n+1/n L C(1 + x n (τ t ) +δ+h )V n+1/n L. Thus, we obtain the following inequality x n (t q (t)) x + () x δ n(t q (t)) c δ n(t) + c δ n(t) x + () C(1 + x n (τ t ) +δ+h )V n+1/n L + c δ n(t) x + ().

14 262 N. Bedziuk and A. Yablonski NoDEA Taking the integral over the interval [ + δ, b] and letting n we have that lim b + lim +δ b x n (t q (t)) x + () dt C(1 + x )V +δ L +δ c δ n(t) c δ dt + c δ x + () (b δ) = C(1 + x )V +δ L + c δ x + () (b δ). Letting δ we obtain the required equality b lim x n (t q (t)) x + () dt =. Now for t T and m N let t j (t, m) =τ t + jh n be a point such that t j (t, m) < 1 m t j+1(t, m). (5.5) Notice that t j (t + h n,m)=t j (t, m) for all t T. Proposition 5.5. For any Lipschitz continuous function f of bounded growth and for each T there exists an x () such that b lim x n (t j (t, n)) x () dt =. (5.6) Proof. Applying equality (5.4) at the point 1 m we have that b ( lim x n (t j+1 (t, m)) x + 1 ) dt =. (5.7) m Now we show that the sequence x + ( 1 m ) converges as m.itis sufficient to prove that x + ( 1 m ) x+ ( 1 k ) asm, k. Let us introduce k, m N such that k<mand δ< 1 mk.letfδ,m (t, x) = f(t, x)g(δ, 1 m,t) and let xδ,m n the function f δ,m. Due to the special form of δ we have that x δ,m n = x n (f δ,m ) be a solution of Eq. (3.5) with (t) =x δ,k n (t) if t< 1/k 1/n. Moreover, as it was shown above, there exists a number c δ ( 1 m ) such that It is easy to see that ( cδ 1 k lim b n (t) c δ ( 1 m ) dt =. xδ,m ) c δ ( 1 m ) = 1 b lim b x δ,m n (t) x δ,k n (t) dt.

15 Vol. 17 (21) Solutions of nonlinear DE 263 Equality (3.6) implies that x δ,m n (t) x δ,k n (t) mt 1 = [fn δ,m i= (t i,x δ,m n [L n (t i+1 ) L n (t i )]. (t i )) fn δ,k (t i,x δ,k n (t i ))] Since δ< 1 δ,m mk, we have that fn = fn δ,k if t ( 1 k 1 n ; 1 m + 1 mk ). Denote the first point that belongs to this interval by t r and the last one by t r. Then using inequality (4.8) and the same technique as previously we have that x δ,m n (t) x δ,k n (t) r = [fn δ,m i=r (t i,x δ,m n C(1 + x n(τ t ) k 1 )V (t i )) fn δ,k (t i,x δ,k mk +hn+ 1 n 1 k 1 n L. n (t i ))][L n (t i+1 ) L n (t i )] After taking the integral over [,b] and letting n we obtain that ( cδ 1 ) ( c δ 1 ) = 1 k m b lim b x δ,m n C(1 + x )V k 1 mk L. 1 k (t) x δ,k n (t) dt Recall that c δ (u) x + (u) asδ. Therefore, the given inequality implies that ( x+ 1 m ) x + ( 1 k ) C(1 + x )V k 1 mk L. 1 k Thus, ( x + m) ( ) 1 x + 1 k asm, k. Therefore, the sequence x ( ) + 1 k converges to the limit x (). From equality (5.7) it now follows that lim m lim b x n (t j+1 (t, m)) x () dt =. We will now calculate lim b x n(t j (t, n)) x () dt. It is evident that for each m and large enough n we have for all t T that t j+1 (t, m) <t j (t, n).

16 264 N. Bedziuk and A. Yablonski NoDEA Equation (3.6) yields b lim x n (t j (t, n)) x () dt lim m lim b + lim m lim lim m lim b b x n (t j (t, n)) x n (t j+1 (t, m)) dt x n (t j+1 (t, m)) x () dt C(1+ x n (τ t ) )V t j(t,n)+ 1 n t j+1(t,m) Ldt lim C(1+ x )V L=, m 1 m since L is a right-continuous function. Thus, b lim x n (t j (t, n)) x () dt =. Proposition 5.6. Let T be a discontinuity point of L, then ϕ n p+2( L()f(, ),x (),t) x + () in L 1 (T) as n, (5.8) where x + () and x () are defined as in Propositions 5.4 and 5.5, p =[1/(nh n )], and the function ϕ n k (z,x,t) is defined by Eq. (4.1) with ξn k (t) = F n ( t j+k (t)). Proof. Recall that t q = t q (t) andt j = t j (t, n) are defined by the inequalities (5.3) and (5.5), respectively. As p =[1/(nh n )], then p+1 x n (t j+p+2 ) x n (t j )= f n (t j+i,x n (t j+i ))(L n (t j+i+1 ) L n (t j+i )). i= It is easy to see that t j+p+2 is equal to t q or t q+1. Therefore, equalities (5.4) and (5.6) imply that as n, p+1 I n = f n (t j+i,x n (t j+i ))(L n (t j+i+1 ) L n (t j+i )) x + () x () inl 1 (T). i= (5.9) Now let us represent the function L in the following form L = L + L d, where { L d, if t<, (t) = L(), if t.

17 Vol. 17 (21) Solutions of nonlinear DE 265 Then, we have that L d n(t j+i+1 ) L d n(t j+i )= = tj+i+1 t j+i+1 1/n 1/n (L d (t j+i+1 + s) L d (t j+i + s))ρ n (s)ds (L d ( u) L d ( h n u))ρ n ( t j+i+1 u)du = J. From definition of L d one can see that L d ( u) L d ( h n u) =if u [ h n ; ). Then since supp ρ n [; 1/n] we have that J = h n (L d ( u) L d ( h n u))ρ n ( t j+i+1 u)du tj+i = L() ρ n ( t j+i+1 u)du = L() ρ n (s)ds h n t j+i+1 = L()[F n ( t j+i+1 ) F n ( t j+i )] = L()[ξi+1(t) n ξi n (t)]. Applying the methods described in Lemma 5.6 from [17] and using an explicit form of f n, L n,andϕ n p+2 one can show that p+1 f n (t j+i,x n (t j+i ))(L n (t j+i+1 ) L n (t j+i )) i= (ϕ n p+2( L()f(, ),x n (t j ),t) x n (t j )) C(1 + x n(τ t ) )(1/n + h n + V 1/n L + V +1/n+hn L). Therefore, formula (5.9) yields ϕ n p+2( L()f(, ),x n (t j ),t) x n (t j ) x + () x () inl 1 (T) asn. Using Proposition 4.5 we obtain that ϕ n p+2 ( L()f(, ),x n (t j ),t) x n (t j ) ϕ n p+2( L()f(, ),x (),t)+x () C xn (t j ) x (). Since from (5.6) we have that x n (t j ) x () inl 1 (T), then ϕ n p+2( L()f(, ),x (),t) x + () inl 1 (T) asn.

18 266 N. Bedziuk and A. Yablonski NoDEA Proposition 5.7. The sequence of functions ϕ n p+2( L()f(, ),x,t) converges in L 1 (T). Proof. Consider the following set of functions, if t δ, w(δ,, t) = (t + δ )/δ, if δ<t, 1, if t>. Introduce the function g δ (t, x) =f(t, x)w(δ,, t). As in Proposition 5.4, weuse the argument preceding inequality (5.2) and claim that this inequality holds for the function f. Then the function g δ (t, x) is Lipschitz continuous with respect to both x and t. Denote the solution x n (g δ )ofeq.(3.5) byx δ n.asit was shown in Proposition 5.5, x δ n(t j ) x (,g δ ). Moreover, using equality (3.6) one can show that x δ n(t j ) x n(τ t ) C(1 + x n(τ t ) )V tj+1/n δ L. Taking the integral over T and letting n we get x (,g δ ) x C(1 + x )V δ L. Thus, x (,g δ ) converges to x as δ. Let us show that x + (,g δ ) also converges. Since L()f(, ) = L() g δ (, ), formula (5.8) implies that ϕ n p+2( L()f(, ),x (,g δ ),t) x + (,g δ ). Using the definition of ϕ n we obtain the following inequality ϕ n p+2( L()f(, ),x (,g δ1 ),t) ϕ n p+2( L()f(, ),x (,g δ2 ),t) C x (,g δ1 ) x (,g δ2 ). Therefore, x + (,g δ1 ) x + (,g δ2 ) C x (,g δ1 ) x (,g δ2 ). (5.1) Since the sequence x (,g δ ) converges, then from (5.1) we obtain that the sequence x + (,g δ ) also converges. Denote its limit by x + (,f ). The definition of ϕ n implies ϕ n p+2( L()f(, ),x,t) x + (,f ) ϕ n p+2( L()f(, ),x,t) ϕ n p+2( L()f(, ),x (,g δ ),t) + ϕ n p+2( L()f(, ),x (,g δ ),t) x + (,g δ ) + x + (,g δ ) x + (,f ) C x (,g δ ) x + ϕ n p+2( L()f(, ),x (,g δ ),t) x + (,g δ ) + x + (,g δ ) x + (,f ). Taking the integral over the interval [; b] and letting n we have that lim b ϕ n p+2( L()f(, ),x,t) x + (,f ) dt C x (,g δ ) x + C x + (,g δ ) x + (,f ). Letting δ we obtain that ϕ n p+2( L()f(, ),x,t) converges in L 1 (T).

19 Vol. 17 (21) Solutions of nonlinear DE 267 Proof of the theorem. Proposition 5.3 states that Theorem 3.3 holds for the continuous function L. For the discontinuous function L, let us introduce the following notation, ϕ n p+2( L()f(, ),x,t)=φ n (1,t), where ϕ n p+2 and ξk n(t) are defined in Proposition 5.6. Then the function σn (s, t) is generated by ξk n(t) accordingto(4.2) andφn is a solution of the corresponding integral equation φ n (u, t) =x + L()f(,φ n (s, t))σ n (ds, t). [;u) Proposition 5.7 implies that there exists a number x R such that for any Lipschitz continuous function f of bounded growth and for any discontinuity point of L, the sequence φ n (1,t) converges in L 1 (T). Since for each f the sequence φ n (1,t) converges in L 1 (T), there exists a subsequence n k, depending on f, such that φ n k (1,t) converges almost everywhere. Fix t T in such a way that φ n k (1,t) converges for a countable number of functions f = z q,ε, q, ε Q defined in Lemma 4.2. Denote φ n k (1) = φ n k (1,t) and σ n k (u) =σ n k (u, t). Thus, we showed that there exists a sequence n k,for which the sequence φ n k (1) converges for any functions z q,ε.fromremark4.3 we deduce that Lemma 4.2 holds. Lemma 4.2 in turn implies that the sequence of functions σ n k converges to σ G for any continuity point u of σ. This means that the conditions of Lemma 4.4 also hold, so we obtain that F nk (Fn 1 k (u) δh nk ) σ(u), (5.11) as n k, h nk for all δ (, 1) and for each continuity point u of σ. It is easy to see that for each subsequence n one can select a subsequence n k such that convergence (5.11) holds. Therefore, (5.11) holds for the whole sequence, i.e., F n (Fn 1 (u) δh n ) σ(u) (5.12) as n, h n, for all δ (, 1) and for all continuity points u [, 1] of σ. Formula (5.12) means that the conditions of Theorem 3.2 hold. Applying Theorem 3.2 we obtain that the limit of the solutions of Eq. (3.5) is a solution of the integral equation (3.9) with measure µ generated by σ, where σ G. The proof is complete. 6. Remarks Corollary 6.1. Let the δ-sequence ρ n be of the simplest type, which means that ρ n (t) =nρ(nt), whereρ C (R), ρ, supp ρ [; 1] and 1 ρ(s)ds =1. Then the sequence F n (Fn 1 (u) δh n ) converges at any continuity point of the limit function σ for any δ (; 1) and the limit does not depend on δ if and only if either 1/n = o(h n ) or h n = o(1/n).

20 268 N. Bedziuk and A. Yablonski NoDEA Moreover, suppose that f is a Lipschitz continuous function of bounded growth and t T x n(τ t ) x dt as n and h n. Then the solution x n of Eq. (3.5) converges to x(t) in L 1 (T) if and only if 1. 1/n = o(h n ), which implies that the measure µ, generated by σ, gives the mass 1 to the point. Consequently Eq. (3.1) has the following solution { x, u =, ϕ(z,x,u) = x + z(x), u (; 1]. Thus x(t) is a solution of Eq. (3.9) that can be represented in the following form x(t) =x + f(s, x(s ))dl(s). (a,t] 2. h n = o(1/n), which means that the measure µ, generated by σ, is equal to the Lebesgue measure. Hence, Eq. (3.1) can be written as follows ϕ(z,x,u) = z(ϕ(z,x,u)), u ϕ(z,x,) = x. Thus, x(t) is a solution of Eq. (3.9) with the function ϕ defined above. 7. Conclusion We demonstrated that the algebra of mnemofunctions enables us to define the solution of the differential equation with generalized coefficients (Eq. 1.1). Considering specific types of mnemofunctions (which are restricted to be a convolution of corresponding generalized coefficients with a δ-sequence) allowed us to give necessary and sufficient conditions under which the solution is an ordinary function satisfying the integral equation (3.9). It is worth mentioning that each δ-sequence define a measure µ, which is involved in the formulation of Eq. (3.9). In particular, existing interpretations of the solution of Eq. (1.1) from [2,6,8,14,15,18] can be obtained by using different δ-sequences which define appropriate measures µ. Acknowledgements We thank professor N.V. Lazakovich for his encouragement and interest, Dr. Ingemar Eriksson for the attentive reading, and anonymous reviewers for their constructive comments, which helped us improve the manuscript. References [1] Antonevich, A.B., Radyno, Y.V.: On a general method for constructing algebras of generalized functions. Sov. Math. Dokl. 43(3), (1991)

21 Vol. 17 (21) Solutions of nonlinear DE 269 [2] Antosik, P., Ligeza, J.: Products of measures and functions of finite variations, Generalized functions and operational calculus. Proc. Conf. Varna 1975, 2 26 (1979) [3] Bedziuk, N.V., Yablonski, A.L.: Nonautonomous differential equations in algebra of new generalized functions. Differ. Equ. 45(1), 8 18 (29) [4] Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999) [5] Colombeau, J.F.: A multiplication of distributions. J. Math. Anal. Appl. 94(1), (1983) [6] Das, P.C., Sharma, R.R.: Existence and stability of measure differential equations. Czech. Math. J. 22(1), (1972) [7] Egorov, Yu.V.: A contribution to the theory of generalized functions. Russ. Math. Surveys 45, 1 49 (199) [8] Filippov, A.F.: Differential equations with discontinuous right hand sides, Mathematics and its Applications (Soviet Series), vol 18. Kluwer, Dordrecht (1988) [9] Groh, J.: A nonlinear Volterra-Stieltjes integral equation and Gronwall inequality in one dimention. Ill. J. Math. 24(2), (198) [1] Lazakovich, N.V.: Stochastic differentials in the algebra of generalized random processes, Dokl. Akad. Nauk Belarusi 38(5), (in Russian) (1994) [11] Lazakovich, N.V., Stashulenok, S.P., Yufereva, I.V.: Stochastic differential equations in the algebra of generalized random processes. Differ. Equ. 31(12), (1995) [12] Lazakovich, N.V., Yablonski, A.L.: On the approximation of the solutions of stochastic equations with θ-integrals. Stoch. Stoch. Rep. 76(2), (24) [13] Lazakovich, N.V., Yablonskij, A.L.: The limiting behavior of Ito s finite sums with averaging. Theory Probab. Appl. 5(4), (26) [14] Ligeza, J.: On generalized solutions of some differential nonlinear equations of order n. Ann. Polon. Math. 31(2), (1975) [15] Pandit, S.G., Deo, S.G.: Differential systems involving impulses, Lecturer Notes in Mathematics, p Springer, Berlin (1982) [16] Rosinger, E.E.: Generalized solutions of nonlinear Partial Differential Equations. North-Holland Publishing Co., Amsterdam (1987) [17] Yablonski, A.L.: Differential equations with generalized coefficients. Nonlinear Anal. 63, (25) [18] Zavalishchin, S.T., Sesekin, A.N.: Dynamic impulse systems. Theory and applications, Mathematics and its Applications, p Kluwer, Dordrecht (1997)

22 27 N. Bedziuk and A. Yablonski NoDEA N. Bedziuk, A. Yablonski Department of Functional Analysis, Belarusian State University, Nezavisimosti 4, 225 Minsk, Belarus A. Yablonski Received: 19 December 28. Accepted: 25 November 29.

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

Numerical Simulation of Shock Waves and Nonlinear PDE

Numerical Simulation of Shock Waves and Nonlinear PDE Numerical Simulation of Shock Waves and Nonlinear PDE Kenneth H. Karlsen (CMA) Partial differential equations A partial differential equation (PDE for short) is an equation involving functions and their

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Periodic solutions for a class of non-autonomous differential delay equations

Periodic solutions for a class of non-autonomous differential delay equations Nonlinear Differ. Equ. Appl. 16 (2009), 793 809 c 2009 Birkhäuser Verlag Basel/Switzerland 1021-9722/09/060793-17 published online July 4, 2009 DOI 10.1007/s00030-009-0035-8 Nonlinear Differential Equations

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

Uniqueness of the nonlinear Schrödinger equation driven by jump processes

Uniqueness of the nonlinear Schrödinger equation driven by jump processes Nonlinear Differ. Equ. Appl. (219) 26:22 c 219 pringer Nature witzerland AG 121-9722/19/31-31 published online June 6, 219 https://doi.org/1.17/s3-19-569-3 Nonlinear Differential Equations and Applications

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

NO X -chemistry modeling for coal/biomass CFD

NO X -chemistry modeling for coal/biomass CFD NO X -chemistry modeling for coal/biomass CFD Jesper Møller Pedersen 1, Larry Baxter 2, Søren Knudsen Kær 3, Peter Glarborg 4, Søren Lovmand Hvid 1 1 DONG Energy, Denmark 2 BYU, USA 3 AAU, Denmark 4 DTU,

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

On time splitting for NLS in the semiclassical regime

On time splitting for NLS in the semiclassical regime On time splitting for NLS in the semiclassical regime Rémi Carles CNRS & Univ. Montpellier Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 21 Splitting for NLS i t u + 1 2 u = f ( u 2) u,

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

EKSAMENSOPPGAVE I FAG TKP 4105

EKSAMENSOPPGAVE I FAG TKP 4105 EKSAMENSOPPGAVE I FAG TKP 4105 Faglig kontakt under eksamen: Sigurd Skogestad Tlf: 913 71669 (May-Britt Hägg Tlf: 930 80834) Eksamensdato: 08.12.11 Eksamenstid: 09:00 13:00 7,5 studiepoeng Tillatte hjelpemidler:

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

Resolvable Mendelsohn Triple Systems with Equal Sized Holes F. E. Bennett Department of Mathematics Mount Saint Vincent University Halifax, Nova Scoti

Resolvable Mendelsohn Triple Systems with Equal Sized Holes F. E. Bennett Department of Mathematics Mount Saint Vincent University Halifax, Nova Scoti Resolvable Mendelsohn Triple Systems with Equal Sized Holes F. E. Bennett Department of Mathematics Mount Saint Vincent University Halifax, Nova Scotia, Canada B3M 2J6 R. Wei Department of Mathematics

Detaljer

Flows and Critical Points

Flows and Critical Points Nonlinear differ. equ. appl. 15 (2008), 495 509 c 2008 Birkhäuser Verlag Basel/Switzerland 1021-9722/040495-15 published online 26 November 2008 DOI 10.1007/s00030-008-7031-2 Nonlinear Differential Equations

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

Level-Rebuilt B-Trees

Level-Rebuilt B-Trees Gerth Stølting Brodal BRICS University of Aarhus Pankaj K. Agarwal Lars Arge Jeffrey S. Vitter Center for Geometric Computing Duke University August 1998 1 B-Trees Bayer, McCreight 1972 Level 2 Level 1

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016 Micky East York Semigroup University of York, 5 Aug, 206 Joint work with Igor Dolinka and Bob Gray 2 Joint work with Igor Dolinka and Bob Gray 3 Joint work with Igor Dolinka and Bob Gray 4 Any questions?

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS English Exam: ECON2915 Economic Growth Date of exam: 25.11.2014 Grades will be given: 16.12.2014 Time for exam: 09.00 12.00 The problem set covers 3 pages Resources

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor. 6-13 July 2013 Brisbane, Australia Norwegian 1.0 Brisbane har blitt tatt over av store, muterte wombater, og du må lede folket i sikkerhet. Veiene i Brisbane danner et stort rutenett. Det finnes R horisontale

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions J. Math. Fluid Mech. 2019 21:36 c 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00021-019-0440-7 Journal of Mathematical Fluid Mechanics On the Existence of Strong Solutions to a Fluid Structure

Detaljer

On Capacity Planning for Minimum Vulnerability

On Capacity Planning for Minimum Vulnerability On Capacity Planning for Minimum Vulnerability Alireza Bigdeli Ali Tizghadam Alberto Leon-Garcia University of Toronto DRCN - October 2011 Kakow - Poland 1 Outline Introduction Network Criticality and

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Hvordan føre reiseregninger i Unit4 Business World Forfatter: Hvordan føre reiseregninger i Unit4 Business World Forfatter: dag.syversen@unit4.com Denne e-guiden beskriver hvordan du registrerer en reiseregning med ulike typer utlegg. 1. Introduksjon 2. Åpne vinduet

Detaljer

Eksamen i TFY4230 STATISTISK FYSIKK Onsdag 21. desember, :00 19:00

Eksamen i TFY4230 STATISTISK FYSIKK Onsdag 21. desember, :00 19:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i TFY4230 STATISTISK FYSIKK Onsdag 21. desember, 2011 15:00 19:00

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Mathematics : Calculus and Linear Algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Fredag 30. november 08 Sensur

Detaljer

EN Skriving for kommunikasjon og tenkning

EN Skriving for kommunikasjon og tenkning EN-435 1 Skriving for kommunikasjon og tenkning Oppgaver Oppgavetype Vurdering 1 EN-435 16/12-15 Introduction Flervalg Automatisk poengsum 2 EN-435 16/12-15 Task 1 Skriveoppgave Manuell poengsum 3 EN-435

Detaljer

GEF2200 Atmosfærefysikk 2017

GEF2200 Atmosfærefysikk 2017 GEF2200 Atmosfærefysikk 2017 Løsningsforslag til sett 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.18r Unsaturated air is lifted (adiabatically): The rst pair of quantities

Detaljer

Permutative Semigroups Whose Congruences Form a Chain

Permutative Semigroups Whose Congruences Form a Chain Semigroup Forum OF1 OF11 c 2004 Springer-Verlag New York, LLC DOI: 10.1007/s00233-004-0131-3 RESEARCH ARTICLE Permutative Semigroups Whose Congruences Form a Chain A. Nagy and Peter R. Jones Communicated

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd GEOV219 Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd Mener du at de anbefalte forkunnskaper var nødvendig? Er det forkunnskaper du har savnet? Er det forkunnskaper

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING

TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE KANDIDATER: (Fornavn, etternavn) Den årlige fremdriftsrapporteringen er et viktig tiltak som gjør instituttene og fakultetene

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS English Postponed exam: ECON2915 Economic growth Date of exam: 11.12.2014 Time for exam: 09:00 a.m. 12:00 noon The problem set covers 4 pages Resources allowed:

Detaljer

Lipschitz Metrics for Non-smooth evolutions

Lipschitz Metrics for Non-smooth evolutions Lipschitz Metrics for Non-smooth evolutions Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu Alberto Bressan (Penn State) Nonsmooth evolutions 1 / 36 Well-posedness

Detaljer

The Asymptotic Loss of Information for Grouped Data

The Asymptotic Loss of Information for Grouped Data Journal of Multivariate Analysis 67, 99127 (1998) Article No. MV981759 The Asymptotic Loss of Information for Grouped Data laus Felsenstein Technical University Vienna, Vienna, Austria and laus Po tzelberger

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON3610/4610 Resource Allocation and Economic Policy Eksamensdag: Torsday 28.

Detaljer

AvtaleGiro beskrivelse av feilmeldinger for oppdrag og transaksjoner kvitteringsliste L00202 levert i CSV fil

AvtaleGiro beskrivelse av feilmeldinger for oppdrag og transaksjoner kvitteringsliste L00202 levert i CSV fil AvtaleGiro beskrivelse av feilmeldinger for oppdrag og transaksjoner kvitteringsliste L00202 levert i CSV fil Kvitteringsliste L00202 for avviste oppdrag, transaksjoner og informasjonsmeldinger CSV Format:

Detaljer

Approximation of the Power of Kurtosis Test for Multinormality

Approximation of the Power of Kurtosis Test for Multinormality Journal of Multivariate Analysis 65, 166180 (1998) Article No. MV97178 Approximation of the Power of Kurtosis Test for Multinormality Kanta Naito Hiroshima University, Higashi-Hiroshima, 739, Japan Received

Detaljer

Unbiased Estimation in the Non-central Chi-Square Distribution 1

Unbiased Estimation in the Non-central Chi-Square Distribution 1 Journal of Multivariate Analysis 75, 112 (2000) doi10.1006mva.2000.1898, available online at httpwww.idealibrary.com on Unbiased Estimation in the Non-central Chi-Square Distribution 1 F. Lo pez-bla zquez

Detaljer