Lipschitz Metrics for Non-smooth evolutions

Størrelse: px
Begynne med side:

Download "Lipschitz Metrics for Non-smooth evolutions"

Transkript

1 Lipschitz Metrics for Non-smooth evolutions Alberto Bressan Department of Mathematics, Penn State University Alberto Bressan (Penn State) Nonsmooth evolutions 1 / 36

2 Well-posedness for evolution equations d u(t) = A u(t) dt d dt u(t) v(t) κ u(t) v(t) (P1) = u(t) v(t) e κt u(0) v(0) (P) How can we prove well-posedness of the Cauchy problem if (P1) fails? Construct some other weighted distance d (, ) for which (P1) or (P) hold Alberto Bressan (Penn State) Nonsmooth evolutions / 36

3 Toy model 1: A discontinuous O.D.E. ẋ = f () = { 1 if < 0, if 0, 1 (t) (t) 1 (0) (0) The flow is an isometry w.r.t. the weighted distance d (, y) = y if, y 0 y if, y 0 + y if < 0 < y (Similar to hyperbolic systems of conservation laws) Alberto Bressan (Penn State) Nonsmooth evolutions 3 / 36

4 (t) 1 (t) (t) 1 (t) ε ε ε t ε t Alberto Bressan (Penn State) Nonsmooth evolutions 4 / 36

5 Toy model ẋ = (1) Definition: a solution is admissible iff it is strictly increasing For every initial data (0) = 0, the Cauchy problem has a unique admissible solution, depending continuously on the initial data The estimates (P1)-(P) both fail, for the usual distance d(, y) = y The flow is an isometry w.r.t. the weighted distance d (, y) = y 1 ds s (Similar to Hunter-Saton, Camassa-Holm, variational wave equation...) Alberto Bressan (Penn State) Nonsmooth evolutions 5 / 36

6 An error estimate Theorem. Let S : X [0, [ X be a Lipschitz semigroup on a metric space (X ; d) satisfying d(s tu, S sv) L d(u, v) + L t s u, v X, t, s [0, T ] Then, for every Lipschitz continuous map w : [0, T ] X one has ( ) ( ) T d w(t + h), S h w(t) d w(t ), S w(0) L lim inf T 0 h 0+ h dt = L T 0 [instantaneous error rate at time t] dt w(t) w(t+h) w(t) S h w(t) S w(t+h) T t h S w(t) T t S w(0) T w(0) Alberto Bressan (Penn State) Nonsmooth evolutions 6 / 36

7 Riemann distance Length of a path γ : [0, 1] M on a Riemann manifold M γ(s) γ (s) b = γ (1) γ = 1 g ij (γ(s)) γ i (s) γ j (s) ds 0 ij a = γ (0) g = g ij = Riemann tensor d (a, b) = { } inf γ ; γ(0) = a, γ(1) = b Toy problem 1: g() = { 1 if < 0 1/ if > 0 Toy problem : g() = 1 Alberto Bressan (Penn State) Nonsmooth evolutions 7 / 36

8 Finsler metrics Weighted length of a path γ : [0, 1] M in an infinite dimensional manifold: γ(s) b = γ (1) γ = 1 0 γ(s) γ(s) ds a = γ (0) γ (s) T u = tangent space at u M is a Banach space with norm u. For each s [0, 1], the vector γ(s) T γ(s) has norm γ(s) γ(s) Finsler distance = length of shortest path { } d (a, b) = inf γ ; γ(0) = a, γ(1) = b Alberto Bressan (Penn State) Nonsmooth evolutions 8 / 36

9 Hyperbolic Systems of Conservation Laws u t + f (u) = 0 u = (u 1,..., u n ) R n conserved quantities f = (f 1,..., f n ) : R n R n flues u t + A(u)u = 0 A(u) = Df (u) STRICTLY HYPERBOLIC: each matri A(u) has real distinct eigenvalues λ 1 (u) < λ (u) < < λ n (u) a basis of eigenvectors r 1 (u),..., r n (u) Alberto Bressan (Penn State) Nonsmooth evolutions 9 / 36

10 (P1) d u(t) ũ(t) L 1 κ u(t) ũ(t) L 1 FAILS! dt shocks in u shocks in u ~ t τ+ h τ u ~ u L 1 τ τ+h t (P3) u(t) ũ(t) L 1 C u(t) ũ(t) L 1 HOLDS for solutions with small total variation Alberto Bressan (Penn State) Nonsmooth evolutions 10 / 36

11 A space of generalized tangent vectors εv εξ α u ε u α + α εξ α u piecewise Lipschitz with jumps at points 1 < < < N First order perturbation: u ε () = u() + εv() [u( α+) u( α )] χ [α, α+εξ α] + [u( α+) u( α )] χ [α+εξα, ξ α] ξ α>0 ξ α<0 Tangent vector: (v ; ξ 1,..., ξ n ) T u = L 1 (R) R N v = vertical displacement, ξ α = shift in the jump at α Alberto Bressan (Penn State) Nonsmooth evolutions 11 / 36

12 A weigthed metric on the tangent space εv εξ α u ε u α + α εξ α Standard ( L 1 ) norm on tangent vectors Weighted norm: (v ; ξ 1,..., ξ N ) =. v L 1 +. n (v ; ξ 1,..., ξ n) = i=1 N u( α+) u( α ) ξ α. α=1 W u i () v i () d + v i = i-th component of v along a basis of eigenvectors r 1(u),..., r n(u) N Wk u α () u( α+) u( α ) ξ α. α=1 Assume: u has a shock at α in the family k α Alberto Bressan (Penn State) Nonsmooth evolutions 1 / 36

13 W u i () = weight given to an i-wave in u( ) at W u i () = 1 + κ 1 A i () + κ Q A i () = total strengths of all waves approaching an i-wave at Q = Glimm interaction potential, 1 << κ 1 << κ Main steps in the analysis: derive a linearized evolution equation for a tangent vector (v, ξ) d (assuming enough regularity) prove that (v(t), ξ(t)) 0 dt u(t) conclude that the semigroup generated by the hyperbolic system of conservation laws is contractive w.r.t. the equivalent distance d (u, ũ) = inf{ γ ; γ(0) = u, γ(1) = ũ} Alberto Bressan (Penn State) Nonsmooth evolutions 13 / 36

14 u(0) ~ w (0) θ u (0) u(0) θ u(t) ~ γ t u(t) θ w (t) u ~ (T) u(t) w (T) θ θ u (T) d Assume dt (v, ξ)(t) u(t) 0 for every solution u( ) and every corresponding tangent vector (v, ξ). Let γ t : θ u θ (t) be a path in L 1, with tangent vectors d dθ uθ (t) = w θ (t) = (v θ (t), ξ θ (t)) T u(t) Then the path length γ t = 1 0 (v θ, ξ θ )(t) u θ (t) dθ does not increase in time Alberto Bressan (Penn State) Nonsmooth evolutions 14 / 36

15 The Camassa-Holm Equation ( ) u (CH) u t + + P = 0 P =. 1 ( ) e u + u ( ) u t ( ) u u P = u P ( ) ( ) u uu + t u3 = u P 3 E. = 1 [u (t, ) + u (t, ) ] d = const. Natural domain: u(t, ) H 1 (R) Alberto Bressan (Penn State) Nonsmooth evolutions 15 / 36

16 Multi-peakons solutions u(t, ) = n p i (t) e q i (t) i=1 u(0) u(t) q q 1 (t < T) u(t) u( τ) ( τ > T) solutions can lose regularity: u but remain Hölder continuous: u(t, ) H 1 C Alberto Bressan (Penn State) Nonsmooth evolutions 16 / 36

17 Continuous dependence? ( ) u Camassa-Holm : u t + + P = 0 d u(t) v(t) L u(t) v(t) dt FAILS! u(t) v(t) C u(0) v(0) FAILS! Alberto Bressan (Penn State) Nonsmooth evolutions 17 / 36

18 Eample: take v(t, ) = u(t ε, ) u(0) u(t) q q 1 (t < T) u(t) u( τ) ( τ > T) E(t) = [ u (t, ) + u (t, ) ] d constant in time (ecept at t = T ) Alberto Bressan (Penn State) Nonsmooth evolutions 18 / 36

19 As t T, u(t) and u(t ε) become orthogonal in H 1 u(t ε) u(t) H 1 u H 1 u(t ε) u(t) u (t) u (t ε) Alberto Bressan (Penn State) Nonsmooth evolutions 19 / 36

20 Equivalent form of the Camassa-Holm equation (A.B. - Adrian Constantin, ARMA 007) (148 citations!?) Energy variable: ξ R, constant along characteristics t y(t, ξ) y t = u(t, y) y(0, ξ) = ȳ(ξ) ȳ(ξ) 0 (1 + ū ) d = ξ U = u t θ = arctan u T P q = (1 + u ) y ξ Alberto Bressan (Penn State) Nonsmooth evolutions 0 / 36

21 Conservative Solutions u t + (u /) + P = 0 System of ODEs with non-local source terms U = P t θ = (U P) cos θ t 1 θ sin q t = (U 1 ) P sin θ q U(0, ξ) = ū ( ȳ(ξ) ) θ(0, ξ) = arctan ū (ȳ(ξ) ) q(0, ξ) = 1 P(t, ξ) = 1 { ep } ξ θ(s) cos q(s) ds ξ [ ] U (ξ ) cos θ(ξ ) + 1 sin θ(ξ ) q(ξ ) dξ. The global conservative solution can be obtained as the unique fied point of a contractive transformation Alberto Bressan (Penn State) Nonsmooth evolutions 1 / 36

22 Note: The previous construction yields a family of solutions such that ū n ū H 1 0 = u n (t) u(t) L 0 This is not enough to derive error formulas for approimate solutions, or prove uniqueness Alberto Bressan (Penn State) Nonsmooth evolutions / 36

23 A distance functional defined by an Optimal Transport problem for conservative, spatially periodic solutions to Camassa-Holm equation (A.B. and M. Fonte Methods & Applications of Analysis, 005) X = R R T T = R/ZZ Given u H 1 (R), Graph(u) = define { (, u(), arctan u () ) ; R} X Alberto Bressan (Penn State) Nonsmooth evolutions 3 / 36

24 µ u = measure supported on Graph(u), having density 1 + u w.r.t. Lebesgue measure A (, u(), arctan u ()) B a b µ u (A) = b a ( 1 + u () ) d µ u (B) = 0 Alberto Bressan (Penn State) Nonsmooth evolutions 4 / 36

25 A Constrained Optimal Transportation Problem Given u, v H 1, consider the corresponding measures µ u, µ v Let ψ : R R be an absolutely continuous, increasing map. Move the mass µ u to µ v, from to ψ(). Transportation cost: J ψ (u, v) = 1 0 [distance] [transported mass] [ecess mass] v u +d ψ() ψ () + ψ ()d Alberto Bressan (Penn State) Nonsmooth evolutions 5 / 36

26 v u +d ψ() ψ () + ψ ()d total ecess mass: (1 + u ()) (1 + v (ψ()))ψ () d Distance functional: J(u, v) = inf ψ Jψ (u, v) u, v H 1 Key inequality: d dt J( u(t), v(t) ) κ J ( u(t), v(t) ) = uniqueness κ is uniformly bounded on bounded subsets of H 1. Alberto Bressan (Penn State) Nonsmooth evolutions 6 / 36

27 Why a transportation distance is better? u(t) v(t) u(0) v(0) Alberto Bressan (Penn State) Nonsmooth evolutions 7 / 36

28 The Hunter-Saton Equation ( ) u u t + = 1 4 ( ) u d, u(0, ) = ū(). u (t, ) L (square integrable derivative) Possible gradient catastrophe: (u ) t + u(u ) = u Smooth solutions conserve energy: (u ) t + [ u(u ) ] = 0 Alberto Bressan (Penn State) Nonsmooth evolutions 8 / 36

29 Removing a singularity (u ) t + u(u ) = u, θ. = arctan u d dt θ(t, (t)) = θ t + uθ = u 1 + u = cos θ 1 θ = arctan u u = tan θ u 1 + u = tan (θ/) 1 + tan (θ/) = θ sin = 1 cos θ Alberto Bressan (Penn State) Nonsmooth evolutions 9 / 36

30 Odd solutions to Hunter-Saton equation Burgers Hunter Saton u t + (u /) = 1 0 u d Alberto Bressan (Penn State) Nonsmooth evolutions 30 / 36

31 Dissipative solution: Conservative solution: (possibly as a singular measure) 0 u d decreasing in time 0 u d constant in time u 0 u 0 u dissipative u conservative 0 Alberto Bressan (Penn State) Nonsmooth evolutions 31 / 36

32 Relation with the Camassa-Holm Equation ( ) u u t + + P = 0 P = 1 ( ) e u + u ( e ) Leading approimation = + ( ) u u t + = 1 4 ( ) u d + φ φ = 0 = Hunter-Saton equation Alberto Bressan (Penn State) Nonsmooth evolutions 3 / 36

33 A Distance Functional for the Hunter-Saton Equation u v +d ψ() ψ () + ψ ()d ψ : R R smooth, increasing determines a transport plan of the measure u onto the measure v, on the graphs of the two functions (, u()) (ψ(), v(ψ())) d (u, v) = minimum cost among all transportation plans Alberto Bressan (Penn State) Nonsmooth evolutions 33 / 36

34 Transport distance between mass distributions immersed in a fluid Assume: velocity of fluid is Lipschitz continuous with Lipschitz constant ω t=t µ µ µ t=0 µ d (µ t, µ t ) e ωt d (µ 0, µ 0 ) Alberto Bressan (Penn State) Nonsmooth evolutions 34 / 36

35 Back to Hunter-Saton u t + uu = 1 0 u d, (u ) t + [ u(u ) ] = 0 u u(t,) u(t,) 1 The measure u d on the graph of the solution is transported in the -u plane horizontal speed = u vertical speed = 1 0 u d (constant for each particle) Alberto Bressan (Penn State) Nonsmooth evolutions 35 / 36

36 Estimates for the transport distance d (u(t), v(t)) e ωt d (u(0), v(0)) - valid for solutions of Hunter-Saton - similar ideas work for Camassa-Holm Alberto Bressan (Penn State) Nonsmooth evolutions 36 / 36

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

Numerical Simulation of Shock Waves and Nonlinear PDE

Numerical Simulation of Shock Waves and Nonlinear PDE Numerical Simulation of Shock Waves and Nonlinear PDE Kenneth H. Karlsen (CMA) Partial differential equations A partial differential equation (PDE for short) is an equation involving functions and their

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015 Qi-Wu-Zhang model 2D Chern insulator León Martin 19. November 2015 Motivation Repeat: Rice-Mele-model Bulk behavior Edge states Layering 2D Chern insulators Robustness of edge states Motivation topological

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

On time splitting for NLS in the semiclassical regime

On time splitting for NLS in the semiclassical regime On time splitting for NLS in the semiclassical regime Rémi Carles CNRS & Univ. Montpellier Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 21 Splitting for NLS i t u + 1 2 u = f ( u 2) u,

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Ma Flerdimensjonal Analyse Øving 1

Ma Flerdimensjonal Analyse Øving 1 Ma1203 - Flerdimensjonal Analyse Øving 1 Øistein Søvik Brukernavn: Oistes 23.01.2012 Oppgaver 10.1 6. Show that the triangle with verticies (1, 2, 3), (4, 0, 5) and (3, 6, 4) has a right angle. z y x Utifra

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00 NTNU Side 1 av 2 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 45 43 71 70 Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai 2012 09:00 13:00 Tillatte hjelpemidler:

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions J. Math. Fluid Mech. 2019 21:36 c 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00021-019-0440-7 Journal of Mathematical Fluid Mechanics On the Existence of Strong Solutions to a Fluid Structure

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Berry Phases of Boundary Gravitons

Berry Phases of Boundary Gravitons Berry Phases of Boundary Gravitons Blagoje Oblak (ETH Zurich) February 2018 Based on arxiv 1703.06142 (JHEP) Based on arxiv 1710.06883 (JHEP) Based on arxiv 1711.05753 (CQG) MOTIVATION Gravity has rich

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 45 INNFØRING I KVANTEMEKANIKK DATO: Fredag 4 desember TID: 9 5 Antall vekttall: 4 Antall sider: 5 Tillatte hjelpemidler:

Detaljer

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7 FYS2140 Kvantefysikk Løsningsforslag for Oblig 7 Oppgave 2.23 Regn ut følgende intgral a) +1 3 (x 3 3x 2 + 2x 1)δ(x + 2) dx (1) Svar: For å løse dette integralet bruker vi Dirac deltafunksjonen (se seksjon

Detaljer

On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding

On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding Nonlinear Differ. Equ. Appl. (2017) 24:37 c 2017 Springer International Publishing AG DOI 10.1007/s00030-017-0461-y Nonlinear Differential Equations and Applications NoDEA On the uniqueness of vanishing

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

Estimating Peer Similarity using. Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University

Estimating Peer Similarity using. Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University Estimating Peer Similarity using Distance of Shared Files Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University Problem Setting Peer-to-Peer (p2p) networks are used by millions for sharing content

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid : Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag SOLUTIONS Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, 2013. Tid : 09.00 13.00 Oppgave 1 a) La U R n være enhetsdisken x

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

GEF2200 Atmosfærefysikk 2017

GEF2200 Atmosfærefysikk 2017 GEF2200 Atmosfærefysikk 2017 Løsningsforslag til sett 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.18r Unsaturated air is lifted (adiabatically): The rst pair of quantities

Detaljer

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24 Level Set methods Sandra Allaart-Bruin sbruin@win.tue.nl Level Set methods p.1/24 Overview Introduction Level Set methods p.2/24 Overview Introduction Boundary Value Formulation Level Set methods p.2/24

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eam in: FYS 3120/FYS 4120 Classical mechanics and electrodynamics Day of eam: Thursday June 8, 2006 Eam hours: 3 hours, beginning at 14:30

Detaljer

H 1 -perturbations of Smooth Solutions for a Weakly Dissipative Hyperelastic-rod Wave Equation

H 1 -perturbations of Smooth Solutions for a Weakly Dissipative Hyperelastic-rod Wave Equation Mediterr. j. math. 3 006), 419 43 1660-5446/040419-14, DOI 10.1007/s00009-006-0088-4 c 006 Birkhäuser Verlag Basel/Switzerland Mediterranean Journal of Mathematics H 1 -perturbations of Smooth Solutions

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

Geodesic flow on the diffeomorphism group of the circle

Geodesic flow on the diffeomorphism group of the circle Comment. Math. Helv. 78 (2003) 787 804 0010-2571/03/040787-18 DOI 10.1007/s00014-003-0785-6 c 2003 Birhäuser Verlag, Basel Commentarii Mathematici Helvetici Geodesic flow on the diffeomorphism group of

Detaljer

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014) Satellite Stereo Imagery Synthetic Aperture Radar Johnson et al., Geosphere (2014) Non-regular sampling Missing data due to lack of correlation, shadows, water, Potentially 3D as opposed to purely 2D (i.e.

Detaljer

EKSAMENSOPPGAVE I FAG TKP 4105

EKSAMENSOPPGAVE I FAG TKP 4105 EKSAMENSOPPGAVE I FAG TKP 4105 Faglig kontakt under eksamen: Sigurd Skogestad Tlf: 913 71669 (May-Britt Hägg Tlf: 930 80834) Eksamensdato: 08.12.11 Eksamenstid: 09:00 13:00 7,5 studiepoeng Tillatte hjelpemidler:

Detaljer

Solution for INF3480 exam spring 2012

Solution for INF3480 exam spring 2012 Solution for INF3480 exam spring 0 June 6, 0 Exercise Only in Norwegian a Hvis du har en robot hvor ikke den dynamiske modellen er kjent eller spesielt vanskelig å utlede eksakt, kan en metode liknende

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 Kvantefysikk Tirsdag 13. desember 2005 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 Kvantefysikk Tirsdag 13. desember 2005 kl ENGLISH TEXT (and NORWEGIAN) Page 1 of 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I TFY450

Detaljer

NO X -chemistry modeling for coal/biomass CFD

NO X -chemistry modeling for coal/biomass CFD NO X -chemistry modeling for coal/biomass CFD Jesper Møller Pedersen 1, Larry Baxter 2, Søren Knudsen Kær 3, Peter Glarborg 4, Søren Lovmand Hvid 1 1 DONG Energy, Denmark 2 BYU, USA 3 AAU, Denmark 4 DTU,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University Energy Dissipation in Hybrid Stars Sophia Han Washington University Texas Symposium December 8-13, 2013 Mark Alford, Sophia Han, Kai Schwenzer 1 Context Nuclear Matter Crust Quark Matter Core -Sharp interface:

Detaljer

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai 2008 09:00 13:00 Tillatte

Detaljer

On multigrid methods for the CahnHilliard equation with obstacle potential

On multigrid methods for the CahnHilliard equation with obstacle potential On multigrid methods for the CahnHilliard equation with obstacle potential ubomír Ba as Department of Mathematics Imperial College London Joint work with Robert Nürnberg http://www.ma.ic.ac.uk/~lubo lubo@imperial.ac.uk

Detaljer

Ma Flerdimensjonal Analyse Øving 11

Ma Flerdimensjonal Analyse Øving 11 Ma3 - Flerdimensjonal Analyse Øving Øistein Søvik 7.3. Oppgaver 5.3 5. Find the moment of inertie about the -axis. Eg the value of δ x + y ds, for a wire of constant density δ lying along the curve : r

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Faglig kontakt under eksamen: Reidar Kristoffersen, tlf.: 73 59 35 67 EKSAMEN I TEP 4110 FUIDMEKANIKK Bokmål/Nnorsk/English

Detaljer

On Capacity Planning for Minimum Vulnerability

On Capacity Planning for Minimum Vulnerability On Capacity Planning for Minimum Vulnerability Alireza Bigdeli Ali Tizghadam Alberto Leon-Garcia University of Toronto DRCN - October 2011 Kakow - Poland 1 Outline Introduction Network Criticality and

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST5220/9420 Kosmologi II Eksamensdag: Fredag 11. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 4 sider. Vedlegg:

Detaljer

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains J. Math. Fluid Mech. 19 (2017), 375 422 c 2016 Springer International Publishing 1422-6928/17/030375-48 DOI 10.1007/s00021-016-0289-y Journal of Mathematical Fluid Mechanics Solvability and Regularity

Detaljer

Namma Kalvi Mathematics (Sample Question Papers only for Practice)

Namma Kalvi     Mathematics (Sample Question Papers only for Practice) th STD. Time : ½ hours Namma Kalvi www.nammakalvi.org Sample Question Paper Mathematics (Sample Question Papers only for Practice) Kind Attention to the Students From this year onwards, blue print system

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

PSi Apollo. Technical Presentation

PSi Apollo. Technical Presentation PSi Apollo Spreader Control & Mapping System Technical Presentation Part 1 System Architecture PSi Apollo System Architecture PSi Customer label On/Off switch Integral SD card reader/writer MENU key Typical

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS English Postponed exam: ECON2915 Economic growth Date of exam: 11.12.2014 Time for exam: 09:00 a.m. 12:00 noon The problem set covers 4 pages Resources allowed:

Detaljer

EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS

EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS NTNU Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS Faglig kontakt under eksamen: Snorre Lindset,

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

Flows and Critical Points

Flows and Critical Points Nonlinear differ. equ. appl. 15 (2008), 495 509 c 2008 Birkhäuser Verlag Basel/Switzerland 1021-9722/040495-15 published online 26 November 2008 DOI 10.1007/s00030-008-7031-2 Nonlinear Differential Equations

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 8. juni 2012 Tid for eksamen: 9.00 13.00 Oppgavesettet

Detaljer

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Høgskolen i Buskerud. Finn Haugen (finn@techteach.no). Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Tid: 7. april 28. Varighet 4 timer. Vekt i sluttkarakteren: 3%. Hjelpemidler: Ingen trykte eller

Detaljer

(ii) x = 0or 4. (ix) x = or 3. (xii) x = or. (vi) x = 4. (xiv) x = Exercise (i) ( x 3) 8. (iii) ( 3q. (iii) 3( x + 2) 16.

(ii) x = 0or 4. (ix) x = or 3. (xii) x = or. (vi) x = 4. (xiv) x = Exercise (i) ( x 3) 8. (iii) ( 3q. (iii) 3( x + 2) 16. Cambridge International A and AS Level Mathematics Pure Mathematics Practice Book Universit of Cambridge International Eaminations bears no responsibilit for the eample answers to questions taken from

Detaljer

Lecture Notes Mek 4320 Hydrodynamic Wave theory

Lecture Notes Mek 4320 Hydrodynamic Wave theory Lecture Notes Mek 4320 Hydrodynamic Wave theory by Bjørn Gjevik, Geir K. Pedersen and Karsten Trulsen Department of Mathematics University of Oslo Fall 2010 2 Contents 1 INTRODUCTION 5 1.1 Characteristic

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS English Exam: ECON2915 Economic Growth Date of exam: 25.11.2014 Grades will be given: 16.12.2014 Time for exam: 09.00 12.00 The problem set covers 3 pages Resources

Detaljer

Ma Flerdimensjonal Analyse Øving 6

Ma Flerdimensjonal Analyse Øving 6 Ma10 - Flerdimensjonal Analyse Øving 6 Øistein Søvik Brukernavn: Oistes 14.0.01 Oppgaver 1.1 4. Find and classify the critical points of the given functions fx, y) = x 4 + y 4 4xy Vi slipper her å sjekke

Detaljer

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 11. august :00 13:00

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 11. august :00 13:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 45 43 71 70 Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 11. august 2012 09:00 13:00 Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2915 Vekst og næringsstruktur Exam: ECON2915 - Growth and business structure Eksamensdag: Fredag 2. desember 2005 Sensur kunngjøres: 20. desember

Detaljer

Level-Rebuilt B-Trees

Level-Rebuilt B-Trees Gerth Stølting Brodal BRICS University of Aarhus Pankaj K. Agarwal Lars Arge Jeffrey S. Vitter Center for Geometric Computing Duke University August 1998 1 B-Trees Bayer, McCreight 1972 Level 2 Level 1

Detaljer

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College The behavior of the reindeer herd - the role of the males Ole Isak Eira Masters student Arctic agriculture and environmental management University of Tromsø Sami University College Masters student at Department

Detaljer

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning INF5820 Natural Language Processing - NLP H2009 jtl@ifi.uio.no HMM Tagging INF5830 Lecture 3 Sep. 7 2009 Today More simple statistics, J&M sec 4.2: Product rule, Chain rule Notation, Stochastic variable

Detaljer

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016 Micky East York Semigroup University of York, 5 Aug, 206 Joint work with Igor Dolinka and Bob Gray 2 Joint work with Igor Dolinka and Bob Gray 3 Joint work with Igor Dolinka and Bob Gray 4 Any questions?

Detaljer