Namma Kalvi Mathematics (Sample Question Papers only for Practice)
|
|
- Felix Iversen
- 5 år siden
- Visninger:
Transkript
1 th STD. Time : ½ hours Namma Kalvi Sample Question Paper Mathematics (Sample Question Papers only for Practice) Kind Attention to the Students From this year onwards, blue print system has been abolished. Please note that questions will be framed from IN-TEXT portions ALSO. Written Eam Marks : 9 Marks Approimately % of the questions will be asked from IN-TEXT portions. These questions will be based on Reasoning and Understanding of the lessons. Further, Creative and Higher Order Thinking Skills questions will also be asked. It requires the students to clearly understand the lessons. So the students have to think and answer such questions. It is instructed that henceforth if any questions are asked from out of syllabus, grace marks will not be given. Term Test, Revision Test and Model Eam will be conducted based on the above pattern only. Concentrating only on the book-back questions and/or previous year questions, henceforth, may not ensure to score % marks. Also note that the answers must be written either in blue ink or in black ink. Avoid using both the colour inks to answer the questions. For MCQs, the answers should be written in full. Simply writing (a) or (b) etc. will not get full marks. You have to write (a) or (b) etc., along with the answer given in the options. 7
2 th STD. Sura s Model Question Paper Time :. Hours Mathematics Marks : 9 Section - I Note : (i) Answer all the questions. [ ]. If A (ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer. and B and (A B) A B, then the values of a and b are () a, b () a, b () a, b () a, b. If A to a y and if y, then det (A A T ) is equal a () (a ) () (a ) () a () (a ). If A is skew-symmetric of order n and C is a column matri of order n, then C T AC is () an identity matri of order n () an identity matri of order () a zero matri of order () an identity matri of order. The vectors a b, b c, c a are () parallel to each other () unit vectors () mutually perpendicular vectors () coplanar vectors. 5. Two vertices of a triangle have position vectors i j k and i j k. If the position vector of the centroid is i j k, then the position vector of the third verte is () i j 9k () i j 6k () i j 6k () i j 6k between them is 6 and their scalar product is then a is () () () 7 () 7. The derivative of f () at is () 6 () 6 () does not eist () 8. If the derivative of (a 5)e at is, then the value of a is () 8 () () 5 () 9. If f (), then f (f()) at is () 8 () () () 5. If f : R Ris defined by f() for R, then the lim f is equal to () () () () e sin. lim is () () () (). If lim sin p, then the value of p is tan () 6 () 9 () (). If f ()d g () c,then f () g ()d () f d ò ò () f gd () f ( ) gd () ( g ) d. If d k c, then the value of k is () log () log () - () log log 6. If a and b having same magnitude and angle
3 Std - Mathematics Sura s Model Question Paper If f e d e ( ) c, then f () is. Let a and b be the position vectors of the points () c () () 6 c () c c 6. The gradient (slope) of a curve at any point (, y) is. If the curve passes through the point (, 7), then the equation of the curve is, () y () y () y () y 6 cos 7. tan d is cos () c () c () c () c 8. There are three events A, B and C of which one and only one can happen. If the odds are 7 to against A and 5 to against B, then odds against C is () : 65 () 65: () : 88 () 88: 9. If A and B are two events such that P(A)., P(B).8 and P(B/A).6, then P( A B) is ().96 (). ().56 ().66. A man has fifty rupee notes, hundred rupees notes and 6 five hundred rupees notes in his pocket. If notes are taken at random, what are the odds in favour of both notes being of hundred rupee denomination? () : () : () : () : (i) (ii) Section - II Answer any SEVEN questions. Question number is compulsory. 7. Determine the value of y if y y y 6 a. If A, then compute A. A and B. Prove that the position vectors of the points which trisects the line segment AB are a b b a and.. If PO OQ QO OR, prove that the points P, Q, R are collinear. 5. Evaluate : lim sin. 6. If the limit does not eist eplain why? lim( ) 5 y 7. Find the derivatives from the left and from the right at (if they eist) of the following functions. Are the functions differentiable at? f (). 8. Show that the following functions are not differentiable at the indicated value of, <. f ;, 6 9. cos( 5 ) 9e. 6. An eperiment has the four possible mutually eclusive and ehaustive outcomes A, B, C, and D. Check whether the following assignments of probability are permissible. (i) P(A).5, P(B)., P(C)., P(D). (ii) P(A)., P(B).8, P(C). 6, P (D). (iii) P(A) 5, P(B) 5, P(C) 5, P(D) 5
4 5 Std - Mathematics Sura s Model Question Paper (i) (ii) Section - III Answer any SEVEN questions. Question number is compulsory. 7. If A, show that A is a unit matri. a b. Give your own eamples of matrices satisfying the following conditions in each case: (i) A and B such that AB BA. (ii) and B such that AB BA, A and B. (iii) A and B such that AB and BA.. If D and E are the midpoints of the sides AB and AC of a triangle ABC, prove that BE DC BC.. Verify whether the following ratios are direction cosines of some vector or not. (i),, (ii),, (iii), 5 5 5, 5. lim y tan sec 7. y tan q (sin q cos q) 8. If f 5 and f (), find f (). 9. If f 9 6 and f (), find f ().. An integer is chosen at random from the first positive integers. What is the probability that the integer chosen is a prime or multiple of 8? Section - IV Answer all questions (a) If A and such that (A I)(A I), find the value of. (b) Give your own eamples of matrices satisfying the following conditions in each case: (i) A and B such that AB BA. (ii) A and B such that AB BA, A and B. (iii) A and B such that AB and BA.. (a) Find the direction cosines and direction ratios for the following vectors. (i) i j 8k (ii) i j k (iii) j (iv) 5i j 8k (v) i k j (vi) i k (b) Show that the points whose position vectors i 5 j k, j k, i 9 j k and i j k are coplanar.. (a) Eamine the continuity of the following: (i) sin (ii) cos (iii) e tan (iv) e sin (v). ln (vi) 6 (vii) (viii) (i) () cot tan (b) Find the points of discontinuity of the function f, where 5, if (i) f() 5, if >, if (ii) f (), if <, if (iii) f(), if > π sin, (iv) f () π π cos, < <. (a) If f(), test whether f ( ) eists. (b) Eamine the differentiability of functions in by drawing the diagrams. (i) sin (ii) cos.
5 Std - Mathematics Sura s Model Question Paper (a) A ball is thrown vertically upward from the ground with an initial velocity of 9. m/sec. If the only force considered is that attributed to the acceleration due to gravity, find (i) how long will it take for the ball to strike the ground? (ii) the speed with which will it strike the ground? and (iii) how high the ball will rise? (b) A wound is healing in such a way that t days since Sunday the area of the wound has been decreasing at a rate of cm per day. If on Monday ( t ) the area of the wound was cm (i) What was the area of the wound on Sunday? (ii) What is the anticipated area of the wound on Thursday if it continues to heal at the same rate? 6. (a) (i) The odds that the event A occurs is 5 to 7, find P(A). (ii) Suppose P(B). Epress the odds that the 5 event B occurs (b) The probability that a new railway bridge will get an award for its design is.8, the probability that it will get an award for the efficient use of materials is.6, and that it will get both awards is.. What is the probability, that (i) it will get at least one of the two awards ( ii) it will get only one of the awards. 7. (a) The probability that a car being filled with petrol will also need an oil change is.; the probability that it needs a new oil filter is.; and the probability that both the oil and filter need changing is.5. (i) If the oil had to be changed, what is the probability that a new oil filter is needed? (ii) If a new oil filter is needed, what is the probability that the oil has to be changed? (b) An advertising eecutive is studying television viewing habits of married men and women during prime time hours. Based on the past viewing records he has determined that during prime time wives are watching television 6% of the time. It has also been determined that when the wife is watching television, % of the time the husband is also watching. When the wife is not watching the television, % of the time the husband is watching the television. Find the probability that (i) the husband is watching the television during the prime time of television (ii) if the husband is watching the television, the wife is also watching the television.. () a, b SECTION - I. () (a ). () a zero matri of order. () coplanar vectors. 5. () i j 9k 6. () 7. () 8. () 9. (). (). (). (). () f d. () - log 5. () c 6. () y 7. () c 8. () 65: 9. ().56. () : SECTION - II y 7 7y. Solution : Given 5 7 y 6 Equating the corresponding entries on both sides we get, y 7 [Equating a ]... () 6 [Equating a ]... () From (), Substituting in () we get, y 7 y 7 y \ y 5
6 5 Std - Mathematics Sura s Model Question Paper a. Solution : Given A A a a a a a A A.A a a A a a A a. Solution : a b A B P Q Let a and b be the position vectors of the points A and B. OA a and OB b. Let P divides the line segment AB in the ratio : and Q divides the line segment AB in the ratio : 5. Solution : f () Let f() sin \ OP.( OB) ( OA) ( b) ( a) b a and OQ ( OB) ( OA) b a a b Hence, the required position vectors are b a and a b.. Solution : Given PO OQ QO OR PQ QR [By triangle law of addition] PQ QR and Q is a common point. Hence, the points P, Q, R are collinear f () sin.. sin (. )..998 lim sin sin.. sin (. ).999. sin.. sin (. ) sin sin sin...998
7 Std - Mathematics Sura s Model Question Paper Solution : lim 5 ( ) y At, the value of the curve on y-ais is. \ lim ( ) 7. Solution : Given f() f ( ) f f () lim ( ) lim \f ( ) \f ( ) f f () lim \f ( ) Since the one sided derivatives f ( ) and f ( ) are not equal, f () does not eist. \ f is not differentiable at., < 8. Solution : f ;, \f ( ) f f lim f f ( ) \f ( ) [f() ]... () From () and (), f ( ) f ( ) Hence f() is not differentiable at. 9. Solution : cos( 5 ) 9e cos( 5 d ) 9 e d 5. sin... () f f ( ) ( ) 6- d d 6 d 6 9. e - 6. log c 6 sin 5 e - -6 log 6 c. Solution : (i) Given P(A).5, P(B)., P(C)., P(D). P (A), P (B), P(C) and P(D) Also, P(S) P(A) P(B) P(C) P(D).5... The assignment of probability is permissible. (ii) Given P(A)., P(B).8, P(C).6 and P(D). Also, P(S) The assignment of probability is not permissible. (iiii) Since P (C) is negative, the assignment 5 of probability is not permissible
8 5 Std - Mathematics Sura s Model Question Paper Solution : SECTION - III Given A a b A A.A a b a b a a b b \ A is a unit matri.. Solution : (i) Let A AB BA 5 and B \ AB ¹ BA (ii) Let A and B AB BA Hence AB BA and A ¹, B ¹. (iii) Let A AB BA and B \ AB and BA ¹. Solution : Let the position vectors of the vertices of the DABC be a, b and c respectively. OA a, OB b and OC c D A a B C b c Since D is the mid-point of the side AB, E
9 Std - Mathematics Sura s Model Question Paper OD a b and E is the mid-point of the AC... () OE a c... () BE OE OB a c b a c b DC OC OD a b c c a b a c b c a b \ BE DC a c b c a b c b ( c b) ( OC OB ) \ BE DC BC Hence proved.. Solution : (i) Given ratios are 5, 5 and 5. Let the ratios are l \ l m n 5, m 5, n [From ()] Hence, the given ratios are not the direction cosines of any vector. (ii) Let l \ l m n, m and n Hence, the given ratios are direction cosines of some vector. (iii) Let l, m, n \ l m n ¹ Hence, the given ratios are not the direction cosines of any vector. 5. Solution : lim 5 5 Multiplying and dividing by we get, lim 5 5 ( ) 5 ( 5) ( ) 9 5 ( 5) 5 5 ( 5) Solution : tan Given y sec sec d d. tan tan sec dy ( ). d d d sec sec ( sec ) tan sec tan sec sec sec tan sec tan sec
10 56 Std - Mathematics Sura s Model Question Paper sec ( sec tan ) sec tan () sec sec sec tan sec tan sec sec ( tan ) tan sec sec tan sin cos sec sec cos dy cos sin. cos d 7. Solution :Given y tan q (sin q cos q) dy d tan θ d d. ( sin θ cos θ) sin θ cos θ. tan θ dθ dθ tan θ( cos θ sin θ) ( sin θ cos θ) sec θ sin θ ( cos θ sin θ) sin θ cos θ cos θ cos θ sin θ sin θ cos θ sin θ cos θ cos θ cos θ sin θ sin θ sin θ. cos θ cos θ cos θ cos θ sin θ sin θ tan θ. sec θ cos θ cos θ sin θ tan θ sec θ. sin θ cos θ cos θ dy sin q cos q tan q sec q. d 8. Solution :Given f () 5and f() Integrating on both sides with respect to we get, f d ( 5) d f() d 5 d 5 c f() 5 c... () Given f() f() () 5() c 8 c c c Substituting C in () we get, f() 5 9. Solution : Given f () 9 6 and f() Integrating on both sides we get, f d 9 6 d f () 9 d6 d 9 f () - 6 c c... () Since f() f() () () c c Substituting c. Solution : - in () we get, f () f () ( Let S {,,... } n (S) Let A be the event of getting a prime number and B be the event of getting multiple of 8. A {,, 5, 7,,, 7,9,, 9,, 7,,, 7, 5, 59, 6, 67, 7, 7, 79, 8, 89, 97} n (A) 5 n (B) B {8, 6,,,, 8, 56, 6, 7, 8, 88, 96} n (A or B) n (A) n (B) 5 7 P(A or B) P( A) P( B) 7 n( S) [ A and B are mutually eclusive events, A B ϕ] SECTION - IV.(a) Solution : Given A Also, (A I) (A I) \ A I
11 Std - Mathematics Sura s Model Question Paper A I 9 9 \(A I) (A I) 9 9 ( ) ( ) ( 9 ) Equating the corresponding entries we get, or or 7 or (b) Solution : (i) Let A Since alone satisfies the equation (A I) (A I), we get. AB BA 5 and B \ AB ¹ BA (ii) Let A AB BA and B Hence AB BA and A ¹, B ¹. (iii) Let A AB and B BA \ AB and BA ¹.(a) Solution : (i) Given vector is i j 8k The direction ratios of i j 8k are,, 8. y z 8 Hence, its direction cosines are ,,
12 58 Std - Mathematics Sura s Model Question Paper (ii) Give vector is i j k (iii) The direction ratios of i j k are,,. r y z Hence, its direction cosines are,, Given vector is j The direction ratios of j are,,. y z Hence, its direction cosines are,,,,. (iv) The given vector is 5i j8k The direction ratios are 5,, 8. ( ) r y z Hence, the direction cosines are 5 8,, (v) The given vector is i k j i jk The direction ratios are,,. r y z Hence, the direction cosines are (vi) The given vector is i k The direction ratios are,,.,, y z Hence, the direction cosines are,,,, (b) Solution : Let the position vectors of the given vector be OA i 5 j k OB jk OC i 9 j k and OD i j k Let a b and c Also, let a AB OB OA ( jk) ( i 5 j k ) i6 j k AC OC OA ( i 9 j k ) ( i 5 j k ) i j k AD OD OA ( i j k ) ( i 5 j k ) 8i j k s b t c i6 j k s( i j k ) t( 8i j k ) i6 j k ( s 8t) i (s t) j (s t) k Equating the like components on both sides, we get s 8t... () 6 s t... () s t... () () 6 s t () 6 s t Adding, t t Substituting t in () we get, s 8 s 6 s 6 6 Substituting t, and s in () we get, which satisfies equation ().
13 Std - Mathematics Sura s Model Question Paper Thus, one vector is the linear combination of other two vectors. Hence, the given points are co-planar..(a) Solution : (i) Let f () sin (ii) (iii) Since the algebraic function is continuous for all R and the circular function sin is continuous for all Î R. f () sin is continuous for all R. Let f() cos The algebraic function and the circular function cos is continuous for all R. f() cos is continuous for all Î R. Let f() e tan We know the eponential function e is continuous for all R. But tan is not continuous at odd multiples of π. \ f() e tan is continuous for all R (n ) π, n Z. (iv) Let f() e (v) (vi) Since the eponential function e and algebraic function ( ) is continuous for all R. f() e is continuous for all R. Let f(). In() The algebraic function is continuous for all R, but the logarithmic curve eists only for positive values of f() is continuous in (, ). Let f() sin f() does not eist for. But sin is continuous for all R. f() is continuous only in R {} (vii) Let f() 6 The algebraic function is continuous for all R. Since the curve f() does not eist for, the given function is continuous only in R { }. (viii) Let f() The modulus function is continuous for all R. \ f() is continuous for all R. (i) Let f() () The modules function is continuous for all R. But the given curve does not eist for. \ f() is continuous in R { }. Let f() cot tan cot is not continuous in multiples of p and tan is not continuous in (n ) π. π π \ f() cot tan is not continuous in ( n ), f() is continuous in R nπ, n Z. (b) Solution : 5, if (i) Given f() 5, if > lim f lim ( 5 ) () 5 7 lim f lim ( 5 ) 5 7 Since the lim f f ¹ lim f() is not continuous at. (ii) Given f() lim f lim f, if, if < Also f() \ lim f f f () \ f() is continuous in R., if (iii) Let f (), if > lim f 8 5 lim f 5 Also, f() 8 5 \ lim f f \ f () is continuous in R. f() 5
14 6 Std - Mathematics Sura s Model Question Paper π sin, (iv) f() π π cos, < < lim f cos cos π π π lim f sin sin π π π π Also, f sin π π \ lim f f f π π \ f() is continuous in, π.(a) Solution :Given f() \ f ( ) f f f f ( ) ( ) ( ) lim ( ) ( ) ( ) lim \ f ( ) ( ) ( )... () f f ( ) ( ) ( ) ( ) ( ) ( ) [ ] [ ]99... () From () and (), f () is not differentiable at f () does not eist. (b) Solution : (i) Let f() sin when, f()! sin! π π π π π π 5π 5 π π π f() 5π π π π π π π π π y y π The curve f() sin has got vertical tangents at π, π, π, π etc. \ f() sin is not differentiable at nπ, n Z. (ii)let f() cos when, f() cos π π π π π π 5π 5π f() 5π π π π π π π π π y f() cos has got vertical tangents at π, π, π, π, 5π, 5π etc. π \ f() cos is not differentiable at (n ), n Z. 5.(a) Solution : Given initial velocity u 9. m/sec. y Distance ut gt when g 9.8 m/sec 9.t (9.8) t \ 9.t.9 t... () (i) For the ball to strike the ground, 9.t.9t 9.t.9t 9..9t [ t ¹ ] 5π π
15 Std - Mathematics Sura s Model Question Paper t \ t 8 sec. (ii) To find the speed with which will strike the ground to find velocity at t 8 sec. we know 9.t.9t v when t d 9..9 (t) dt 8 sec. v (8) Since velocity cannot be negative, m/sec. v (iii) At maimum height, velocity t t t 9. m/sec. 9. sec. 98. \ Maimum height 9.().9 (6) [From ()] m (b) Solution :Let Sunday be the initial period, da Given dt ( t ) cm/day da ( t ) dt Integrating both sides we get, ò da ( t ) dt A t ( ) c A (t ) c A c t... () When t, A cm c c c () becomes, A... () t (i) (ii) On Sunday (t ), initial period A 5.5 sq. cm From Sunday to Thursday, there are days When t, () becomes A.5 sq. cm. 6 (b) Solution : < as is large 7 ( ) 7...! ( ) < ( )...! Since is large, is very small and hence higher powers of are negligible. Thus 7 7 and.therefore (a) Solution :The odds of an event A are a : b in favour of an event and a P(A) a b (i) Given that odds of an event A occurs is 5 : 7 P(A) (ii) Given P(B) [ a and b ] 5 The odds that the event B occurs is to.
16 6 Std - Mathematics Sura s Model Question Paper (b) Solution :. Let the events be as follows : A : getting an award for its design B : getting an award for efficient use of materials. Given P (A).8, P(B).6 and P (A B). (i) (ii) P (getting atleast one of the two awards) P (A B) P(A) P (B) P (A B) P (getting only one of the awards) P(A B ) P( A B) P (A) (A B) P(B) P (A B) P(A) P(B) P (A B).8.6 (.) (a) Solution : Let the events be defined as follows : B : Car being filled with petrol will also need an oil change. P (B). E : Car needs a new oil filter P (E ). P (B E ).5 (i) If the oil had to be changed, the probability that a new oil filter is needed P(E /B) P E B 5. P(B)..5 (ii) If a new filter is needed, the probability that the oil has to be changed. (b) Solution : ( ) P(B/ E ) P B E P E Let the events be defined as follows : A : Event of husband and watching the television B : Husband is watching the television. Given P(A ). P(B/A ).6 P (A ). P(B/A ).6. (i) P (Husband watching the television) P(B) P(A ). P(B/A ) P(A ). P(B/A ) P(B) (.) (.6) (.) (.) P(B).. P(B) P(B) 5 (ii) P (if the husband is watching, the wife is also watching the television) P (A / B) P (A / B) P (A/ B) P(A ). P(B /A ) P(A ). P(B /A ) P(A ). P(B /A ) (. )( 6. ) P(B)
Slope-Intercept Formula
LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept
DetaljerTrigonometric Substitution
Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte
DetaljerMathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2
Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C
DetaljerSpeed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.
September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing
Detaljer5 E Lesson: Solving Monohybrid Punnett Squares with Coding
5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to
DetaljerNeural Network. Sensors Sorter
CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]
DetaljerUnit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3
Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May
DetaljerUNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS
UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember
DetaljerContinuity. Subtopics
0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity
DetaljerGradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)
Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill
DetaljerMoving Objects. We need to move our objects in 3D space.
Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position
DetaljerSolutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.
Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.
DetaljerECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems
Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:
DetaljerRight Triangle Trigonometry
0 Capter Trigonometry 70. f 8 7 8 Vertical asymptote: 8 0 y 7 0 7 8 9 9 ± 8 y Slant asymptote: ± 89 ;.,. y 7 8 y-intercept: 0, 8 -intercept:.8, 0 Section. Rigt Triangle Trigonometry You sould know te rigt
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag
DetaljerGraphs similar to strongly regular graphs
Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember
DetaljerUniversitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.
1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:
DetaljerPhysical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)
by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E
DetaljerFYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)
FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere
DetaljerDatabases 1. Extended Relational Algebra
Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---
Detaljer0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23
UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni
DetaljerEndelig ikke-røyker for Kvinner! (Norwegian Edition)
Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker
DetaljerGol Statlige Mottak. Modul 7. Ekteskapsloven
Gol Statlige Mottak Modul 7 Ekteskapsloven Paragraphs in Norwegian marriage law 1.Kjønn To personer av motsatt eller samme kjønn kan inngå ekteskap. Two persons of opposite or same sex can marry 1 a. Ekteskapsalder.
DetaljerEN Skriving for kommunikasjon og tenkning
EN-435 1 Skriving for kommunikasjon og tenkning Oppgaver Oppgavetype Vurdering 1 EN-435 16/12-15 Introduction Flervalg Automatisk poengsum 2 EN-435 16/12-15 Task 1 Skriveoppgave Manuell poengsum 3 EN-435
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember
Detaljer(ii) x = 0or 4. (ix) x = or 3. (xii) x = or. (vi) x = 4. (xiv) x = Exercise (i) ( x 3) 8. (iii) ( 3q. (iii) 3( x + 2) 16.
Cambridge International A and AS Level Mathematics Pure Mathematics Practice Book Universit of Cambridge International Eaminations bears no responsibilit for the eample answers to questions taken from
DetaljerMa Flerdimensjonal Analyse Øving 1
Ma1203 - Flerdimensjonal Analyse Øving 1 Øistein Søvik Brukernavn: Oistes 23.01.2012 Oppgaver 10.1 6. Show that the triangle with verticies (1, 2, 3), (4, 0, 5) and (3, 6, 4) has a right angle. z y x Utifra
DetaljerTMA4329 Intro til vitensk. beregn. V2017
Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver
DetaljerEksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål
Eksamen 22.11.2012 ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel Eksamen varer i 5 timar. Alle hjelpemiddel
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008
DetaljerDynamic Programming Longest Common Subsequence. Class 27
Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag
DetaljerExercise 1: Phase Splitter DC Operation
Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your
DetaljerHan Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)
Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:
DetaljerSmart High-Side Power Switch BTS730
PG-DSO20 RoHS compliant (green product) AEC qualified 1 Ω Ω µ Data Sheet 1 V1.0, 2007-12-17 Data Sheet 2 V1.0, 2007-12-17 Ω µ µ Data Sheet 3 V1.0, 2007-12-17 µ µ Data Sheet 4 V1.0, 2007-12-17 Data Sheet
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november
DetaljerTFY4170 Fysikk 2 Justin Wells
TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation
DetaljerStationary Phase Monte Carlo Methods
Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations
DetaljerGEF2200 Atmosfærefysikk 2017
GEF2200 Atmosfærefysikk 2017 Løsningsforslag til sett 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.18r Unsaturated air is lifted (adiabatically): The rst pair of quantities
DetaljerDu må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.
6-13 July 2013 Brisbane, Australia Norwegian 1.0 Brisbane har blitt tatt over av store, muterte wombater, og du må lede folket i sikkerhet. Veiene i Brisbane danner et stort rutenett. Det finnes R horisontale
DetaljerOppgave. føden)? i tråd med
Oppgaver Sigurd Skogestad, Eksamen septek 16. des. 2013 Oppgave 2. Destillasjon En destillasjonskolonne har 7 teoretiske trinn (koker + 3 ideelle plater under føden + 2 ideellee plater over føden + partielll
DetaljerEKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS
NTNU Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS Faglig kontakt under eksamen: Snorre Lindset,
DetaljerVerifiable Secret-Sharing Schemes
Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur
DetaljerOppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.
TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett
DetaljerHONSEL process monitoring
6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All
DetaljerCall function of two parameters
Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands
DetaljerSecond Order ODE's (2P) Young Won Lim 7/1/14
Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or
DetaljerTEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING
TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE KANDIDATER: (Fornavn, etternavn) Den årlige fremdriftsrapporteringen er et viktig tiltak som gjør instituttene og fakultetene
DetaljerKROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.
KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet
DetaljerMedisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning
Styrke- og utvalgsberegning Geir Jacobsen, ISM Sample size and Power calculations The essential question in any trial/analysis: How many patients/persons/observations do I need? Sample size (an example)
DetaljerInternational Economics
International Economics School of Business Date: 19 February 2008 Time: 4 hours Total number of pages including the cover page: 4 Total number of questions: 4 The candidate should attempt to answer all
DetaljerGEO231 Teorier om migrasjon og utvikling
U N I V E R S I T E T E T I B E R G E N Institutt for geografi Emnerapport høsten 2013: GEO231 Teorier om migrasjon og utvikling Innhold: 1. Informasjon om emnet 2. Statistikk 3. Egenevaluering 4. Studentevaluering
DetaljerMID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN. Wednesday 3 th Mars Time:
Side 1 av 8 Norwegian University of Science and Technology DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN Wednesday 3 th Mars 2010 Time: 1615-1745 Allowed
DetaljerWindlass Control Panel
SIDE-POWER 86-08955 Windlass Control Panel v1.0.2 Windlass Systems Installasjon manual SLEIPNER MOTOR AS P.O. Box 519 N-1612 Fredrikstad Norway Tel: +47 69 30 00 60 Fax: +47 69 30 00 70 w w w. s i d e
DetaljerThe Norwegian Citizen Panel, Accepted Proposals
PROGRAMMER NOTE: There are 4 ways question is asked. That is, each of these one of these 4 questions. Please be sure to use a truly random assignment method to determine
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207
DetaljerSRP s 4th Nordic Awards Methodology 2018
SRP s 4th Nordic Awards Methodology 2018 Stockholm 13 September 2018 Awards Methodology 2018 The methodology outlines the criteria by which SRP judges the activity of Manufacturers, Providers and Service
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Eksamen i: ECON1210 - Forbruker, bedrift og marked Eksamensdag: 26.11.2013 Sensur kunngjøres: 18.12.2013 Tid for eksamen: kl. 14:30-17:30 Oppgavesettet er
DetaljerVekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk
Vekeplan 4. Trinn Veke 39 40 Namn: Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD Norsk Engelsk M& Mitt val Engelsk Matte Norsk Matte felles Engelsk M& Mitt val Engelsk Norsk M& Matte
DetaljerAppendix B, not for publication, with screenshots for Fairness and family background
Appendix B, not for publication, with screenshots for Fairness and family background Ingvild Almås Alexander W. Cappelen Kjell G. Salvanes Erik Ø. Sørensen Bertil Tungodden This document shows screenshots
DetaljerTUSEN TAKK! BUTIKKEN MIN! ...alt jeg ber om er.. Maren Finn dette og mer i. ... finn meg på nett! Grafiske lisenser.
TUSEN TAKK! Det at du velger å bruke mitt materiell for å spare tid og ha det kjekt sammen med elevene betyr mye for meg! Min lidenskap er å hjelpe flotte lærere i en travel hverdag, og å motivere elevene
DetaljerEksamen PSY1010 PSYC1100 Forskningsmetode I vår 2013
Eksamen PSY1010 PSYC1100 Forskningsmetode I vår 2013 Bokmål Skriftlig skoleeksamen, 16. mai. (3 timer) Ingen hjelpemidler tillatt. Besvar tre 3 av følgende fire 4 oppgaver. Oppgave 1. Tenk deg at du skal
DetaljerDen som gjør godt, er av Gud (Multilingual Edition)
Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,
DetaljerDagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler
UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler Institutt for informatikk Dumitru Roman 1 Eksempel (1) 1. The system shall give an overview
DetaljerTUSEN TAKK! BUTIKKEN MIN! ...alt jeg ber om er.. Maren Finn dette og mer i. ... finn meg på nett! Grafiske lisenser.
TUSEN TAKK! Det at du velger å bruke mitt materiell for å spare tid og ha det kjekt sammen med elevene betyr mye for meg! Min lidenskap er å hjelpe flotte lærere i en travel hverdag, og å motivere elevene
DetaljerKneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes
Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG
DetaljerTUSEN TAKK! BUTIKKEN MIN! ...alt jeg ber om er.. Maren Finn dette og mer i. ... finn meg på nett! Grafiske lisenser.
TUSEN TAKK! Det at du velger å bruke mitt materiell for å spare tid og ha det kjekt sammen med elevene betyr mye for meg! Min lidenskap er å hjelpe flotte lærere i en travel hverdag, og å motivere elevene
DetaljerOppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.
Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen
DetaljerKartleggingsskjema / Survey
Kartleggingsskjema / Survey 1. Informasjon om opphold i Norge / Information on resident permit in Norway Hvilken oppholdstillatelse har du i Norge? / What residence permit do you have in Norway? YES No
DetaljerEKSAMENSOPPGAVE I FAG TKP 4105
EKSAMENSOPPGAVE I FAG TKP 4105 Faglig kontakt under eksamen: Sigurd Skogestad Tlf: 913 71669 (May-Britt Hägg Tlf: 930 80834) Eksamensdato: 08.12.11 Eksamenstid: 09:00 13:00 7,5 studiepoeng Tillatte hjelpemidler:
DetaljerSVM and Complementary Slackness
SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations
DetaljerInformation search for the research protocol in IIC/IID
Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs
DetaljerNO X -chemistry modeling for coal/biomass CFD
NO X -chemistry modeling for coal/biomass CFD Jesper Møller Pedersen 1, Larry Baxter 2, Søren Knudsen Kær 3, Peter Glarborg 4, Søren Lovmand Hvid 1 1 DONG Energy, Denmark 2 BYU, USA 3 AAU, Denmark 4 DTU,
DetaljerRight Triangle Trigonometry
Section. Rigt Triangle Trigonometr. Reflection in te -ais and a vertical sift two units upward =. f Reflection in te -ais and a orizontal sift tree units to te left = ( + ) = = Section. Rigt Triangle Trigonometr
DetaljerMa Flerdimensjonal Analyse Øving 11
Ma3 - Flerdimensjonal Analyse Øving Øistein Søvik 7.3. Oppgaver 5.3 5. Find the moment of inertie about the -axis. Eg the value of δ x + y ds, for a wire of constant density δ lying along the curve : r
DetaljerMacbeth: Frozen Scenes
Macbeth: Frozen Scenes Using Frozen Scenes There are several ways to use these scenes 1. Along with the scene one can give the students the lines from the play and ask them to perform their scene with
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON1410 - Internasjonal økonomi Exam: ECON1410 - International economics Eksamensdag: 18.06.2013 Date of exam: 18.06.2013 Tid for eksamen: kl.
DetaljerEksamensoppgave i SANT2100 Etnografisk metode
Sosialantropologisk institutt Eksamensoppgave i SANT2100 Etnografisk metode Faglig kontakt under eksamen: Trond Berge Tlf.: 73598214 Eksamensdato: Mandag 26. mai 2014 Eksamenstid: 4 timer Studiepoeng:
DetaljerGir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.
Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave
DetaljerEKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS
NTNU Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi EKSMENSOPPGVE I SØK004 VIDEREGÅENDE MTEMTISK NLYSE DVNCED MTHEMTICS Faglig kontakt under eksamen: Snorre Lindset, Tlf:
DetaljerAdministrasjon av postnummersystemet i Norge Post code administration in Norway. Frode Wold, Norway Post Nordic Address Forum, Iceland 5-6.
Administrasjon av postnummersystemet i Norge Frode Wold, Norway Post Nordic Address Forum, Iceland 5-6. may 2015 Postnumrene i Norge ble opprettet 18.3.1968 The postal codes in Norway was established in
DetaljerLydia Rice, Doctoral Student University of Arkansas Advisor: Jean-François Meullenet
Lydia Rice, Doctoral Student University of Arkansas Advisor: Jean-François Meullenet Objective 1: Utilize a mixture design model to optimizea blackberry, blueberry, and Concord juice blend Objective 2:
DetaljerHvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)
INF283, HØST 16 Er du? Er du? - Annet Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 =
DetaljerInstructions for the base (B)-treatment and the elicitation (E)-treatment of the experiment
Appendix Instructions for the base (B)-treatment and the elicitation (E)-treatment of the experiment We here provide the instructions given to the participants at the beginning of the session and throughout
DetaljerNTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap
NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SVPOL 105 Komparativ og Internasjonal Politikk Eksamensdato: 28.11.01 Eksamenstid:
DetaljerPerpetuum (im)mobile
Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.
DetaljerEmneevaluering GEOV272 V17
Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom
Detaljer