Geodesic flow on the diffeomorphism group of the circle

Størrelse: px
Begynne med side:

Download "Geodesic flow on the diffeomorphism group of the circle"

Transkript

1 Comment. Math. Helv. 78 (2003) /03/ DOI /s c 2003 Birhäuser Verlag, Basel Commentarii Mathematici Helvetici Geodesic flow on the diffeomorphism group of the circle Adrian Constantin and Boris Kolev Abstract. We show that certain right-invariant metrics endow the infinite-dimensional Lie group of all smooth orientation-preserving diffeomorphisms of the circle with a Riemannian structure. The study of the Riemannian exponential map allows us to prove infinite-dimensional counterparts of results from classical Riemannian geometry: the Riemannian exponential map is a smooth local diffeomorphism and the length-minimizing property of the geodesics holds. Mathematics Subject Classification (2000). 35Q35, 58B25. Keywords. Geodesic flow, diffeomorphism group of the circle. 1. Introduction The group D of all smooth orientation-preserving diffeomorphisms of the circle S is the simplest possible example of an infinite-dimensional Lie group [1]. Its Lie algebra T Id D is the space C (S) of the real smooth periodic maps of period one. Since C (S) is not provided with a natural inner product, to endow D with a Riemannian structure we have to define an inner product on each tangent space T η D, η D. For a Lie group the Riemannian exponential map of any two-sided invariant metric coincides with the Lie group exponential map [1]. It turns out that the Lie group exponential map on D is not locally surjective cf. [12] so that a meaningful 1 Riemannian structure cannot be provided by a bi-invariant metric on D. We are led to define an inner product on C (S) and produce a right-invariant metric 2 by transporting this inner product to all tangent spaces T η D, η D,by means of right translations. In this paper we show that certain right-invariant metrics induce noteworthy Riemannian structures on D. Despite the analytical difficulties that are inher- 1 A prerequisite of a rigorous study aimed at proving infinite-dimensional counterparts of facts established in classical (finite-dimensional) Riemannian geometry is the use of the Riemannian exponential map as a local chart on D. 2 To carry out the passage from right-invariant metrics to left-invariant ones, note that a right-invariant metric on D is transformed by the inverse group operation to a left-invariant metric on D with the reverse law (ϕ ψ= ψ ϕ).

2 788 A. Constantin and B. Kolev CMH ent 3, the existence of geodesics is obtained and their length-minimizing property is established. The paper is organized as follows. In Section 2 we discuss the manifold and Lie group structure of D, Section 3 is devoted to basic properties of the Riemannian structures that we construct on D (existence and local chart property of the Riemannian exponential map), while in Section 4 we prove the length-minimizing property of geodesics. In the last section we present 4 a choice of a right-invariant matric endowing D with a deficient Riemannian structure (the corresponding Riemannian exponential map is not a local C 1 -diffeomorphism), to emphasize the special features of the previously discussed Riemannian structures. Note that for diffeomorphism groups the existence of geodesics is an open question 5 so that it is of interest to have an example (M = S) where an attractive geometrical structure is available. 2. The diffeomorphism group In this section we discuss the manifold and Lie group structure of D. If ξ(x) is a tangent vector to the unit circle S at x S C, then R [x ξ(x)] = 0 and u(x) = 1 xξ(x) R. 2πi This allows us to identify the space of smooth vector fields on the circle with C (S), the space of real smooth maps of the circle. The latter may be thought of as the space of real smooth periodic maps of period one and will be used as a model for the construction of local charts on D. Note that C (S) isafréchet space, its topology being defined by the countable collection of C n (S)-seminorms: a sequence u j u if and only if for all n 0wehaveu j u in C n (S) asj. D is an open subset of C (S; S) C (S; C), as one can easily see considering the function defined on C (S; S) by Θ(ϕ) = inf x y ϕ(x) ϕ(y). x y We will describe a Fréchet manifold structure on D. If t ϕ(t) isac 1 -path in D with ϕ(0) = Id,wehaveϕ (0)(x) T x S. Therefore ϕ (0) is a vector field on S and we can identify T Id D with C (S). If ϕ Dis such that ϕ Id C 0 (S) < 1/2, 3 D is a Fréchet manifold so that the inverse function theorem and the classical local existence theorem for differential equations with smooth right-hand side are not granted cf. [12]. Moreover, we deal with wea Riemannian metrics (the family of open sets of D contains but does not coincide with the family of open sets of the topology induced by the metric) so that even the existence of a covariant derivative associated with the right-invariant metric is in doubt cf. [15]. 4 For a detailed analysis see [7]. 5 For any smooth compact manifold M, both the group of smooth diffeomorphisms of M, Diff(M), and its subgroup formed by the volume-preserving diffeomorphisms, have a Lie group structure [16]. Progress towards the existence of geodesics was made but the understanding is still incomplete [1].

3 Vol. 78 (2003) Geodesic flow on the diffeomorphism group of the circle 789 we can define u(x) = 1 ( ) 2πi Log xϕ(x) C (S; R). Note that u(x) is a measure of the angle between x and ϕ(x). Define a lift F ϕ : R R of ϕ such that u Π( x) =F ϕ ( x) x, x R, where Π : R S is the cover map. In the neighborhood U ϕ0 = { ϕ ϕ 0 C0 (S) < 1/2} of ϕ 0 Dwe are led to define u(x) = 1 ( ) 2πi Log ϕ 0 (x) ϕ(x), x S, and u Π( x) =F ϕ ( x) F ϕ0 ( x), x R. For ϕ U ϕ0, let Ψ ϕ0 (ϕ) =u. We obtain the local charts {U ϕ0, Ψ ϕ0 }, with the change of charts given by 6 Ψ ϕ2 Ψ 1 ϕ 1 (u 1 )=u πi Log(ϕ 2 ϕ 1 ). The previous transformation being just a translation on the vector space C (S), the structure described above endows D with a smooth manifold structure based on the Fréchet space C (S). A direct computation shows that the composition and the inverse are both smooth maps from D Dto D, respectively from D to D, so that the group D is a Lie group. Note that the derivatives of the left-translation L η : D D, L η (ϕ) =η ϕ, η D, and right-translation R η : D D, R η (ϕ) =ϕ η, η D, are given by L η : T Id D T η D, u η x u, η D, respectively R η : T Id D T η D, u u η, η D. The Lie bracet on the Lie algebra T Id D C (S) ofd is [u, v] = (u x v uv x ), u,v C (S). (2.1) 6 With u 1 =Ψ ϕ1 (ϕ) andu 2 =Ψ ϕ2 (ϕ) forϕ U ϕ1 U ϕ2,wehave (2πi) u 2 = Log(ϕ 2 ϕ)=log(ϕ 2 ϕ 1 ϕ 1 ϕ)=log(ϕ 2 ϕ 1 ) + Log(ϕ 1 ϕ)=log(ϕ 2 ϕ 1 )+(2πi) u 1. Hence Ψ ϕ2 (ϕ) =Ψ ϕ1 (ϕ)+ 1 2πi Log(ϕ 2 ϕ 1 ) and the change of charts is plain.

4 790 A. Constantin and B. Kolev CMH Each v T Id D gives rise to a one-parameter group of diffeomorphisms {η(t, )} obtained solving η t = v(η) in C (S) (2.2) with data η(0) = Id D. Conversely, each one-parameter subgroup t η(t) D is determined by its infinitesimal generator v = t η(t) t=0 T Id D. Evaluating the flow t η(t, ) of (2.2) at t = 1 we obtain an element exp L (v) ofd. The Lie-group exponential map v exp L (v) is a smooth map of the Lie algebra to the Lie group. Although the derivative of exp L at 0 C (S) is the identity, exp L is not locally surjective cf. [16]. This failure, in contrast with the case of Hilbert manifolds (see [15]), is due to the fact that the inverse function theorem does not necessarily hold in Fréchet spaces cf. [12]. This inconvenience might seem to indicate that it is preferable to wor with the Hilbert manifolds 7 D = {η H (S) is bijective, orientation-preserving, and η 1 H (S)}, 2, instead of D. However, D is only a topological group and not a Lie group since for η D the right composition R η : D D is smooth but both the left composition L η and the inverse map ϕ ϕ 1 are merely continuous on D, without being smooth (see [2]). Therefore, in order to obtain a Lie group structure, we have to consider the Fréchet manifold D. Let F(D) be the ring of smooth real-valued functions defined on D and X (D) be the F(D)-module of smooth vector fields on D. ForX X(D) andf F(D), the Lie derivative L X f is defined in a local chart as f(ϕ + hx(ϕ)) f(ϕ) L X f(ϕ) = lim, ϕ D. h 0 h If U Dis open and X, Y : U C (S) are smooth, let Y (ϕ + hx(ϕ)) Y (ϕ) D X Y (ϕ) = lim, ϕ D. h 0 h This leads to a covariant definition of the Lie bracet of X, Y X(D), L X Y =[X, Y ]=D X Y D Y X. Note that if X R (D) is the space of all right-invariant smooth vector fields 8 on D, then the bracet [X, Y ]ofx, Y X R (D) is a right-invariant vector field and 7 H (S), 0, is the space of all L 2 (S)-functions (square integrable functions) f with distributional derivatives up to order, x i f with i =0,...,,inL2 (S). Endowed with the norm f 2 = ( xf) i 2 (x) dx, i=0 S H (S) becomes a Hilbert space. Note that if { ˆf(j)} j Z is the Fourier series of f H (S), then f 2 = ( 1+(2πj) (2πj) 2) ˆf(j) 2. j Z 8 X X R (D) is determined by its value u at Id, X η = R η u for η D.

5 Vol. 78 (2003) Geodesic flow on the diffeomorphism group of the circle 791 [X, Y ] Id =[u, v], where u = X Id, v = Y Id cf. [16]. This feature explains the minus sign entering formula (2.1) the commutation operation is defined by this construction carried out with right-invariant vector fields. 3. Riemannian structures on D We define an inner product on the Lie algebra T Id D C (D) ofd, and extend it to D by right-translation. The resulting right-invariant metric on D will be a wea Riemannian metric. In this section we discuss the existence of the geodesic flow associated with this metric. Consider on T Id D C (S) theh (S) inner product u, v = ( xu)( i xv) i dx, u, v C (S), i=0 S and extend this inner product to each tangent space T η D, η D, by righttranslation, i.e. V,W := R η 1 V, R η 1 W, V,W T ηd. (3.1) We have thus endowed D with a smooth right-invariant metric. Note that the right-invariant metric (3.1) defines a wea topology on D so that the existence of a covariant derivative which preserves the inner product (3.1) is not ensured on general grounds cf. [15]. We will give a constructive proof of the existence of such a covariant derivative. Let us first note that u, v = A (u) v dx, u, v H (S), 0, S where for every n 0, A : H n+2 (S) H n (S) is the linear continuous isomorphism A =1 d2 d2 + +( 1). (3.2) dx2 dx2 This enables us to define the bilinear operator B : C (S) C (S) C (S), ( ) B (u, v) = A 1 2v x A (u)+va (u x ), u,v C (S), (3.3) with the property that B (u, v), w = u, [v, w], u,v,w C (S). We can extend B to a bilinear map B on the space X R (D) of smooth rightinvariant vector fields on D by B (X, Y ) η = R η B (X Id,Y Id ), η D,X,Y X R (D).

6 792 A. Constantin and B. Kolev CMH For X X(D), let us denote by Xη R whose value at η is X η. the smooth right-invariant vector field on D Theorem 1. Let 0. There exists a unique Riemannian connection on D associated to the right-invariant metric (3.1), with ( XY ) η =[X, Y Yη R ] η + 1 ( [Xη R,Yη R ] η B (Xη R,Yη R ) η B (Yη R,Xη R ) η ), 2 for smooth vector fields X, Y on D. Proof. The uniqueness of is obtained lie in classical Riemannian geometry (see e.g. [15]) and all the required properties can be checed from its explicit representation, using the defining identity for B. The existence of enables us to define parallel translation along a curve on D and to derive the geodesic equation of the metric defined by (3.1). Throughout the discussion, let J R be an open interval with 0 J. ForaC 1 -curve α : J D, let Lift(α) be the set of lifts of α to T D. The derivation D αt :Lift(α) Lift(α) along α is given in local coordinates by D αt γ = γ t Q (α t α 1,γ α 1 ) α, γ Lift(α), (3.4) where Q : C (S) C (S) C (S) is the bilinear operator Q (u, v) = 1 ( ) u x v + uv x + B (u, v)+b (v, u), 2 u,v C (S). For a C 1 -curve α : J Dwe have d dt γ 1,γ 2 = D αt γ 1,γ 2 + γ 1,D αt γ 2, t J, (3.5) for all γ 1,γ 2 Lift(α). If α : J Dis a C 2 -curve, a lift γ : J T D is called α-parallel if D αt γ 0 on J. This is equivalent to requiring that v t = 1 ( ) vu x v x u + B (u, v)+b (v, u), 2 (3.6) where u, v C 1 (J; C (S)) are defined as α t α 1 = u, respectively γ α 1 = v. A C 2 -curve ϕ : J D satisfying D ϕt ϕ t 0onJ is called a geodesic. If u = ϕ t ϕ 1 T Id D C (S), then u satisfies the equation u t = B (u, u), t J. (3.7) Equation (3.7), called the Euler equation, is the geodesic equation transported by right-translation to the Lie algebra T Id D. Equations of type (3.7) arise in mathematical physics.

7 Vol. 78 (2003) Geodesic flow on the diffeomorphism group of the circle 793 Example 1. For = 0, that is, for the L 2 right-invariant metric, equation (3.7) becomes the inviscid Burgers equation u t +3uu x =0. This equation is a simplified model for the occurence of shoc waves in gas dynamics and can be studied quite explicitly [13]: all solutions but the constant functions have a finite life span. Example 2. For =1,thatis,fortheH 1 right-invariant metric, equation (3.7) becomes cf. [17] the Camassa Holm equation u t + uu x + x (1 x 2) 1 ( u u x 2 ) =0. This equation is a model for the unidirectional propagation of shallow water waves [3] as well as a model for axially symmetric waves on hyperelastic rods [9]. It has a bi-hamiltonian structure [11] and is completely integrable [8]. Some solutions of the Camassa Holm equation exist globally in time [5], whereas others develop singularities in finite time [6]. The blowup phenomenon can be interpreted as a simplified model for wave/rod breaing the solution (representing the surface water wave or the deformation of the hyperelastic rod) stays bounded while its slope becomes vertical in finite time [4]. In a local chart the geodesic equation (3.7) is ϕ tt = P (ϕ, ϕ t ), where P is an operator that will be specified in the proof of Theorem 2. Assuming for the moment the local existence of geodesics on D for the metric (3.1), proved below, let us derive a conservation law for the geodesic flow 9. Observe that any v C (S) T Id D defines a one-parameter group of diffeomorphisms h s : D D, h s (ϕ) = ϕ exp L (sv), where exp L is the Lie-group exponential map. The metric being by construction invariant under the action of h s, Noether s theorem ensures that if g : T D R stands for the right-invariant metric, then g [ dh s (ϕ) ] (ϕ, ϕ t ) ϕ t ds s=0 is preserved along the geodesic curve t ϕ(t) with ϕ(0) = Id and ϕ t (0) = u 0 T Id D. We compute dh s (ϕ) g = ϕ x v, ds s=0 v (ϕ, v)[w] =2 v ϕ 1,w ϕ 1, 9 For finite-dimensional Lie groups the geodesic flow of a one-sided invariant metric the angular momentum is preserved [1]. This is a consequence of the invariance of the metric by the action of the group on itself, in view of Noether s theorem. The same reasoning can be carried over to the present infinite-dimensional case.

8 794 A. Constantin and B. Kolev CMH obtaining that Therefore S ϕ t ϕ 1,ϕ x ϕ 1 v ϕ 1 = u 0,v, v C (S). A (u) ϕ x ϕ 1 v ϕ 1 dx = A (u 0 ) vdx, S v C (S), where, as before, u = ϕ t ϕ 1. A change of variables yields A (u) ϕ ϕ 2 x vdx= A (u 0 ) vdx, v C (S) S so that, denoting we obtain S m = A (u) ϕ ϕ 2 x, (3.8) m (t) =m (0), t [0,T), (3.9) where ϕ C 2 ([0,T); D) is the geodesic for the metric (3.1), starting at ϕ(0) = Id Din the direction u 0 = ϕ t (0) T Id D; as before, u = ϕ t ϕ 1. To prove the existence of geodesics, we proceed as follows. The classical local existence theorem for differential equations with smooth right-hand side, valid for Hilbert spaces (see [15]), does not hold in C (S) cf. [12]. However, note that C (S) = n 2+1 H n (S). We use the classical approach to prove that for every n 2 + 1, the geodesic equation has, on some maximal interval [0,T n ) with T n > 0, a unique solution in H n (S), depending smoothly on time. A priori T n T 2+1. It turns out that T n = T 2+1 for all n 2 +1, a fact that will ensure the existence of geodesics on D endowed with the right-invariant metric (3.1) for every 1. The peculiarities of the special case = 0 (where this approach is not applicable) are discussed in the last section. Theorem 2. Let 1. For every u 0 C (S), there exists a unique geodesic ϕ C ([0,T); D) for the metric (3.1), starting at ϕ(0) = Id Din the direction u 0 = ϕ t (0) T Id D. Moreover, the solution depends smoothly on the initial data u 0 C (S). Proof. Note that ua (u x )=A (uu x )+C 0 (u), u H n (S), n 2 +1, where C 0 : Hn (S) H n 2 (S) isac -operator depending quadratically on u, u x,..., x 2 u. Denoting by C : H n (S) H n 2 (S) thec -operator C (u) = C(u) 0 2u x A (u), we obtain that B (u, u) =A 1 C (u) uu x, u H n (S), n 2 +1.

9 Vol. 78 (2003) Geodesic flow on the diffeomorphism group of the circle 795 The geodesic equation (3.7) becomes u t + uu x = A 1 C (u), where u = ϕ t ϕ 1 C (S). Letting v = u ϕ = ϕ t, we can write the geodesic equation in a local chart U in C (S) as { ϕ t = v, (3.10) v t = P (ϕ, v), where The operator P (ϕ, v) = [ ] A 1 C (v ϕ 1 ) ϕ. (ϕ, v) (ϕ, P (ϕ, v)) can be decomposed into Q E with ( ) E (ϕ, v) = ϕ, R ϕ C R ϕ 1(v), and Q (ϕ, v) = ( ) ϕ, R ϕ A 1 R ϕ 1(v). Specifying the explicit form of E (ϕ, v), we see that this operator extends to the space U n H n (S), where U n is the open subset of H n (S) of all functions having a strictly positive derivative 10. The same argument can be pursued in the case of the operator G : U n H n (S) U n H n 2 (S), ( ) G (ϕ, v) = ϕ, R ϕ A R ϕ 1(v), the inverse of Q (as a map). Direct calculations confirm that E and G are both smooth maps from U n H n (S) tou n H n 2 (S). The regularity of G ensures that its Fréchet differential can be computed by calculating directional derivatives. One finds that ( ) Id 0 DG (ϕ, v) = 2 i=0 a i(ϕ) x i, with a 2 = ( 1) ϕ 2 x and a 0,...,a 2 1, all of the form p (ϕ, ϕ x,..., 2 x ϕ) ϕ 4 x 10 Note that n sothatH n (S)-functions are of class C 2. Explicit calculations show that if η U n,thenη is a H n (S)-homeomorphism of the circle with η 1 H n (S).

10 796 A. Constantin and B. Kolev CMH for a polynomial p with constant coefficients, while is a linear differential operator of order 2 with coefficients rational functions of the form q(ϕ, v, ϕ x,v x,..., x 2 ϕ, x 2 v) ϕ 4 x for some constant coefficient polynomial q. Observe 11 that for every f H n 2 (S) there is a unique solution u H n (S) of the ordinary linear differential equation with H n 2 (S)-coefficients 2 a i (ϕ) xv i = f. i=0 Taing into account the form of DG, we infer that ( ) DG (ϕ, v) Isom U n H n (S), U n H n 2 (S). Since the differential of the smooth map G : U n H n (S) U n H n 2 (S) is invertible at every point, from the inverse function theorem on Hilbert spaces [15] we deduce that its inverse Q : U n H n 2 (S) U n H n (S) is also smooth. The regularity properties that we just proved for the maps Q, E, show that P is a smooth map from U n H n (S) toh n (S). Regard (3.10) as an ordinary differential equation on U n H n (S), with a smooth right-hand side, viewed as a map from U n H n (S) tou n H n (S). The Lipschitz theorem for differential equations in Banach spaces [15] ensures that for every ball B(0,ε n ) H n (S) there exists T n = T n (ε n ) > 0 such that for every u 0 B(0,ε n ), the equation (3.10) with data ϕ(0) = Id and v(0) = u 0 has a unique solution (ϕ, v) C ([0,T n ); U n H n (S)). Moreover, this solution (ϕ, v) depends smoothly on the initial data u 0 and can be extended to some maximal existence time Tn > 0. If T n <, we have either that lim sup t T n v(t) n = or there is a sequence t j T n such that ϕ(t j ) accumulates at the boundary of U n as j. Choose some ball B(0,ε 2+1 ) H 2+1 (S). We prove now that for any u 0 B(0,ε 2+1 ) C (S) there exists a unique geodesic ϕ C ([0,T 2+1 ); D) for the metric (3.1), starting at ϕ(0) = Id in the direction u 0. Since u 0 H n (S) for every n 2 + 1, it suffices to prove that the solution (ϕ, v) of equation (3.10) on each U n H n (S), with data ϕ(0) = Id and v(0) = u 0, has the maximal existence time T n = T 2+1. Assuming that T 2+2 <T 2+1, note that (ϕ(t 2+2 ),v(t 2+2 )) is defined in U 2+1 H 2+1 (S) andϕ(t 2+2 )isac 1 -diffeomorphism of the circle. Recall the notation u = v ϕ 1. To prove that ϕ(t) converges in U 2+2 (S) ast T 2+2, let us use ϕ t = u ϕ to compute x 2 ϕ t, t (0,T 2+1 ). We obtain ϕ x 2 x ϕ t ϕ tx 2 x ϕ =( 1) ϕ 2 x [ ϕ 2 3 x m (t)+e (v, ϕ) ], t (0,T 2+1 ), 11 This can be proved using the Fourier representation of functions in H j (S), j 0.

11 Vol. 78 (2003) Geodesic flow on the diffeomorphism group of the circle 797 where E (v, ϕ) is a smooth expression containing only x-derivatives of ϕ of order i 2 1andx-derivatives of v of order j 2 1. Hence d ( 2 x ϕ ) [ ] =( 1) ϕ 2 3 x m (t)+e (v, ϕ) dt ϕ x =( 1) [ ϕ 2 3 x m (0) + E (v, ϕ) ], t (0,T 2+1 ), in view 12 of (3.9). For t (0,T 2+1 ) we obtain that t [ ] x 2 ϕ(t) =( 1) ϕ x (t) ϕ 2 3 x m (0) + E (v, ϕ) ds. (3.11) Since m (0) C (S) and 0 (ϕ, v) C ([0,T 2+1 ); U 2+1 H 2+1 (S)) C ([0,T 2+2 ); U 2+2 H 2+2 (S)), differentiating (3.11) twice with respect to x, we infer that (ϕ(t),ϕ t (t)) converges in U 2+2 (S) H 2+2 (S) ast T 2+2. The limit can only be (ϕ(t 2+2 ),v(t 2+2 )). Therefore T 2+2 = T 2+1. This procedure can be repeated for n =2 + 3 etc. and the existence of the smooth geodesics on D is now plain. The previous results enable us to define the Riemannian exponential map exp for the H right-invariant metric ( 1). If ϕ(t; u 0 ) is the geodesic on D, starting at Id in the direction u 0 C (S), note the homogeneity property ϕ(t; su 0 )=ϕ(ts; u 0 ) (3.12) valid for all t, s 0 such that both sides are well-defined. In the proof of Theorem 2 we saw that there exists δ>0sothat all geodesics ϕ(t; u 0 ) are defined on the same time interval [0,T] with T>0, for all u 0 Dwith u <δ. Hence, we can define exp(u 0 )=ϕ(1; u 0 ) on the open set { u 0 D: u < 2 δ } T of D, and the map u 0 exp(u 0 ) is smooth. Theorem 3. The Riemannian exponential map for the H right-invariant metric on D, 1, is a smooth local diffeomorphism from a neighborhood of zero on T Id D to a neighborhood of Id on D. Let us first establish 12 Relation (3.9) was derived assuming the existence of geodesics on D. In the present context, it can be proved as follows. Define m by (3.8) and note that it is a polynomial expression in v, ϕ, v x,ϕ x,..., x 2 v, x 2 ϕ, divided by some power of ϕ x. Therefore m C ([0,T 2+1 ); H 1 (S)) and, using (3.10), it can be checed by differentiation with respect to t that m (t) =m (0) for all t [0,T 2+1 ).

12 798 A. Constantin and B. Kolev CMH Lemma 1. Let n 2+1 and let (ϕ, v) be a solution of (3.10) with data (Id,u 0 ) U n H n (S), definedon[0,t). If there exists t [0,T) such that ϕ(t) U n+1 then u 0 H n+1 (S). Proof. From (3.11) we get x 2 ϕ(t) =( 1) m (0) ϕ x (t) t 0 ϕ 2 3 x t ds +( 1) E (v, ϕ) ds, 0 t [0,T). If for some t [0,T)wehaveϕ(t) H n+1 (S), the fact that ϕ x is strictly positive forces m (0) H n+1 2 (S) and therefore u 0 H n+1 (S). Proof of Theorem 3. Viewing exp as a smooth map from a small neighborhood of 0 H n (S) tou n, n 2 + 1, its differential at 0 H n (S), Dexp 0, is the identity map. Indeed, for v H n (S) we have by (3.12) that exp(tv) =ϕ(t; v) so that d dt exp(tv) t=0 = d dt ϕ(t; v) t=0 = v. As a consequence of the inverse function theorem on Hilbert spaces, we can find open neighborhoods V 2+1 and O 2+1 of 0 H 2+1 (S) andid U 2+1, respectively, such that exp : V 2+1 O 2+1 is a C diffeomorphism with Dexp u0 : H 2+1 (S) H 2+1 (S) bijective for every u 0 V 2+1. We already now from the proof of Theorem 2 that ( ) exp V 2+1 C (S) O 2+1 C (S), while Lemma 1 ensures that exp is a local bijection between these open sets. It remains to show that exp is a smooth diffeomorphism from V 2+1 C (S) to O 2+1 C (S). Let u 0 V 2+1 C (S). We now that Dexp u0 is a bounded linear operator from H n (S) toh n (S) for every n and we will prove that it is actually a bijection. Then, in view of the inverse function theorem on Hilbert spaces, both exp and its inverse are smooth maps on small H n (S)-neighborhoods of u 0 V 2+1 C (S), respectively exp(u 0 ) O 2+1 C (S). Letting n, this would show that exp is locally a smooth diffeomorphism. To prove this last step, we use an inductive argument. To start with, Dexp u0 is a bijection from H 2+1 (S)toH 2+1 (S)asu 0 V 2+1.Forafixedn 2+1, assume that the map Dexp u0 is a bijection from H j (S) toh j (S) for all j =2 +1,...,n, and let us show that Dexp u0 is a bijection from H n+1 (S) toh n+1 (S). First of all, Dexp u0 is injective as a bounded linear map from H n+1 (S) toh n+1 (S) since its extension to H n (S) is injective. To prove its surjectivity as a map from H n+1 (S) to H n+1 (S), it suffices 13 to see that there is no w H n (S), w H n+1 (S), with Dexp u0 (w) H n+1 (S). Assume there is such a w. Forε>0small enough let ϕ ε (t) 13 Since exp is a smooth map on V 2+1 H n+1 (S) wehavedexp u0 (H n+1 (S)) H n+1 (S) while the inductive assumption ensures Dexp u0 (H n (S)) = H n (S).

13 Vol. 78 (2003) Geodesic flow on the diffeomorphism group of the circle 799 be the solution of (3.10) on U n starting at Id in the direction u 0 + εw, with the corresponding v ε H n (S)). We now that the map (ϕ ε (t),v ε (t)) U n H n (S) depends smoothly on ε and t [0, 1]. From (3.11) we obtain ( 1) 2 x ϕ ε (1) ( ) 1 1 ϕ ε = m (0; u 0 )+εm (0; w) (ϕ ε x) 2 3 ds + E (v ε,ϕ ε ) ds. x(1) 0 0 Differentiating with respect to ε, a calculation shows that Dexp u0 (w)= d dε ϕε (1) H n+1 (S) is possible only if m (0; w) H n 2+1 (S), i.e. w H n+1 (S). The obtained contradiction concludes the proof. ε=0 4. Minimizing property of the geodesics Throughout this section we prove the length minimizing property for the geodesics of the right-invariant metric (3.1) on D for some fixed 1. Let V 0 be a vector tangent at α(0) = α 0 to a C 2 -curve α : J D. The parallel transport of V along the curve α is defined as a curve γ Lift(α) with γ(0) = V 0 and D αt γ 0onJ. Lemma 2. Let α : J Dbe a C 2 curve. Given V 0 T α0 D,α 0 = α(0) D, there exists a unique lift γ : J T D which is α-parallel and such that γ(0) = V 0. Moreover, if γ 1,γ 2 are the unique α-parallel lifts of α with γ i (0) = V i T α0 D,i= 1, 2, then γ 1 (t), γ 2 (t) = V 1,V 2, t J. Proof. In view of (3.3) and (3.6), the equation of parallel transport is v t = 1 [ 2 (vu x uv x ) A 1 v x A (u)+u x A (v)+ 1 2 va (u x )+ 1 ] 2 ua (v x ), where u = α t α 1 and v = γ α 1. Note that the operators (u, v) A 1 [v xa (u)+u x A (v)], (u, v) 1 [ ] 2 A 1 va (u x )+ua (v x ) 1 2 (vu x + uv x ) are smooth from H n (S) H n (S) toh n (S) for every n 2+1. Denote by Θ (u, v) their sum. The equation of parallel transport can be written as v t + uv x +Θ (u, v) =0. (4.1) For a fixed u C 1 (J; D), the map v Θ (u, v) is a bounded linear operator from H n (S) toh n (S) for every n Viewing (4.1) as linear hyperbolic evolution equation in v with fixed u C 1 (J; D), it is nown (see [14]) that, given V 0 H n (S), n 2 + 1, there exists a unique solution v C(J; H n (S)) C 1 (J; H n 1 (S))

14 800 A. Constantin and B. Kolev CMH of (4.1) with initial data v(0) = V 0. Letting n, we infer that, given V 0 α0 1 T Id D C (S), there exists a unique solution v C 1 (J; D) to (4.1) with v(0) = V 0 α0 1. From (3.5) we deduce that γ 1 (t), γ 2 (t) is constant for any α-parallel lifts and the second assertion follows. Choose open neighborhoods W of 0 C (S), respectively U of Id D, such that Dexp u0 : H 2+1 (S) H 2+1 (S) is bijective for every u 0 Wand exp is a smooth diffeomorphism from W onto U, cf. Theorem 3. The map ( ) G : D W D D, (η, u) η, R η exp(u), is a smooth diffeomorphism onto its image. Let U(η) =R η U = R η exp(w). If ϕ U(η) {η}, then ϕ = exp(v) η for some v W. Letv = rw, where w, w =1andr R + to define the polar coordinates (r, w) ofϕ U(η). If σ : J 1 J 2 Dis a map such that 2 σ r 2, 2 σ t r and 2 σ are continuous, r t denote by 1 σ the partial derivative with respect to r and define similarly 2 σ. Both curves r 1 σ(r, t) andr 2 σ(r, t) are lifts of r σ(r, t). Generally, if γ is a lift of r σ(r, t), let (D 1 γ)(r, t) =(D 1σγ)(r) and define D 2 γ similarly. In a local chart we have by (3.4) that D 1 2 σ = 1 2 σ Q ( 1 σ, 2 σ)=d 2 1 σ (4.2) since Q is symmetric. On the other hand, from (3.5) we infer 2 1 σ, 1 σ =2 D 2 1 σ, 1 σ. The previous relation combined with (4.2) yields 2 1 σ, 1 σ =2 D 1 2 σ, 1 σ. (4.3) Lemma 3. Let γ :[a, b] U(η) {η} be a piecewise C 1 -curve. Then l(γ) r(b) r(a), where l(γ) is the length of the curve and (r(t),w(t)) are the polar coordinates of γ(t). Equality holds if and only if the function t r(t) is monotone and the map t w(t) W is constant. Proof. We may assume without loss of generality that γ is C 1 (in the general case, brea γ up into pieces that are C 1 ) and that η = Id (in view of the right-invariance property of the metric). Observe that w(t) is obtained in a chart by the inversion of exp followed by a projection so that the functions t r(t) andt w(t) areof class C 1. Let σ(r, t) =exp(rw(t)). Let ϕ(s; z) be the solution of (3.10) starting at Id in the direction z C (S). Relation (3.12) yields σ(r, t) =ϕ(r; w(t)), while the proof of Theorem 2 ensures for every n the smooth dependence of ϕ(s; z)

15 Vol. 78 (2003) Geodesic flow on the diffeomorphism group of the circle 801 on s as well as the smooth dependence of (ϕ, ϕ s )onz in H n (S). Therefore 2 σ r 2 and 2 σ t r are continuous in the Hn (S)-setting for every n Furthermore, since s ϕ ϕ(s; z) =Id + s (ξ; z) dξ in Hn (S), 0 we have ϕ s 2 ϕ (s; z) = z 0 z s (ξ; z) dξ in L(Hn (S),H n (S)), thus 2 ϕ z s = 2 ϕ s z. But t w(t) Hn (S) isac 1 2 σ -map so that is also r t continuous in the H n (S)-setting for every n Letting n we obtain that 2 σ r 2, 2 σ r t and 2 σ t r are all continuous in the C (S)-topology. Note that γ (t) = σ r r (t) + σ, t t J. (4.4) Since r σ(r, t) is a geodesic, we obtain by Lemma 2 that σ r, σ = w(t),w(t) 1. r (4.5) Let us now show that σ r, σ 0. t (4.6) Indeed, from (4.3) and (4.5) we obtain that σ D 1 t, σ = 1 σ r 2 t r, σ 0. r This, in combination with (3.5), leads to σ r r, σ σ = D 1 t r, σ σ + t r,d σ 1 0, t σ since (D 1 r )=0asr σ(r, t) is a geodesic. The previous relation yields σ r, σ σ (r, t) = t r, σ (0,t). t But σ(0,t)=id forces σ (0,t) = 0 and therefore (4.6) holds. r Combining (4.4) (4.6), we obtain 2 γ (t) 2 = r (t) 2 + σ t r (t) 2, t [a, b],

16 802 A. Constantin and B. Kolev CMH so that the length of γ is estimated by l(γ) b a r (t) dt r(b) r(a). Since σ t 0 forces w (t) =0asDexp rw(t) is a bijection from H 2+1 (S) to H 2+1 (S), the characterization of the equality case follows at once. Let us now prove Theorem 4. If η, ϕ Dare close enough, more precisely, if ϕ η 1 U, then η and ϕ can be joined by a unique geodesic in U(η). Among all piecewise C 1 -curves joining η to ϕ on D, the geodesic is length minimizing. Proof. Observe that if v = exp 1 (ϕ η 1 ), then α(t) =exp(tv) η is the unique geodesic joining η to ϕ in U(η) cf. Theorem 3. To prove the second statement, let ϕ η 1 = exp(rw) with w = 1 and choose ε (0,r). If γ is any piecewise C 1 -curve on D joining η to ϕ, then γ contains an arc of curve γ such that, after reparametrization, and exp 1 (γ (0)) = ε, exp 1 (γ (1)) = r, ε exp 1 (γ (t)) r, t [0, 1]. Lemma 3 yields l(γ ) r ε, thusl(γ) l(γ ) r ε. The arbitraryness of ε>0 ensures l(γ) r. But l(α) =r in view of Lemma 3 and the minimum is attained if and only if the curve is a reparametrization of a geodesic. Remar. Specializing = 1 in Theorem 4 we obtain that for the Camassa Holm model (Example 2 in Section 3) the Least Action Principle holds. That is, a state of the system is transformed to another nearby state through a uniquely determined flow that minimizes the inetic energy cf. [7]. 5. Comments This section is devoted to a discussion of the L 2 (S) right-invariant metric on D, case when the geodesic equation (3.7) is the inviscid Burgers equation u t +3uu x =0 cf. [1]. The crucial difference from the case of a H (S) right-invariant metric (with 1) lies in the fact that the inverse of the operator A, defined by (3.2), is not regularizing. This feature maes the previous approach inapplicable but the existence of geodesics can be proved by the method of characteristics.

17 Vol. 78 (2003) Geodesic flow on the diffeomorphism group of the circle 803 Proposition 1 [7]. For the L 2 (S) right-invariant metric on D there exists a unique smooth geodesic on D starting at Id in the direction u 0 T Id D. This result enables one to define the Riemannian exponential map of the L 2 (S) right-invariant metric on D, in analogy to the cases considered in the present paper. However, Proposition 2 [7]. The Riemannian exponential map of the L 2 (S) right-invariant metric on D is not a C 1 -diffeomorphism from a neighborhood of zero in T Id D C (S) to a neighborhood of the identity on D. The question whether another right-invariant metric could provide D with a nice Riemannian structure has been positively answered in this paper. Acnowledgements. We than L. Hörmander for his helpful interest and V. Schroeder for stimulating conversations. References [1] V. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Springer-Verlag, New Yor, [2] H. Brézis and J. P. Bourguignon, Remars on the Euler equation, J. Funct. Anal. 15 (1974), [3] R. Camassa and D. Holm, An integrable shallow water equation with peaed solitons, Phys. Rev. Letters 71 (1993), [4] A. Constantin and J. Escher, Wave breaing for nonlinear nonlocal shallow water equations, Acta Mathematica 181 (1998), [5] A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), [6] A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaing waves for a shallow water equation, Math. Z. 233 (2000), [7] A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A 35 (2002), R51 R79. [8] A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), [9] H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney Rivlin rod, Acta Mechanica 127 (1998), [10] D. Ebin and J. Marsden, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. Math. 92 (1970), [11] B. Fuchssteiner and A. Foas, Symplectic structures, their Bäclund transformation and hereditary symmetries, Physica D 4 (1981), [12] R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), [13] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, Berlin, [14] T. Kato, Quasi-Linear equations of evolution, with applications to partial differential equations, in: Spectral Theory and Differential Equations, volume 448, pp , Springer Lecture Notes in Mathematics, 1979.

18 804 A. Constantin and B. Kolev CMH [15] S. Lang, Fundamentals of Differential Geometry, Springer-Verlag, New Yor, [16] J. Milnor, Remars on infinite-dimensional Lie groups, in: Relativity, Groups and Topology (Les Houches, 1983), pp , North-Holland, Amsterdam, [17] G. Misiole, A shallow water equation as a geodesic flow on the Bott Virasoro group, J. Geom. Phys. 24 (1998), Adrian Constantin Department of Mathematics Lund University Box Lund Sweden adrian.constantin@math.lu.se Boris Kolev C. M. I. Université deprovence 39 rue F. Joliot-Curie Marseille Cedex France olev@cmi.univ-mrs.fr (Received: March 28, 2002)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Lipschitz Metrics for Non-smooth evolutions

Lipschitz Metrics for Non-smooth evolutions Lipschitz Metrics for Non-smooth evolutions Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu Alberto Bressan (Penn State) Nonsmooth evolutions 1 / 36 Well-posedness

Detaljer

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid : Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag SOLUTIONS Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, 2013. Tid : 09.00 13.00 Oppgave 1 a) La U R n være enhetsdisken x

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Lie 2-Groups, Lie 2-Algebras, and Loop Groups

Lie 2-Groups, Lie 2-Algebras, and Loop Groups Lie 2-Groups, Lie 2-Algebras, and Loop Groups Alissa S. Crans Joint work with: John Baez Urs Schreiber & Danny Stevenson in memory of Saunders Mac Lane April 8, 2006 Internalization Often a useful first

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

Numerical Simulation of Shock Waves and Nonlinear PDE

Numerical Simulation of Shock Waves and Nonlinear PDE Numerical Simulation of Shock Waves and Nonlinear PDE Kenneth H. Karlsen (CMA) Partial differential equations A partial differential equation (PDE for short) is an equation involving functions and their

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

On time splitting for NLS in the semiclassical regime

On time splitting for NLS in the semiclassical regime On time splitting for NLS in the semiclassical regime Rémi Carles CNRS & Univ. Montpellier Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 21 Splitting for NLS i t u + 1 2 u = f ( u 2) u,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

HONSEL process monitoring

HONSEL process monitoring 6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor. 6-13 July 2013 Brisbane, Australia Norwegian 1.0 Brisbane har blitt tatt over av store, muterte wombater, og du må lede folket i sikkerhet. Veiene i Brisbane danner et stort rutenett. Det finnes R horisontale

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015 Qi-Wu-Zhang model 2D Chern insulator León Martin 19. November 2015 Motivation Repeat: Rice-Mele-model Bulk behavior Edge states Layering 2D Chern insulators Robustness of edge states Motivation topological

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Topological loops with three-dimensional solvable left translation group

Topological loops with three-dimensional solvable left translation group Aequat. Math. 79 (2010), 83 97 c Birkhäuser / Springer Basel AG 2010 0001-9054/10/010083-15 published online April 21, 2010 DOI 10.1007/s00010-010-0009-2 Aequationes Mathematicae Topological loops with

Detaljer

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00 NTNU Side 1 av 2 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 45 43 71 70 Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai 2012 09:00 13:00 Tillatte hjelpemidler:

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

Almost invariant submanifolds for compact group actions

Almost invariant submanifolds for compact group actions J. Eur. Math. Soc., 5 86 c Springer-Verlag & EMS 000 Alan Weinstein Almost invariant submanifolds for compact group actions Received September 4, 999 / final version received November 9, 999 Abstract.

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University Energy Dissipation in Hybrid Stars Sophia Han Washington University Texas Symposium December 8-13, 2013 Mark Alford, Sophia Han, Kai Schwenzer 1 Context Nuclear Matter Crust Quark Matter Core -Sharp interface:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20 Forbruker, bedrift og marked, høsten 2004 Exam: ECON20 - Consumer behavior, firm behavior and markets, autumn 2004 Eksamensdag: Onsdag 24. november

Detaljer

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Høgskolen i Buskerud. Finn Haugen (finn@techteach.no). Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Tid: 7. april 28. Varighet 4 timer. Vekt i sluttkarakteren: 3%. Hjelpemidler: Ingen trykte eller

Detaljer

PETROLEUMSPRISRÅDET. NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER 2016

PETROLEUMSPRISRÅDET. NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER 2016 1 PETROLEUMSPRISRÅDET Deres ref Vår ref Dato OED 16/716 22.06.2016 To the Licensees (Unofficial translation) NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER

Detaljer

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai 2008 09:00 13:00 Tillatte

Detaljer

Berry Phases of Boundary Gravitons

Berry Phases of Boundary Gravitons Berry Phases of Boundary Gravitons Blagoje Oblak (ETH Zurich) February 2018 Based on arxiv 1703.06142 (JHEP) Based on arxiv 1710.06883 (JHEP) Based on arxiv 1711.05753 (CQG) MOTIVATION Gravity has rich

Detaljer

PSi Apollo. Technical Presentation

PSi Apollo. Technical Presentation PSi Apollo Spreader Control & Mapping System Technical Presentation Part 1 System Architecture PSi Apollo System Architecture PSi Customer label On/Off switch Integral SD card reader/writer MENU key Typical

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

Det teknisk- naturvitenskapelige fakultet

Det teknisk- naturvitenskapelige fakultet Det teknisk- naturvitenskapelige fakultet SUBJECT: BIB 120 KONSTRUKSJONSMEKANIKK 1 DATE: September 5, 2012 TIME: AID: 15:00 19:00 (4 hours) Authorized calculator, Dictionary (English-Norwegian) and drawing

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology Norges teknisk-naturvitenskapelige universitet Institutt for Biologi EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI2034 - Community ecology - Faglig kontakt under eksamen/contact person/subject

Detaljer

GEF2200 Atmosfærefysikk 2017

GEF2200 Atmosfærefysikk 2017 GEF2200 Atmosfærefysikk 2017 Løsningsforslag til sett 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.18r Unsaturated air is lifted (adiabatically): The rst pair of quantities

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

Ptolemy circles and Ptolemy segments

Ptolemy circles and Ptolemy segments Arch. Math. 98 (2012), 571 581 c 2012 Springer Basel AG 0003-889X/12/060571-11 published online June 12, 2012 DOI 10.1007/s00013-012-0398-7 Archiv der Mathematik Ptolemy circles and Ptolemy segments Thomas

Detaljer

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 45 INNFØRING I KVANTEMEKANIKK DATO: Fredag 4 desember TID: 9 5 Antall vekttall: 4 Antall sider: 5 Tillatte hjelpemidler:

Detaljer

EKSAMEN I FAG TTT4110 Informasjons- og signalteori. Norsk tekst på oddetalls-sider. (English text on even numbered pages.)

EKSAMEN I FAG TTT4110 Informasjons- og signalteori. Norsk tekst på oddetalls-sider. (English text on even numbered pages.) Side/Page 1 av/of 8 + 3 sider vedlegg + enclosure, 3 pages NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Signalbehandling Faglig kontakt under eksamen: Navn:

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON110 Forbruker, bedrift og marked, våren 004 Exam: ECON110 Consumer behavior, firm behavior and markets, spring 004 Eksamensdag: Tirsdag 18. mai 004

Detaljer

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24 Level Set methods Sandra Allaart-Bruin sbruin@win.tue.nl Level Set methods p.1/24 Overview Introduction Level Set methods p.2/24 Overview Introduction Boundary Value Formulation Level Set methods p.2/24

Detaljer

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains J. Math. Fluid Mech. 19 (2017), 375 422 c 2016 Springer International Publishing 1422-6928/17/030375-48 DOI 10.1007/s00021-016-0289-y Journal of Mathematical Fluid Mechanics Solvability and Regularity

Detaljer

EKSAMENSOPPGAVE I FAG TKP 4105

EKSAMENSOPPGAVE I FAG TKP 4105 EKSAMENSOPPGAVE I FAG TKP 4105 Faglig kontakt under eksamen: Sigurd Skogestad Tlf: 913 71669 (May-Britt Hägg Tlf: 930 80834) Eksamensdato: 08.12.11 Eksamenstid: 09:00 13:00 7,5 studiepoeng Tillatte hjelpemidler:

Detaljer

Oppgave. føden)? i tråd med

Oppgave. føden)? i tråd med Oppgaver Sigurd Skogestad, Eksamen septek 16. des. 2013 Oppgave 2. Destillasjon En destillasjonskolonne har 7 teoretiske trinn (koker + 3 ideelle plater under føden + 2 ideellee plater over føden + partielll

Detaljer

Periodic solutions for a class of non-autonomous differential delay equations

Periodic solutions for a class of non-autonomous differential delay equations Nonlinear Differ. Equ. Appl. 16 (2009), 793 809 c 2009 Birkhäuser Verlag Basel/Switzerland 1021-9722/09/060793-17 published online July 4, 2009 DOI 10.1007/s00030-009-0035-8 Nonlinear Differential Equations

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer