Radially symmetric growth of nonnecrotic tumors

Størrelse: px
Begynne med side:

Download "Radially symmetric growth of nonnecrotic tumors"

Transkript

1 Nonlinear Differ. Equ. Appl. 17 (1), 1 c 9 Birkhäuser Verlag Basel/Switzerland 11-97/1/11- published online October, 9 DOI 1.17/s Nonlinear Differential Equations and Applications NoDEA Radially symmetric growth of nonnecrotic tumors Joachim Escher and Anca-Voichita Matioc Abstract. The growth of tumors is an important subject in recent research. We present here a mathematical model for the growth of nonnecrotic tumors in all the three regimes of vascularisation. This leads to a freeboundary problem which we treat by means ODE techniques. We prove the existence of a unique radially symmetric stationary solution. It is also shown that, if the initial tumor is radially symmetric, there exists a unique radially symmetric solution of the evolution equation, which exists for all times. The asymptotic behaviour of this solution will be discussed in relation to the parameters characterizing cell proliferation and cell death. Mathematics Subject Classification (). 34D, 35K8, 35R5. Keywords. Tumor growth, Free boundary problem, Radial symmetry. 1. Introduction and the main results The study of tumor growth models is a very current topic in mathematics. During the last four decades an increasing number of mathematical models have been proposed to describe the growth of solid tumors (see [,6 8] and the literature therein). There is a three level approach in modeling the complex phenomena influencing and describing the processes inside a tumor. Models at sub-cellular level take into consideration that the evolution of a cell is determined by the genes in its nucleus, at cellular level they model cell cell interaction, and at macroscopic level, when the tumor is considered to consist of three zones: an external proliferating zone near high concentration of nutrient, an intermediate layer, and an internal zone consisting of necrotic cells only. Very often models combine aspects from different scales. There are also a large variety of different types of models: biological models, consisting of coupled ODE systems where the variables correspond to some biological properties of an entire population; mechanical models yield to determine the cell movement based on physical forces; the discrete models handle single-cell scale

2 J. Escher and A.-V. Matioc NoDEA phenomena and the effects are then examined at macroscopic scale, and moving boundary models, when the macroscopic description of biological tissues is obtained from continuum mechanics or microscopic description at cellular level. Using algebraic manipulations Cristini et al. obtain in [5] a new mathematical formulation of an existing model (see [4, 8, 11]) which describes the evolution of nonnecrotic tumors in different regimes of vascularisation (see the cases (i) (iii) presented in Sect. ). The simpler model, as presented in [4,8,11], has been studied extensively by different authors, see, e.g. [3,6,7,9] and the references therein. In particular it is shown in these papers that if the parameters belong to an appropriate range, then the mathematical formulation possesses a unique radially symmetric solution. Moreover the stability properties of this solution under general perturbations as well as bifurcation phenomena are studied. In contrast, for the more involved model presented in [5] (and which we consider here), not many analytic results are available. Before we state our main result, let us introduce the system we are interested in. As widely used in the modeling the tumor is treated as an incompressible fluid and tissue elasticity is neglected. Cell-to-cell adhesive forces are modeled by surface tension at the tumor tissue interface. The growth of the tumor is governed by a balance between cell-mitosis and apoptosis (programed cell-death). The rate of mitosis (λ M ) depends on the concentration of nutrient, and no inhibitor chemical species are present. The two-dimensional system describing the evolution of the tumor is a fully nonlinear system consisting of two decoupled Dirichlet problems, one for the rate ψ at which nutrient is added to the tumor domain Ω(t) and one for the pressure p inside the tumor. These two variables are coupled by a relation which describes the dynamic of the tumor boundary. The full system reads as follows: ψ = f(ψ) in Ω(t), t, p = in Ω(t), t, ψ =1 on Ω(t), t, (1.1) p = κ AG x x 4 on Ω(t), t. G ψ n p n x n AG = V (t) on Ω(t), t >, Ω() = Ω. Here Ω is the initial state of the tumor, V is the normal velocity of the tumor boundary, and the constants A and G have biological meaning (see Sect. for the explicit formula). The function f C ([, )) has the following properties f() = and f (ψ) > for ψ. (1.) In [5] the special case f(r) =r is considered. In this situation the first equation of the system is linear, and if the tumor domain is a sphere or an infinite

3 Vol. 17 (1) Radially symmetric growth of nonnecrotic tumors 3 cylinder the solution is known through an explicit formula. The general case is considerably more involved, the equation being highly nonlinear. Our analysis shows that, under the assumptions (1.), problem (1.1) possesses a unique radially symmetric solution iff (A, G) (, f(1)) (R \}). The radius of this tumor, which we denote by R A, depends only on the constant A. This matches also the previous results obtained for the simpler model (see [6,8]). Furthermore, given (A, G) R, we show the tumor exists in the large, provided it is symmetric initially. The asymptotic behaviour of these tumors for t is described in Theorem 1.. If G = then any disc is a stationary solution. Therefore we consider only the case G here. Theorem 1.1 (Steady states). Given (A, G) (,f(1)) (R \}), there exists a unique radially symmetric, stationary solution to problem (1.1). The radius R A of the stationary tumor depends only on the parameter A and decreases with respect to this variable. Given R>, we denote by D(,R) the disc in R with centre and radius R. Theorem 1. (Asymptotic behaviour). If the tumor is initially radially symmetric, i.e. Ω = D(,R ) for some R >, then it remains symmetric for all times and the following assertions hold: (a) (b) (c) (d) If (A, G) (,f(1)) (, ), there exist positive constants ω, C > and r such that if R R A r, then R(t) R A Ce ωt for t. (1.3) If (A, G) [f(1), ) (, ), we have If (A, G) [f(1), ) (, ), we have that R(t). (1.4) t R(t). (1.5) t If (A, G) (,f(1)) (, ), then the stationary solution is unstable, since R(t) t, if R <R A, if R >R A. (1.6) (e) If (A, G) (, ] (, ) (, ), then, if G< R(t) t, if G>. (1.7) In all the above situations (a) (e) the convergence is monotone. Moreover, R(t) converges exponentially fast except the case (b) when f(1) = A and in the case (e) when A =and G>.

4 4 J. Escher and A.-V. Matioc NoDEA Compared with [8], where a vascularised tumor has been studied, our model here includes also the cases of low and moderate vascularised regimes. In the low vascularisation regime it is possible that the tumor disappears if the parameter A is large enough, meaning that sufficiently many cells are dying. Furthermore, also in the high-vascularised regime it is possible that the tumor vanishes, but in this case the parameter A must be very small. Notice that if initially tumor growth occurs then the radius of the tumor is always increasing in time. Also, if the radius decreases at t =, then the tumor is shrinking as time evolves. The outline of the paper is as follows: We start by describing the algebraic manipulations that lead to (1.1). In Sect. 3 we transform the system describing the radially symmetric, stationary solutions of (1.1) into an equation in the variable R. This equation will be solved using a nice representation for the function ψ (see formula (3.6)). Theorem 1. will be proved in Sect. 4 by making use of ODE technics.. The mathematical model We give first a brief presentation of the modeling aspects described in [4,8,11]. The model there is posed in terms of conservation laws for the nutrient and tumor-cell concentration. Let Ω(t) denote the tumor domain at time t. The quasi-steady diffusion equation for the nutrient concentration σ is =D σ + ψ, (.1) where D is the diffusion constant and ψ the rate of change of the nutrient. This rate ψ incorporates all sources (in our situation only blood provides the tumor with nutrient) and sinks of nutrient in the tumor volume. Nutrient is supplied by the vasculature at a rate ψ B (σ, σ B ), where σ B is the nutrient concentration in blood. The rate of consumption of nutrient by the tumor cells is λσ, where λ is a constant. The blood-tissue transfer is assumed to be linear: ψ B = λ B (σ σ B ), (.) where λ B is a positive constant. Thus, the rate ψ is given by ψ = λ B (σ σ B ) λσ. (.3) Because the tumor is treated as an incompressible fluid the velocity field v in Ω(t) satisfies the continuity equation: v = λ P, (.4) where λ P, the cell-proliferation rate, is given by the expression λ P = bσ λ A, (.5) with b and λ A positive constants. The constant λ A plays an important role in our analysis because it describes the rate of apoptosis. The velocity is assumed to obey Darcy s law: v = µ P, (.6)

5 Vol. 17 (1) Radially symmetric growth of nonnecrotic tumors 5 where µ is the cell mobility and P is the pressure inside Ω(t). The boundary condition for concentration at the boundary Ω(t) is given by σ = σ, (.7) where σ is the nutrient concentration outside the tumor volume, assumed to be constant. The characteristic mitosis rate is set to be λ M = bσ. Pressure is assumed to satisfy the Laplace Young boundary condition P = γκ Ω(t), (.8) where γ is the surface tension related to cell-to-cell adhesive forces and κ Ω(t) is the curvature of the curve Ω(t). The normal velocity V = n v at the tumor boundary Ω(t) is with n the outward unit normal at Ω(t). V = µn P, (.9) Nondimensionalisation. The relations (.1) and (.3) reveal that there is an intrinsic length scale L D = D 1 (λb + λ) 1, which for λ B = estimates the stable size of an avascular tumor when diffusion of nutrient and consumption balance. By nondimiensionalising lengths with L D we obtain, from (.6) and (.8), an intrinsic relaxation time scale λ 1 R, corresponding to the rate: λ R = µγl 3 D. (.1) associated to the relaxation mechanism, cell mobility and surface tension. This rate is used to nondimensionalise time. We introduce now the parameters A and G by setting λ A B λ A = M 1 B, (.11) G = λ M (1 B). (.1) λ R The parameter G describes the relative rate of mitosis to the relaxation mechanism (cell mobility and cell-to-cell adhesion). The parameter A describes the balance between apoptosis and mitosis. Both parameters also include the effect of vascularisation B, which is given by B = σ B λ B σ. (.13) λ + λ B

6 6 J. Escher and A.-V. Matioc NoDEA The parameters A and G allow us to subdivide the growth of the tumor into three regimes associated with increasing degrees of vascularisation: (i) low vascularisation (diffusion dominated, e.g. in vitro cell cultures): G anda> (i.e. B < λ A /λ M ), (ii) moderate vascularisation: G and A (i.e. 1 >B λ A /λ M ), (iii) high vascularisation: G<(i.e. B > 1). The moderate and high vascularisation cases correspond to the regimes observed in in vivo experiments. Further on we introduce the modified concentration ψ and the modified pressure p so that σ = σ (1 (1 B)(1 ψ)) (.14) P = γ ( p + G(1 ψ)+ag x x ). (.15) L D 4 The following lemma shows that the problem just stated above can be reformulated in terms of the system (1.1). Indeed, dropping down the bars in (.16) (.18) yields the two-dimensional version of (1.1). Lemma.1. The dimensional problem given by the relations (.1) (.9) is equivalent to the following two non-dimensional decoupled problem: ψ = ψ in Ω(t), (.16) ψ =1 on Ω(t), and p = in Ω(t) (.17) p = κ Ω(t) AG x x 4 on Ω(t). The tumor surface evolves with normal velocity V = n p + Gn ψ AG n x on Ω(t). (.18) Proof. From the relations (.1), (.3), (.13) and (.14) we find that ψ = λ B + λ ψ D in Ω(t). (.19) The balance between diffusion and nutrient consumption (L D = 1) yields the first equation of (.16). Equation (.14) further implies ψ = σ σ B σ (1 B), and in view of (.7) we obtain the following boundary condition on Ω(t): ψ = σ σ B σ σ B =1. From the relations (.4) (.6) we obtain that P = 1 µ (λ A bσ).

7 Vol. 17 (1) Radially symmetric growth of nonnecrotic tumors 7 Recalling ψ =(σ σ B)/(σ (1 B)), the relations (.11), (.1), (.14), and (.15) yield p = 1 µγ (λ A bσ)+ σ σ B λ M σ (1 B) λ M (1 B) λ R Furthermore (.1) implies p = λ A λ R λ A λ R σ Since b = λ M /σ it follows that p = ( b λ R in Ω(t). λ R (1 B) λ ) M λ R σ. λ A λ M B 1 B. The second equation of (.17) follows now from (.8) and (.15). Equation (.18) follows straightforwardly from previous relations. This completes the proof. 3. Radially symmetric stationary solutions Let (A, G) R be given. In the radially symmetric case, i.e. for Ω(t) = D(,R(t)), system (1.1) reads as ψ = f(ψ) in D(,R(t)), t, p = in D(,R(t)), t, ψ =1 on D(,R(t)), t, p = 1 R(t) AG R (t) (3.1) 4 on D(,R(t)), t, G ψ n p R(t) n AG = R (t) on D(,R(t)), t >, R() = R, where n = x/ x and R >. Notice that if G =, then any disc is a stationary solution of (3.1). In the remaining of this section we consider therefore just the case G. Notice that the boundary conditions in (3.1) depend only on the radius of the tumor. This motivates us to look for solutions (R, ψ, p) (, ) C ([,R]) C ([,R]), solving the coupled problem ψ + 1 r ψ = f(ψ) <r<r, p + 1 r p = <r<r, ψ(r) =1 (3.) p(r) = 1 R AG R 4 Gψ (R) p (R) AGR =. Problems (3.1) and (3.) are equivalent in the following sens: if (R, ψ, p) is a solution of (3.) then, letting Ω = D(,R), thetriple(ω,ψ( x ),p( x )) is a radially symmetric stationary solution of (3.1). Conversely, it is also immediate that any stationary solution of (3.1) determines a unique solution of (3.).

8 8 J. Escher and A.-V. Matioc NoDEA 3.1. The semilinear Dirichlet problem We prove first that, given R>, the initial value problem ψ + 1 r ψ = f(ψ), <r<r, (3.3) ψ(r) =1, possesses a unique solution ψ C ([,R]). To this scope we shall use the so called shooting method. Suppose we have found a solution to (3.3). Multiplying with r the differential equation of (3.3) we get that (rψ (r)) = rf(ψ(r)) for r [,R]. Integrating, we obtain ψ (r) = 1 sf(ψ(s)) ds, (3.4) r thus we have ψ (s) =. Therefore, given c (, 1), consider the initial value problem ψ + 1 r ψ = f(ψ), <r, ψ() = c, (3.5) ψ () =. Theorem 3.1. Given c (, 1), there exists a unique maximal solution ψ c C ([,Rc) of (3.5) and lim ψ c (r) =. (3.6) r Rc Proof. We prove first short time existence and uniqueness of the solution to (3.5). From (3.4) we obtain that any solution to (3.5) satisfies 1 s ψ(r) =c + tf(ψ(t)) dt ds, r. (3.7) s Let b>, M := max [,c+b] (f + f )andh:= min b/m, 1/M}. The set B := u :[,h] R + u is continuous, u c b} is a closed set in the Banach space (C([,h], R), ), thus is a complete metric space. The mapping T : B B, defined by 1 s Tu(r) :=c + tf(u(t)) dt ds, for r andu B, s is 1/-contraction. Indeed, for u B we have 1 s s Tu(r) c = tf(u(t)) dt ds f(u(t)) dt ds Mh b, s for all r [,h], thus T (B) B. Moreover, for u, v B we have 1 s Tu(r) Tv(r) t f(u(t)) f(v(t)) dt ds Mh u v, s for all r [,h], hence Tu Tv 1/ u v. The Banach fixed point theorem implies that T has a unique fixed point ψ c in B, thus(3.5) hasa unique solution in the set C ([,h]).

9 Vol. 17 (1) Radially symmetric growth of nonnecrotic tumors 9 Let Rc denote the maximal existence time for this solution. It follows easily that ψ c is the unique solution to (3.5) satisfying ψ c () = c. Usingan induction argument, we get that ψ c C ([,Rc)). We are left to prove relation (3.6). We first observe that ψ c and ψ c are both strictly increasing on [,Rc). Indeed, given <t<rc, we see that ψ c is a solution of the problem u + 1 r u ( 1 r + f (ψ c ) ) u =, <r<t, (3.8) u() =. Because ψ c is positive and continuous on [,t], it must attain its maximum in t. Leth be the constant found in the first part of the proof. The pair (ψ c,ψ c) is the unique solution of the problem (u, v) h = g(r, (u, v)), <r<r c, (u, v) ( ) ( ( h = h ) ( ψc,ψ h )) (3.9) c, with g :(, ) R R given by g(r, (u, v)) = (v, v/r + f(u)). We conclude that Rc = or (ψ c,ψ c) as r Rc. Suppose first that Rc =. Since ψ c c, we obtain for r that ψ c(r) = 1 sf(ψ c (s)) ds 1 sf(c)ds r r r r f(c) r f(c), A further integration shows that lim r R c ψ c (r) =. In the other case we have either ψ c or ψ c, and the conclusion holds. Given c (, 1), let ψ c C ([,Rc)) be the solution of problem (3.5). There exists a unique R c (,Rc) such that ψ c (R c )=1. Further on we study the mapping [c R c ]. Let R :(, 1) R + be given by R(c) =R c. We observe that for c 1 <c we have ψ c1 <ψ c, Rc 1 Rc and R c1 >R c, i.e. R is a strictly decreasing function. As the next results show, the function R is continuous and bijective. Lemma 3.. Given c (, 1) and R<Rc, we have lim max ψ c ψ c =. (3.1) c c [,R] Proof. Since c<c we have Rc Rc, ψ c C ([,Rc )) and ψ c <ψ c. Let R<Rc be given and set M := max [,ψc (R)] f.givenr [,R], we get 1 t ψ c (r) ψ c (r) c c + s f(ψ c (s)) f(ψ c (s)) ds dt t c c + t c c + MR M ψ c (s) ψ c (s) ds dt ψ c (s) ψ c (s) ds.

10 1 J. Escher and A.-V. Matioc NoDEA Gronwall s lemma implies ψ c (r) ψ c (r) (c c)e MR, which completes the proof. As a direct consequence of the previous lemma we obtain: Corollary 3.3. The function R is continuous from the left. Proof. Let c (, 1) be given and presuppose that lim R(c) > R(c ). We find c c then a constant b (R(c ),Rc ) such that R(c ) <b<r(c) for all c (,c ). Lemma. yields 1 lim ψ c (b) =ψ c (b) > 1, c c and we are done. Proposition 3.4. The function R is continuous. Proof. We are left to prove that R is continuous from the right. We assume by contradiction that lim c c R(c) < R(c ). Given c (, 1), let R c (, ) be defined as the point with ψ c ( R c )=. The mapping [c R c ] is also strictly decreasing. From (3.7) we obtain hence ψ c ( R c ) ψ c (R c )= Rc 1 R c r 1 ( R 1 c R c )max r [, R c] tf(ψ c (t)) dt dr, tf(ψ c (t)) dt ( R c R c )f() R c for all c>c. Thus, we get 1 lim Rc c c f() R c Choose a> such that 1 min f() R c + lim c c R c, R(c ) + lim c c R c. } >a> lim c c R c. Since lim c c Rc > a there exists c 1 > c with R c > a if c [c,c 1 ]. Consequently, [,a] [, R c ] [,Rc) for all c c c 1. Letting M := max [,ψc1 (a)] f we repeat the arguments presented in the proof of Lemma 3. to obtain ψ c (r) ψ c (r) M(c c )e Ma, for all c [c,c 1 ]andr [,a]. It follows that ψ c (a) ψ c (a) c c, and so 1 >ψ c (a) = lim c c ψ c (a) 1.

11 Vol. 17 (1) Radially symmetric growth of nonnecrotic tumors 11 This is a contradiction, thus our assumption was false, and the proof is complete. Proposition 3.5. The mapping R :(, 1) (, ) is bijective. More precisely, we have: lim c 1 R(c) = and limr(c) =. (3.11) Proof. Let c (, 1) be given. From (3.4) we obtain that ψ c(r) f (1/) r/ for all r<rc, provided c>1/. Integrating, we get ( ) 1=ψ c (R c ) c + R c 1 4 f, and, letting c 1, we obtain the first relation in (3.11). We presuppose now that lim c R c =: T<. Following the lines in the proof of Proposition 3.4 we have ψ c ( R c ) ψ c (R c ) ( R c R c ) R c f(). (3.1) Integrating the relation (rψ c(r)) = rf(ψ c (r)), we obtain ψ c(r) = R cψ c(r c ) + 1 sf(ψ c (s)) ds r r R c for all R c r<rc. Thus Rc Rc 1=ψ c ( R c ) ψ c (R c )=R c ψ c(r 1 c ) R c r dr + 1 r sf(ψ c (s)) ds dr R c r R c f(1)( R c R c ) /4, for all c (, 1). Consequently, R c + R c + T. (3.13) f(1) f(1) c The relations (3.1) and (3.13) enforce R c R c + ( 1 ). f() + T f(1) Since R c T for c, there exists c (, 1) with R c >T for all c (,c ], and so [,T] [,Rc)forc (,c ]. Further on, we have ψ c (r) ψ c (r) ψ c (T ) for all r [,T]andc (,c ]. With M := max [,ψc (T )] f we obtain ψ c(r) (f(ψ c (τ)) f()) dτ M ψ c (τ)dτ, for all r [,T]andc (,c ]. Integrating and using Fubini s theorem we get ψ c (r) c + MT ψ c (s)ds, for r [,T]andc c. Gronwall s lemma implies ψ c,[,t ] ce MT, c (,c ]. (3.14)

12 1 J. Escher and A.-V. Matioc NoDEA Letting c in relation (3.14), we conclude that ψ c,[,t ], in contradiction with R c <T and ψ c (R c )=1. Thus, our assumption was false and this completes the proof. Theorem 3.6. Given R>, there exists a unique solution ψ R C ([,R ), R<R, to problem (3.3). Proof. Let R> be given. From Propositions 3.4 and 3.5 we conclude that there exists a unique c (, 1) such that R c = R. Thus, ψ R := ψ c is a solution of (3.3). We are left to prove that this solution is unique. Let ψ R (x) =ψ R ( x ), x D(, 1). The function ψ R is then solution of ψ = f(ψ) in D(,R), ψ =1 on D(,R). (3.15) Let ϕ be another solution of (3.15). Then u = ψ R ϕ C (D(,R)) must solve the Dirichlet problem u = gu in D(,R), u = on D(,R), with g(x) = 1 f (tψ(x)+(1 t)ϕ(x)) dx for all x D(,R). From (1.) we have g> which, together with the weak maximum principle, implies u = and we are done. Lemma 3.7. The problem p + 1 r p =, <r<r, p(r) = 1 R R AG 4, (3.16) possesses a unique solution p R C ([, )), given by for all r [, ). p R (r) = 1 R AGR 4, (3.17) Summarizing, we have reduced the existence problem for (3.)toanequation on the real line. More precisely, from Theorem 3.6 and Lemma 3.7 we get that problem (3.) has solutions iff the equation A = ψ R (R) R (3.18) is solvable. However, it is difficult to treat (3.18) directly. We shall first derive a suitable representation of ψ R.

13 Vol. 17 (1) Radially symmetric growth of nonnecrotic tumors A representation of ψ R In the following we consider the parameter-depending problem: U r (r, λ)+1 U (r, λ) =λf(u(r, λ)), r 1 r r U r (,λ)=, U(1,λ)=1, (3.19) with λ in [, ). As in the previous subsection, we can show that for each λ [, ) there exists a unique, non-decreasing solution U(,λ) C ([, 1]) of (3.19). We prove now that the Fréchet derivative of U is uniformly Lipschitzcontinuous on compact subsets of [, 1] [, ) and that, for fixed r [, 1], the partial function U(r, ) is non-increasing on [, ). Lemma 3.8. Given r [, 1], the mapping [, ) λ U(r, λ) is decreasing. Proof. If λ =, then U(r, ) = 1 for all r [, 1]. Let <λ 1 <λ, U 1 := U(,λ 1 ), U := U(,λ ) and suppose that c 1 = U 1 () <U () = c, with c 1,c (, 1). Then, since U 1 (1) = U (1) = 1, we find r with U 1 (r) =U (r) and U 1 <U on [, r]. For t [, r] wehave U (t) U 1(t) = λ t λ t t t sf(u (s)) ds λ 1 t t sf(u 1 (s)) ds s (f(u (s)) f(u 1 (s))) ds. Integrating, we obtain U (t) U 1 (t) c c 1 contradiction, so c c 1. Suppose now that c = c 1. Then we obtain > on[, r] and that is a U U r (U U 1)=λ f(u ) λ 1 f(u 1 ) = λ (f(u ) f(u 1 )) + (λ λ 1 )f(u 1 ), and, using the mean value theorem, we get, for t [, 1] that f(u (t)) f(u 1 (t)) = 1 Letting W = U U 1 we have f (U 1 (t)+s(u (t) U 1 (t))) (U (t) U 1 (t)) ds. W + 1 t W gw >, in (, 1) W () = W (1) =, (3.)

14 14 J. Escher and A.-V. Matioc NoDEA with a smooth, positive function g. Therefore W<in(, 1). Further on, we have [ lim(u (t) U 1 (t)) = lim λ t t t t sf(u (s)) ds + λ 1 t t ] sf(u 1 (s)) ds + λ (f(u )) λ 1 (f(u 1 )) = λ λ 1 f(c ) >. Hence, we find δ (, 1) such that t λ λ 1 U (t) U 1 (t) f(c )s ds >, t [,δ], 4 in contradiction with U <U 1 on (, 1). Thus, c <c 1,forλ 1 <λ.theweak maximum principle implies U <U 1 in [, 1). We need also the following theorem: Theorem 3.9. Let X, Y, Z be metric spaces. Then f : X Y Z is uniformly Lipschitz-continuous iff f is uniformly Lipschitz-continuous with respect to both variables. Proof. See the proof of Lemma 8.1 in [1]. Lemma 3.1. U is uniformly Lipschitz-continuous on [, 1] [, N], for all N (, ). Proof. Let N>befixed. For (x, λ) [, 1] [, ) we obtain from (3.19) that U(x, λ) =1 1 1 r sλf(u(s, λ)) ds dr+ x 1 r sλf(u(s, λ)) ds dt. (3.1) Relation (3.1) implies that [, 1] r U(r, λ) is uniformly Lipschitz-continuous with respect to λ [,N]. For λ<µwe have U(,λ) U(,µ). It follows 1 1 t <U(,λ) U(,µ) s(µ λ)f(1) ds dr f(1)(µ λ). r Thus, U(,λ) U(,µ) f(1) µ λ. (3.) From (3.1), for λ, µ and letting M = max [,1] f >, we obtain, using Fubini s theorem that x U(x, λ) U(x, µ) f(1) µ λ + NM U(s, λ) U(s, µ) ds. The conclusion follows using Gronwall s lemma and Theorem 3.9. From Lemma 3.1 we obtain the following result: Lemma The partial derivative of U with respect to r is uniformly Lipschitz-continuous on [, 1] [,N], for any fixed N (, ).

15 Vol. 17 (1) Radially symmetric growth of nonnecrotic tumors 15 Proof. Let N (, ) befixedandv (r, λ) := U/ r(r, λ). We have V (r, λ) = 1 r r sλf(u(s, λ)) ds λ f(1), for all r [, 1], and together with (3.19) we obtain that V (r, λ) r 3 λf(1) 3 Nf(1) := L, (r, λ) [, 1] [,N]. Consequently, V (r, λ) V (s, λ) L r s, thus [, 1] r V (r, λ) is uniformly Lipschitz-continuous with respect to λ. For r (, 1] and λ, µ wehave V (r, λ) V (r, µ) (f(1) + NML N ) λ µ, where L N is the Lipschitz constant for U on [, 1] [,N]. Using the continuity of V with respect to r and applying once again Theorem 3.9 we obtain the desired result. Let us now study the differentiability of U with respect to the variable λ. Given λ, we consider the following Dirichlet problem v(x, λ) λf (U(x, λ))v(x, λ) =f(u(x, λ)), in D(, 1) (3.3) v(x, λ) =, on D(, 1), where U(x, λ) :=U( x,λ) is the solution of the Dirichlet problem U(x, λ) =λf(u(x, λ)), in D(, 1), (3.4) U(x, λ) =1, on D(, 1). Problem (3.3) has a unique solution v C (D(, 1)), and using the estimate (3.1) in [1], we find a positive constant c, depending only on f, such that v(,λ),d(,1) c f(u(,λ)),d(,1) cf(1), λ. (3.5) Let now N>andλ [,N] be fixed. Let further µ [, 1], if λ =, respectively µ [ λ/, 1/], if λ (,N]. We set ω(x) :=U(x, λ + µ) U(x, λ) µv(x, λ), for all x 1. Then ω C (D(, 1)) is a solution of the Dirichlet problem ω(x) λf (U(x, λ)ω(x) =h(x), in D(, 1), ω(x) =, on D(, 1), where h C (D(, 1)) satisfies h(x) C µ, for all x in D(, 1) and µ in the appropriate set, with a constant C independent of µ. Applying again estimate (3.1) in [1] we obtain ω,d(,1) c µ. Particularly, U is differentiable on D(, 1) [, ) with respect to the variable λ and U/ λ = v. Lemma 3.1. Given N (, ), the mapping [,N] λ v(x, λ) is uniformly Lipschitz-continuous with respect to the variable x D(, 1).

16 16 J. Escher and A.-V. Matioc NoDEA Proof. Let λ, µ [,N] be given and set w(x) =v(x, λ) v(x, µ), for x in D(, 1). Since w is a solution of the Dirichlet problem w λf (U(,λ))w = f(u(,λ)) f(u(,µ)) + v(,µ)[λf (U(,λ)) µf (U(,µ)], in D(, 1), w =, on D(, 1), we get that ω,d(,1) c µ λ, with a constant c depending only on f and N, cf.(3.5). This completes the proof. Given t [, 1], x D(, 1) with t = x and λ [, ), we have U(t, λ + µ) U(t, λ) U( x,λ+ µ) U( x,λ) lim = lim µ µ µ µ U(x, λ + µ) U(x, λ) = lim = v(x, λ), µ µ thus v is radially symmetric. Lemma 3.1 implies that U is differentiable on [, 1] [, ) with respect to λ and that U/ λ = v. Of course we consider the restriction of v to the unit interval [, 1] here. We still have to show that v is uniformly Lipschitz-continuous on [, 1] [,N], N>, with respect to r. Therefore, it is enough to prove that v/ r is uniformly bounded on [, 1] [,N]. Indeed, from (3.3), in view of the radial symmetry, v is the solution to the problem v r (r, λ)+1 v r r (x, λ) λf (U(r, λ))v(r, λ) =f(u(r, λ)), <r<1 v(r, λ) =, r =1. We then obtain v r r (r, λ) =1 s[λf (U(s, λ))v(s, λ)+f(u(s, λ))] ds, r and the uniform boundedness of v/ r on [, 1] [,N] follows in virtue of (3.5). From the Lemmas and Theorem 3.9 we obtain the following Theorem Theorem The mapping U is continuously differentiable on [, 1] [, ) with uniformly Lipschitz-continuous derivatives on compact subsets of [, 1] [, ). The function U will play an important role in our analysis. First it will help us to determine the solution of (3.3), as the next theorem shows. Theorem Given R> we denote by ψ R the solution to (3.3). We have ψ R (r) =U ( r R,R), r R. (3.6) Proof. The proof follows by direct computations.

17 Vol. 17 (1) Radially symmetric growth of nonnecrotic tumors 17 Proof of Theorem 1.1. From Theorems 3.6, 3.14, Lemma 3.7 and relation (3.18) we conclude that (3.) has a solution iff there exists a positive R solving the equation A = U R r (1,R )= We define the function 1 F :[, ) R, F(R) = rf(u(r, R )) dr. (3.7) 1 rf(u(r, R )) dr. (3.8) From Lemma 3.8 and Theorem 3.13 we get that F is continuously differentiable and strictly decreasing on [, ), with F () = f(1). Moreover, we state that lim R F (R) =. If we had that U(,λ) λ a.e. on [, 1], then this would follow by Lebesgue s dominated convergence theorem, since U is bounded by 1. Let us thus presuppose that this is not the case, i.e. there exists r (, 1) such that U(r,λ) a, λ, with a positive constant a. It follows then 1 U(1,λ) U(r,λ) λ 1 r 1 r r sf(u(s, λ)) ds dr 1 r r λ f(a)dsdr λr f(a) (1 r ) r r r λ. This is a contradiction, thus U(,λ) λ a.e. on [, 1]. Summarizing, F ([, )) = (, f(1)], hence (3.7) has a positive solution iff A (,f(1)). Given A (,f(1)), let R A denote the unique solution to (3.7). Lemma 3.8 implies then that (,f(1)) A R A is strictly decreasing. This completes the proof. 4. Radially symmetric evolution of tumors In this section we aim to prove that problem (3.1) possesses for any initial data R > a unique, globally defined solution. A triple ( R( ),ψ R( ),p R( ) ) is called solution to (3.1) if R C 1 ([, ), (, )), (ψ R(t),p R(t) ) C ([,R(t)]), for t and if ( ) R( ),ψ R( ),p R( ) satisfies the equations in (3.1) pointwise. From Theorem 3.6 and Lemma 3.7 we deduce that ( ) R( ),ψ R( ),p R( ) is a solution of the evolution problem (3.1) iff the function R solves the following initial value problem R = h(r), <t<t, (4.1) R() = R,

18 18 J. Escher and A.-V. Matioc NoDEA where R > is the radius describing the initial state of the tumor and ( 1 h(r) :=GR rf(u(r, R )) dr A ) = GR (F (R) A), R. The function F is defined by (3.8). Proof of Theorem 1.. Let (A, G) R be fixed. The function h is continuously differentiable and, since U 1, has linear growth. For R > fixed, we define R to be the maximal defined solution of (4.1). Let T denote the maximal existence time of this solution. It follows that the solution R is bounded on bounded intervals (see [1, Theorem 7.8]). If G =, then R = R on [, ). We consider now the case G. We split our argumentation as follows: (a) Let (A, G) (,f(1)) (, ). In this case and R A are the only stationary solutions of (4.1). Since h>on(,r A )andh<on(r A, ) it must hold T = and R(t) R A as t. Moreover, h (R A )= GR A F (R A )=GR A 1 rf(u(r, R A)) U λ (r, R A)dr := ω <, hence R A is exponentially stable. (b) Let (A, G) [f(1), ) (, ). In this case R = is the only zero of h and h<on(, ). It follows then T = and lim t R(t) =. Moreover, R R < G (f(1) A) <, which implies that R(t) converges exponentially for A>f(1). (c) Let (A, G) [f(1), ) (, ). Since G> we have in this situation that h > on(, ). It follows that R(t) for t T. Because R must be bounded on bounded intervals it must be T =. That the convergence is at an exponential rate follows from the following inequality R R G (F (R ) A). (d) Let (A, G) (,f(1)) (, ). As in (a), and R A are the only two zeros of h, but now h<on(,r A )andh>on(r A, ). If R <R A, then, as in (b), R decreases in infinite time to. In this case the exponential convergence is implied by G (F (R) A) < G (F (R ) A) <. If R >R A then we have the situation from (c), i.e. lim t R(t) =. Since G (F (R) A) > G (F (R ) A) >, the R(t) converges exponentially fast.

19 Vol. 17 (1) Radially symmetric growth of nonnecrotic tumors 19 (e) In the situation considered here, h and G have the same sign. The radius R(t) increases to infinity if G>and shrinks to zero for negative G. Moreover, we have that R R AG, if G> R R G (F (R ) A), if G<, on [, ). The desired result follows in view of the above relations. Acknowledgements The authors are grateful to the anonymous referee for several suggestions which improved the quality of our paper. References [1] Amann, H.: Ordinary Differential Equations. An Introduction to Nonlinear Analysis. Walter de Gruyter, Berlin (199) [] Bellomo, N., Li, N.K., Maini, P.K.: On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18(4), (8) [3] Borisovich, A., Friedman, A.: Symmetric-breaking bifurcation for free boundary problems. Indiana Univ. Math. J. 54, (5) [4] Byrne, H.M., Chaplain, M.A.: Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 13, (1995) [5] Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol. 46, (3) [6] Cui, S.B.: Analysis of a free boundary problem modeling tumor growth. Acta Math. Sin., English Ser. 1(5), (5) [7] Cui, S.B., Escher, J.: Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors. SIAM J. Math. Anal. 39(1), 1 35 (7) [8] Friedman, A., Reitich, F.: Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38, 6 84 (1999) [9] Friedman, A., Reitich, F.: Symmetry-breaking bifurcation of analytic solutions to free boundary problems. Trans. Am. Math. Soc. 353, (1) [1] Gilbarg, D., Trudinger, T.S.: Elliptic Partial Differential Equations of Secound Order. Springer, New York (1997) [11] Greenspan, F.P.: On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 9 4 (1976)

20 J. Escher and A.-V. Matioc NoDEA J. Escher, A.-V. Matioc Institut für Angewandte Mathematik, Leibniz Universität Hannover, Welfengarten 1, 3167 Hannover, Germany J. Escher Received: 8 January 9. Accepted: July 9.

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24 Level Set methods Sandra Allaart-Bruin sbruin@win.tue.nl Level Set methods p.1/24 Overview Introduction Level Set methods p.2/24 Overview Introduction Boundary Value Formulation Level Set methods p.2/24

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

NO X -chemistry modeling for coal/biomass CFD

NO X -chemistry modeling for coal/biomass CFD NO X -chemistry modeling for coal/biomass CFD Jesper Møller Pedersen 1, Larry Baxter 2, Søren Knudsen Kær 3, Peter Glarborg 4, Søren Lovmand Hvid 1 1 DONG Energy, Denmark 2 BYU, USA 3 AAU, Denmark 4 DTU,

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

An oscillatory bifurcation from infinity, and

An oscillatory bifurcation from infinity, and Nonlinear differ. equ. appl. 15 (28), 335 345 121 9722/8/3335 11, DOI 1.17/s3-8-724-1 c 28 Birkhäuser Verlag Basel/Switzerland An oscillatory bifurcation from infinity, and from zero Philip Korman Abstract.

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor. 6-13 July 2013 Brisbane, Australia Norwegian 1.0 Brisbane har blitt tatt over av store, muterte wombater, og du må lede folket i sikkerhet. Veiene i Brisbane danner et stort rutenett. Det finnes R horisontale

Detaljer

On time splitting for NLS in the semiclassical regime

On time splitting for NLS in the semiclassical regime On time splitting for NLS in the semiclassical regime Rémi Carles CNRS & Univ. Montpellier Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 21 Splitting for NLS i t u + 1 2 u = f ( u 2) u,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

Numerical Simulation of Shock Waves and Nonlinear PDE

Numerical Simulation of Shock Waves and Nonlinear PDE Numerical Simulation of Shock Waves and Nonlinear PDE Kenneth H. Karlsen (CMA) Partial differential equations A partial differential equation (PDE for short) is an equation involving functions and their

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

EKSAMENSOPPGAVE I FAG TKP 4105

EKSAMENSOPPGAVE I FAG TKP 4105 EKSAMENSOPPGAVE I FAG TKP 4105 Faglig kontakt under eksamen: Sigurd Skogestad Tlf: 913 71669 (May-Britt Hägg Tlf: 930 80834) Eksamensdato: 08.12.11 Eksamenstid: 09:00 13:00 7,5 studiepoeng Tillatte hjelpemidler:

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

HONSEL process monitoring

HONSEL process monitoring 6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

Utsatt eksamen ECON2915

Utsatt eksamen ECON2915 Utsatt eksamen ECON2915 Oppgave 1 Betrakt en Solow vekstmodell for en lukket økonomi. Vi har følgende relasjoner: Y = AK α L 1 α (1) K = γy δk, 0 < γ < 1, 0 < δ < 1 (2) der Y er brutto nasjonalprodukt,

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

GEF2200 Atmosfærefysikk 2017

GEF2200 Atmosfærefysikk 2017 GEF2200 Atmosfærefysikk 2017 Løsningsforslag til sett 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.18r Unsaturated air is lifted (adiabatically): The rst pair of quantities

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

Lattice Simulations of Preheating. Gary Felder KITP February 2008

Lattice Simulations of Preheating. Gary Felder KITP February 2008 Lattice Simulations of Preheating Gary Felder KITP February 008 Outline Reheating and Preheating Lattice Simulations Gravity Waves from Preheating Conclusion Reheating and Preheating Reheating is the decay

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

Solution for INF3480 exam spring 2012

Solution for INF3480 exam spring 2012 Solution for INF3480 exam spring 0 June 6, 0 Exercise Only in Norwegian a Hvis du har en robot hvor ikke den dynamiske modellen er kjent eller spesielt vanskelig å utlede eksakt, kan en metode liknende

Detaljer

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions J. Math. Fluid Mech. 2019 21:36 c 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00021-019-0440-7 Journal of Mathematical Fluid Mechanics On the Existence of Strong Solutions to a Fluid Structure

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University Energy Dissipation in Hybrid Stars Sophia Han Washington University Texas Symposium December 8-13, 2013 Mark Alford, Sophia Han, Kai Schwenzer 1 Context Nuclear Matter Crust Quark Matter Core -Sharp interface:

Detaljer

PETROLEUMSPRISRÅDET. NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER 2016

PETROLEUMSPRISRÅDET. NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER 2016 1 PETROLEUMSPRISRÅDET Deres ref Vår ref Dato OED 16/716 22.06.2016 To the Licensees (Unofficial translation) NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

FINAL EXAM IN STA-2001

FINAL EXAM IN STA-2001 Page 1 of 3 pages FINAL EXAM IN STA-2001 Exam in: STA-2001 Stochastic processes. Date: Tuesday the 21. of February, 2012. Time: 09:00 13:00. Place: Aud.max. Approved aids: 4 pages of your own notes. Approved

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

Lipschitz Metrics for Non-smooth evolutions

Lipschitz Metrics for Non-smooth evolutions Lipschitz Metrics for Non-smooth evolutions Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu Alberto Bressan (Penn State) Nonsmooth evolutions 1 / 36 Well-posedness

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS English Exam: ECON2915 Economic Growth Date of exam: 25.11.2014 Grades will be given: 16.12.2014 Time for exam: 09.00 12.00 The problem set covers 3 pages Resources

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Emneevaluering GEOV325 Vår 2016 Kommentarer til GEOV325 VÅR 2016 (emneansvarlig) Forelesingsrommet inneholdt ikke gode nok muligheter for å kunne skrive på tavle og samtidig ha mulighet for bruk av power

Detaljer

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai 2008 09:00 13:00 Tillatte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSO ØKONOMISK INSTITUTT Eksamen i: ECON915 Vekst og næringgstruktur Exam: ECON915 Growth and business structure Eksamensdag: Torsdag 6. november 009 Sensur kunngjøres: 18. desember ca

Detaljer

stjerneponcho for voksne star poncho for grown ups

stjerneponcho for voksne star poncho for grown ups stjerneponcho for voksne star poncho for grown ups www.pickles.no / shop.pickles.no NORSK Størrelser XS (S) M (L) Garn Pickles Pure Alpaca 300 (350) 400 (400) g hovedfarge 100 (100) 150 (150) g hver av

Detaljer

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology Norges teknisk-naturvitenskapelige universitet Institutt for Biologi EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI2034 - Community ecology - Faglig kontakt under eksamen/contact person/subject

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

Page 2 of 3. Problem 1.

Page 2 of 3. Problem 1. Page of 3 Problem. Derive formulas for the a nb coefficients in the Second-Order Upstream scheme (SOU) for the convection-diffusion equation for the concentration of diatom type algae with fall velocity

Detaljer

Topological loops with three-dimensional solvable left translation group

Topological loops with three-dimensional solvable left translation group Aequat. Math. 79 (2010), 83 97 c Birkhäuser / Springer Basel AG 2010 0001-9054/10/010083-15 published online April 21, 2010 DOI 10.1007/s00010-010-0009-2 Aequationes Mathematicae Topological loops with

Detaljer

Method validation for NO (10 ppm to 1000 ppm) in nitrogen using the Fischer Rosemount chemiluminescence analyser NOMPUMELELO LESHABANE

Method validation for NO (10 ppm to 1000 ppm) in nitrogen using the Fischer Rosemount chemiluminescence analyser NOMPUMELELO LESHABANE Method validation for NO (10 ppm to 1000 ppm) in nitrogen using the Fischer Rosemount chemiluminescence analyser NOMPUMELELO LESHABANE Presentation Outline Introduction Principle of operation Precision

Detaljer

EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE

EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE Faglig kontakt under eksamen: Hans Bonesrønning Tlf.: 9 17 64

Detaljer

2003/05-001: Dynamics / Dynamikk

2003/05-001: Dynamics / Dynamikk Institutt for kjemisk prosessteknologi SIK 050: Prosessregulering 003/05-001: Dynamics / Dynamikk Author: Heinz A Preisig Heinz.Preisig@chemeng.ntnu.no English: Given the transfer function g(s) := s (

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1310 Økonomisk aktivitet og økonomisk politikk Exam: ECON1310 Macroeconomic theory and policy Eksamensdag: 18.05.01 Sensur blir annonsert: 07.06.01

Detaljer

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Hvordan føre reiseregninger i Unit4 Business World Forfatter: Hvordan føre reiseregninger i Unit4 Business World Forfatter: dag.syversen@unit4.com Denne e-guiden beskriver hvordan du registrerer en reiseregning med ulike typer utlegg. 1. Introduksjon 2. Åpne vinduet

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

RF Power Capacitors Class kV Discs with Moisture Protection

RF Power Capacitors Class kV Discs with Moisture Protection RF Power Capacitors Class 0-20kV Discs with Moisture Protection T H E C E R A M I C E X P E R T S RF Power Capacitors Class 0-20kV Discs with Moisture Protection The CeramTec Group is a world leader in

Detaljer